JPS6032581A - Magnