JP2566997B2 - Non-contact positioning device - Google Patents

Non-contact positioning device

Info

Publication number
JP2566997B2
JP2566997B2 JP62291984A JP29198487A JP2566997B2 JP 2566997 B2 JP2566997 B2 JP 2566997B2 JP 62291984 A JP62291984 A JP 62291984A JP 29198487 A JP29198487 A JP 29198487A JP 2566997 B2 JP2566997 B2 JP 2566997B2
Authority
JP
Japan
Prior art keywords
driven body
electromagnets
driving
main plate
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62291984A
Other languages
Japanese (ja)
Other versions
JPH01134512A (en
Inventor
博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62291984A priority Critical patent/JP2566997B2/en
Publication of JPH01134512A publication Critical patent/JPH01134512A/en
Application granted granted Critical
Publication of JP2566997B2 publication Critical patent/JP2566997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、被駆動体を支持、駆動することができる
位置決め装置に関するもので、高精度の滑らかな多自由
度の位置決めを必要とする機器、宇宙用アンテナ指向方
向制御装置、光学機器、半導体製造機器等に属する。
The present invention relates to a positioning device capable of supporting and driving a driven body, and is capable of highly accurate and smooth positioning with multiple degrees of freedom. Equipment, space antenna pointing control device, optical equipment, semiconductor manufacturing equipment, etc.

(従来の技術) 従来、被駆動体の複数の自由度を位置決め制御する場
合には、少ない自由度の駆動装置を複数組合せて使用す
るのが一般的である。この様な位置決め機構の駆動方法
としては、リニアモータ、ソレノイドなどの駆動源で直
接駆動するか、歯車、減速機などの動力伝達要素を介し
て間接的に駆動する方法がとられており、また、被駆動
体の支持は油軸受、球軸受、バネなどによって行われて
いる。
(Prior Art) Conventionally, when performing positioning control of a plurality of degrees of freedom of a driven body, it is general to use a plurality of driving devices having a small degree of freedom in combination. As a driving method of such a positioning mechanism, a method of directly driving with a driving source such as a linear motor or a solenoid, or indirectly driving through a power transmission element such as a gear or a speed reducer is adopted. The driven body is supported by an oil bearing, a ball bearing, a spring, or the like.

また、被駆動体の複数の自由度を位置決めする場合に
駆動装置から発生すべき力の大きさを知るために用いら
れるセンサも駆動装置と同様にセンサを複数個組合せて
使用する。例えば、回転の自由度を知る必要がある場合
には、磁気式エンコーダ、光学式エンコーダなどの回転
角度系や、タコメータに代表される回転速度系などによ
って回転自由度の情報を得る。あるいは、並進自由度の
情報を検出するには、渦電流式、リニアスケール、作動
トランスなどの変位計や、光学式などの速度センサ、あ
るいは圧電効果や半導体素子などによる加速度センサな
どにより、並進自由度の情報を得る。
Further, a sensor used to know the magnitude of the force to be generated from the driving device when positioning a plurality of degrees of freedom of the driven body also uses a combination of a plurality of sensors like the driving device. For example, when it is necessary to know the degree of freedom of rotation, information about the degree of freedom of rotation is obtained by a rotation angle system such as a magnetic encoder or an optical encoder or a rotation speed system represented by a tachometer. Alternatively, to detect the translational freedom information, use a displacement sensor such as an eddy current type, a linear scale, or an operating transformer, a speed sensor such as an optical type, or an acceleration sensor such as a piezoelectric effect or a semiconductor element to perform translational freedom. Get degree information.

ところが、以上のような位置決め装置では、次のよう
な問題点がある。
However, the above positioning device has the following problems.

第1に複数個の駆動装置およびセンサを組合せるた
め、構造が複雑で、部品点数が多く、製作および小形化
が困難である。
First, since a plurality of driving devices and sensors are combined, the structure is complicated, the number of parts is large, and it is difficult to manufacture and downsize.

第2に駆動時に各部に摩擦が生じるため、発熱した
り、出力が変化したりするとともに摩擦を生じて不安定
となり、精度および信頼性の確保が困難となる。
Secondly, since friction occurs in each part during driving, heat is generated, the output changes, and friction causes instability, which makes it difficult to secure accuracy and reliability.

第3に、被駆動体を支持する軸受などの滑動が必要な
ために宇宙の高真空など特殊環境下における寿命に信頼
がおけない。
Thirdly, since the bearings that support the driven body need to slide, the service life cannot be reliable in a special environment such as high vacuum in space.

これに対して、例えば米国特許第4156548号および米
国特許第4088018号に記載されたようなものがある。こ
れは、宇宙船上において、望遠鏡を該宇宙船の振動から
離隔させて支持し、且つ光軸補正を加える目的で創案さ
れたもので、6組(12個)の電磁石で円板を外周部より
支持し、5自由度の駆動を実現している。この従来例で
は、非接触支持方式の採用により、上記第2及び第3の
問題点は解決される。
On the other hand, for example, there are those described in US Pat. No. 4,156,548 and US Pat. No. 4088018. This was designed for the purpose of supporting the telescope on the spacecraft away from the vibration of the spacecraft, and adding the optical axis correction. The disk is composed of 6 sets (12) of electromagnets from the outer periphery. It supports and realizes drive with 5 degrees of freedom. In this conventional example, the second and third problems are solved by adopting the non-contact support method.

しかし、この様な装置では、1自由度の駆動に対して
2個以上の電磁石が必要なため多自由度の位置決めには
多数の電磁石を使用しなければならず、その配置が困難
であるという問題があった。
However, in such a device, since two or more electromagnets are required for driving with one degree of freedom, a large number of electromagnets must be used for positioning with multiple degrees of freedom, and it is difficult to arrange them. There was a problem.

そこで、電磁石の数を減らすために多面体形状の被駆
動体を非接触に位置決めする装置として、特願昭61−12
059に記載されている非接触位置決め装置を本出願人は
既に提案している。
In order to reduce the number of electromagnets, Japanese Patent Application No. 61-12 describes a device for positioning a polyhedral driven body in a non-contact manner.
The applicant has already proposed the non-contact positioning device described in 059.

この主たる構成は第6図に斜視図で示すように正四面
体形状に形成された被駆動体101と、この被駆動体101を
非接触に浮上させ駆動する駆動手段103とから構成され
ている。
As shown in the perspective view of FIG. 6, this main structure is composed of a driven body 101 formed in a regular tetrahedron shape, and a driving means 103 for floating and driving the driven body 101 in a non-contact manner. .

前記駆動手段103である8個の電磁石105,107,109,11
1,113,115,117,119は非磁性材からなる連結部材121によ
り連結され、前記被駆動体101に対し一定の磁気空間を
もって電磁吸引力の作用をするようになっている。
Eight electromagnets 105, 107, 109, 11 which are the driving means 103
1, 113, 115, 117 and 119 are connected by a connecting member 121 made of a non-magnetic material, and an electromagnetic attraction force acts on the driven body 101 with a constant magnetic space.

前記被駆動体101の中央には連結部材121の孔123を貫
通した支柱30が固定され、その先端側に例えば図示しな
いアンテナ等が取り付けられている。従って6自由度の
位置決めを、電磁石という一方向性の力を発生する駆動
装置を8個用いて実現し、大きな効果を得ている。
A pillar 30 penetrating the hole 123 of the connecting member 121 is fixed to the center of the driven body 101, and an antenna (not shown) or the like is attached to the tip end side thereof. Therefore, positioning with 6 degrees of freedom is realized by using eight driving devices called electromagnets that generate a unidirectional force, and a great effect is obtained.

(発明が解決しようとする問題点) 以上の様に従来技術では、多自由度の位置決めを行う
場合、少ない自由度の駆動装置やセンサを複数組み合わ
せて使用するため、構造が複雑で、部品点数が多く、製
作および小形化が困難であった。そこで、本出願人は特
願昭61−12059号を既に提案し、大きな効果を得てい
る。
(Problems to be Solved by the Invention) As described above, in the prior art, when positioning with multiple degrees of freedom, a plurality of driving devices and sensors with few degrees of freedom are used in combination, so that the structure is complicated and the number of parts is large. However, it was difficult to manufacture and miniaturize. Therefore, the present applicant has already proposed Japanese Patent Application No. 61-12059 and obtained a great effect.

この発明はこれをさらに発展させたもので、より少な
い個数の電磁石を用いて他自由度の位置決めができるよ
うにし、小形化の可能な非接触位置決め装置を提供する
ことを目的としている。
The present invention is a further development of the present invention, and an object of the present invention is to provide a non-contact positioning device which enables positioning with other degrees of freedom by using a smaller number of electromagnets and which can be downsized.

[発明の構成] (問題点を解決するための手段) 上記問題点を解決するために本発明では、位置決めの
対象となる被駆動体と、この被駆動体を支持,駆動する
一方向性の力を発生する駆動手段と、前記被駆動体の位
置及び姿勢を検出するセンサとで構成される非接触位置
決め装置において、前記被駆動体を略三角形の主板及び
この主板に平行でなく且つ3辺に接する3枚の側板によ
り構成し、前記駆動手段を前記各側板の前記主板側頂点
近傍に対して少なくとも1個づつ計4個配設し、且つ前
記主板の頂点近傍に対してそれぞれ1個づつ計3個配設
した構成とした。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, in the present invention, a driven body to be positioned and a unidirectional one for supporting and driving the driven body. In a non-contact positioning device including a driving unit that generates a force and a sensor that detects the position and orientation of the driven body, the driven body has a substantially triangular main plate and three sides not parallel to the main plate. The driving means is provided at least one in the vicinity of the main plate side apex of each of the side plates, and a total of four drive means, and one each in the vicinity of the apex of the main plate. A total of three are arranged.

(作用) かかる構成において、駆動手段を各側板の主板側頂点
近傍に対して少なくとも1個づつ計4個配設し且つ主板
の頂点近傍に対してそれぞれ1個づつ計3個配設したこ
とにより非接触なる位置決めを行う。
(Operation) In such a configuration, at least one drive means is provided near each apex of the main plate on the side of the main plate and a total of three drive means are provided, one near the apex of the main plate. Perform non-contact positioning.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この発明の第1実施例に係る非接触位置決
め装置の構成を示す全体斜視図であり、この非接触位置
決め装置は位置決めの対象となる磁性体により形成され
た被駆動体1と、この被駆動体1を支持、駆動する一方
向性の力を発生する駆動手段である7個の同一構造で構
成された電磁石3,5,7,9,11,13,15と、前記被駆動体1の
位置及び姿勢を検出する7個の同一構造で構成されたセ
ンサである位置検出器A3,A5,A7,A9,A11,A13,A15とから
構成されている。
FIG. 1 is an overall perspective view showing the configuration of a non-contact positioning device according to a first embodiment of the present invention. This non-contact positioning device includes a driven body 1 formed of a magnetic body to be positioned. , Electromagnets 3,5,7,9,11,13,15 composed of seven identical structures, which are driving means for supporting and driving the driven body 1 and generating a unidirectional force, It is composed of position detectors A3, A5, A7, A9, A11, A13 and A15 which are sensors having the same structure and which detect the position and orientation of the driving body 1.

前記被駆動体1は第1図,第2図に示す様に正四面体
であり正三角形の主板17及びこの主板17に平行でなく且
つ3辺に接する3枚の主板17と同形上なる側板19,21,23
により形成されている。
The driven body 1 is, as shown in FIGS. 1 and 2, a regular tetrahedron main plate 17 having an equilateral triangle, and side plates having the same shape as the three main plates 17 which are not parallel to the main plate 17 and are in contact with three sides. 19,21,23
It is formed by.

前記主板17の表面には位置決めシャフト25が固定され
ており、位置決めの対象物例えば図示しないアンテナ
や、光学機器などが取り付けられるものである。
A positioning shaft 25 is fixed to the surface of the main plate 17, and an object to be positioned, for example, an antenna (not shown) or an optical device is attached.

前記駆動手段である電磁石3,5,7,9は第2図に明示し
た様に側板19,21,23の前記主板17側の頂点近傍に一定の
磁気空間をもって電磁吸引力を作用させるように配設さ
れている。
As shown in FIG. 2, the electromagnets 3, 5, 7, 9 serving as the driving means apply an electromagnetic attraction force with a certain magnetic space near the apex of the side plates 19, 21, 23 on the main plate 17 side. It is arranged.

前記電磁石11,13,15は主板17の頂点近傍に対して一定
の磁気空間を有して配設されている。
The electromagnets 11, 13 and 15 are arranged near the apex of the main plate 17 with a constant magnetic space.

前記位置検出器A3,A5,A7,A9,A11,A13,A15は前記電磁
石3,5,7,9,11,13,15が対向している主板17及び各側板1
9,21,23の表面の所定位置に一定隙間を有して配設され
ている。
The position detectors A3, A5, A7, A9, A11, A13, A15 are main plates 17 and side plates 1 to which the electromagnets 3, 5, 7, 9, 11, 11, 13 and 15 face each other.
They are arranged at predetermined positions on the surface of 9, 21, 23 with a certain gap.

前記被駆動体1の回りには、非磁性材からなる連結部
材27が設けられており、この連結部材27に前記電磁石3
〜15と位置検出器A3〜A15が図示しないボルト等により
支持されている。
A connecting member 27 made of a non-magnetic material is provided around the driven body 1, and the electromagnet 3 is attached to the connecting member 27.
.About.15 and position detectors A3 to A15 are supported by unillustrated bolts or the like.

前記電磁石3〜15は例えば第3図,第4図に示す様な
同一構造で構成されている。すなわち2個のヨーク29,3
1を磁気的に結合する結合部33とからなる強磁性材で形
成され、ヨーク29と31には、コイル34が巻装されてい
る。さらに各結合部33にはヨーク29,31から被駆動体1
まで空隙距離を検出する前記位置検出器A3〜A15がナッ
ト等により締結されているものである。
The electromagnets 3 to 15 have the same structure as shown in FIGS. 3 and 4, for example. Ie two yokes 29,3
It is formed of a ferromagnetic material including a coupling portion 33 that magnetically couples 1 and a coil 34 is wound around the yokes 29 and 31. Further, each of the coupling portions 33 is connected to the driven body 1 from the yokes 29, 31.
The position detectors A3 to A15 for detecting the air gap distance are fastened by nuts or the like.

このため被駆動体1は、電磁石3〜15及び位置検出器
A3〜A15に対して固定されておらず、設定位置で規定さ
れる駆動範囲内を自由に動くことができ、前記シャフト
25は連結部材27に設けられた孔27aに貫通しているもの
である。
Therefore, the driven body 1 includes the electromagnets 3 to 15 and the position detector.
It is not fixed with respect to A3 ~ A15 and can move freely within the drive range defined by the set position.
Reference numeral 25 denotes a hole penetrating a hole 27a provided in the connecting member 27.

前記位置検出器A3〜A15の検出信号は、前記各電磁石
3〜15に電流を供給し、かつ制御して被駆動体1の位置
を調整する第5図で示す位置調整手段35に入力される様
になっている。この位置調整手段35は直接制御方式とな
っている。すなわち直交座標系で与えられた外部指令信
号をベクトル演算器37で各電磁石3〜15の方向のベクト
ルに分配演算し、このベクトル演算器37からの出力信号
と各電磁石3〜15に設けられた各位置検出器A3〜A15の
検出信号との差分を各制御器B3〜B15に入力する。各制
御器B3〜B15では前記差分に応じた制御量を演算して出
力し、この制御量信号を信号増幅器C3〜C15で増幅し、
各電磁石3〜15に増幅信号を出力する様に構成されてい
る。
The detection signals of the position detectors A3 to A15 are input to the position adjusting means 35 shown in FIG. 5, which supplies a current to each of the electromagnets 3 to 15 and controls them to adjust the position of the driven body 1. It has become like. The position adjusting means 35 is of a direct control type. That is, the external command signal given in the Cartesian coordinate system is distributed to the vector in the direction of each electromagnet 3 to 15 by the vector calculator 37, and the output signal from the vector calculator 37 and each electromagnet 3 to 15 are provided. The differences from the detection signals of the position detectors A3 to A15 are input to the controllers B3 to B15. In each of the controllers B3 to B15, the control amount according to the difference is calculated and output, and the control amount signal is amplified by the signal amplifiers C3 to C15,
The electromagnets 3 to 15 are configured to output an amplified signal.

次に、上記第1実施例の作用を第2図に基づいて説明
する。
Next, the operation of the first embodiment will be described with reference to FIG.

第2図において第5図に示す位置調整手段35によって
電磁石5に流れる電流を増大させ、他の電磁石3,7,9,1
1,13,15に流れる電流を適当に増減させると、電磁石5
と被駆動体1との間の磁気力が強められ、この磁気力に
よって生ずるX軸方向以外の動きを他の電磁石3,7,9,1
1,13,15と被覆動体1との間の磁気力で調整することに
よって、被駆動体1は全体的に図中矢印Fxの方向に移動
する。
In FIG. 2, the electric current flowing through the electromagnet 5 is increased by the position adjusting means 35 shown in FIG. 5, and the other electromagnets 3, 7, 9, 1
By appropriately increasing or decreasing the current flowing through 1,13,15, the electromagnet 5
The magnetic force between the driven body 1 and the driven body 1 is strengthened, and movements other than in the X-axis direction caused by this magnetic force are caused by other electromagnets 3, 7, 9, 1.
By adjusting the magnetic force between 1, 13, 15 and the coated moving body 1, the driven body 1 is entirely moved in the direction of arrow Fx in the figure.

同様に位置調整手段35によって電磁石3,5に流れる電
流を増大させ、他の電磁石7,9,11,13,15に流れる電流を
適当に増減させると電磁石3,5と被駆動体1との間の磁
気力が強められこの磁気力によって生ずるY軸方向以外
の動きを他の電磁石7,9,11,13,15と被駆動体1との間の
磁気力で調整することによって被駆動体1は全体的に図
中矢印FY方向に移動する。
Similarly, by increasing the current flowing through the electromagnets 3, 5 by the position adjusting means 35 and appropriately increasing or decreasing the current flowing through the other electromagnets 7, 9, 11, 13, 15, the electromagnets 3, 5 and the driven body 1 are separated. The magnetic force between the driven bodies 1 is adjusted by adjusting the magnetic force between the electromagnets 7, 9, 11, 13, 13 and other driven magnets 1 and the movements other than the Y-axis direction caused by the magnetic force between the driven bodies. 1 moves in the direction of the arrow F Y in the figure as a whole.

また、位置調整手段35によって電磁石3,9に流れる電
流を増大させ、他の電磁石5,7,11,13,15に流れる電流を
適当に増減させると電磁石3,9と被駆動体1との間の磁
気力が強められ、この磁気力によって生ずるθz軸方向
以外の動きを他の電磁石5,7,11,13,15と被駆動体1との
間の磁気力で調整することによって被駆動体1は全体的
に図中矢印FRの向きに回転する。
Further, by increasing the current flowing through the electromagnets 3, 9 by the position adjusting means 35 and appropriately increasing or decreasing the current flowing through the other electromagnets 5, 7, 11, 13, 15, the electromagnets 3, 9 and the driven body 1 are separated. Between the electromagnets 5, 7, 11, 13, 15 and the driven body 1 by adjusting the magnetic force between the other electromagnets 5, 7, 11, 13, 15 caused by the magnetic force to be driven. The body 1 generally rotates in the direction of arrow F R in the figure.

さらに、位置調整手段35によって、電磁石11,13,15に
流れる電流を増大させ、他の電磁石3,5,7,9に流れる電
流を適当に増減させると電磁石11,13,15と被駆動体1と
の間の磁気力が強められこの磁気力によって生ずるZ軸
方向以外の動きを他の電磁石3,5,7,9と被駆動体1との
間の磁気力で調整することによって被駆動体1は全体的
に図中矢印Fz方向に移動する。
Further, by increasing the current flowing through the electromagnets 11, 13, 15 by the position adjusting means 35 and appropriately increasing or decreasing the current flowing through the other electromagnets 3, 5, 7, 9 and the electromagnets 11, 13, 15 and the driven body. The magnetic force between the driven body 1 and the driven body 1 is adjusted by adjusting the movements other than the Z-axis direction caused by the magnetic force between the electromagnets 3, 5, 7, 9 and the driven body 1. The body 1 generally moves in the direction of arrow Fz in the figure.

この様に、この実施例に係る非接触位置決め装置は、
計7個の電磁石3〜15と計7個の位置検出器A3〜A15に
よって被駆動体1を浮上させ、任意の位置決めをするこ
とが出来る。特に主板17の頂点近傍に対してそれぞれ1
個づつ計3個の電磁石11,13,15を配設することができる
ので、アンテナ等を取り付けた時の浮上安定性を向上さ
せると共に、例えば重力場で使用する時には有効な作用
力を利用できるため作動効率が向上し、電磁石を小型化
することができる。
In this way, the non-contact positioning device according to this embodiment is
The driven body 1 can be levitated by the total of seven electromagnets 3 to 15 and the total of seven position detectors A3 to A15 to perform arbitrary positioning. Especially for each near the top of the main plate 17
Since a total of three electromagnets 11, 13, 15 can be arranged one by one, it is possible to improve the levitation stability when an antenna or the like is attached, and to use an effective acting force when using it in a gravitational field, for example. Therefore, the operating efficiency is improved and the electromagnet can be downsized.

[発明の効果] 以上の説明より明らかなように、この発明の構成によ
れば駆動手段が発生する一方向性の力の方向が互いに非
直交になるため6自由度の位置決めを、最低個数の7個
の駆動手段で実現することができる。また装置の小型化
が可能となり重量も軽減することができる。
[Effects of the Invention] As is clear from the above description, according to the configuration of the present invention, the directions of the unidirectional forces generated by the driving means are non-orthogonal to each other, so that positioning with 6 degrees of freedom is performed with the minimum number of positions. It can be realized by seven driving means. Further, the device can be downsized and the weight can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第1実施例に係る非接触位置決め装
置の構成を示す全体斜視図、第2図は第1図の非接触位
置決め装置に用いられる電磁石及び位置検出器の配置構
成と作用説明を示す図、第3図、第4図は電磁石の構成
図、第5図は位置調整手段のブロック図、第6図は従来
例を示す斜視図である。 1……被駆動体 3,5,7,9,11,13,15……電磁石 A3,A5,A7,A9,A11,A13,A15……位置検出器(センサ) 17……主板 19,21,23……側板
FIG. 1 is an overall perspective view showing the configuration of a non-contact positioning device according to a first embodiment of the present invention, and FIG. 2 is an arrangement configuration and operation of electromagnets and position detectors used in the non-contact positioning device of FIG. FIGS. 3 and 4 are schematic diagrams of the electromagnet, FIG. 5 is a block diagram of the position adjusting means, and FIG. 6 is a perspective view showing a conventional example. 1 …… Driven object 3,5,7,9,11,13,15 …… Electromagnet A3, A5, A7, A9, A11, A13, A15 …… Position detector (sensor) 17 …… Main plate 19,21 , 23 …… Side plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】位置決めの対象となる被駆動体と、この被
駆動体を支持,駆動する一方向性の力を発生する駆動手
段と、前記被駆動体の位置及び姿勢を検出するセンサと
で構成される非接触位置決め装置において、前記被駆動
体を略三角形の主板及びこの主板に平行でなく且つ3辺
に接する3枚の側板により構成し、前記駆動手段を前記
各側板の前記主板側頂点近傍に対して少なくとも1個づ
つ計4個配設し、且つ前記主板の頂点近傍に対してそれ
ぞれ1個づつ計3個配設したことを特徴とする非接触位
置決め装置。
1. A driven body to be positioned, a drive means for generating a unidirectional force for supporting and driving the driven body, and a sensor for detecting the position and orientation of the driven body. In the non-contact positioning device configured, the driven body is composed of a substantially triangular main plate and three side plates that are not parallel to the main plate and contact three sides, and the drive means is the apex of the side plates on the main plate side. A non-contact positioning device characterized in that at least one is provided in the vicinity of a total of four, and one is provided in the vicinity of the apex of the main plate for a total of three.
JP62291984A 1987-11-20 1987-11-20 Non-contact positioning device Expired - Lifetime JP2566997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291984A JP2566997B2 (en) 1987-11-20 1987-11-20 Non-contact positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291984A JP2566997B2 (en) 1987-11-20 1987-11-20 Non-contact positioning device

Publications (2)

Publication Number Publication Date
JPH01134512A JPH01134512A (en) 1989-05-26
JP2566997B2 true JP2566997B2 (en) 1996-12-25

Family

ID=17776008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291984A Expired - Lifetime JP2566997B2 (en) 1987-11-20 1987-11-20 Non-contact positioning device

Country Status (1)

Country Link
JP (1) JP2566997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573390B2 (en) * 1989-06-05 1997-01-22 松下電工株式会社 6-axis attitude control device
JPH07101371B2 (en) * 1990-09-03 1995-11-01 工業技術院長 Driven body control device

Also Published As

Publication number Publication date
JPH01134512A (en) 1989-05-26

Similar Documents

Publication Publication Date Title
US4908558A (en) Spherical motion simulator
US4848525A (en) Dual mode vibration isolator
JP4892189B2 (en) Diamagnetic levitation system
JPH08505826A (en) Direct torque control moment gyroscope
GB2095840A (en) Detecting the three-dimensional rotational position and movement of an object
JPH0689778B2 (en) Non-contact positioning device
JPS60134918A (en) Precise positioning apparatus
JP2566997B2 (en) Non-contact positioning device
JP3216157B2 (en) Precision 1 stage 6 degrees of freedom stage
US6057620A (en) Geometrical structure configuration of maglev forces in a maglev rotational bearing apparatus
JP4155546B2 (en) Spherical ultrasonic motor
JPH03223021A (en) Carrier device used in special environment
Higuchi et al. Clean room robot with non-contact joints using magnetic bearings
JP4323087B2 (en) XY stage device
JP2837716B2 (en) Vertical movable bearing device and vertical movable stage device using the same
JPH01142904A (en) Noncontact positioning device
US5789838A (en) Three-axis force actuator for a magnetic bearing
JPS5822587A (en) Magnetic floating guide mechanism
Higuchi Applications of Magnetic Bearings in Robotics
JPS58119782A (en) Magnetic levitating guide mechanism
KR100434975B1 (en) Positioning System of Nano-Meter Stage and Method Thereof
JPS62281018A (en) Angle controller
Van West et al. Using tilt-control in non-contact manipulation systems: Development of 2-DOF tilting actuator with remote center of rotation
JPH03203506A (en) Magnetic levitation unit
JPS61231610A (en) Position and angle controlling device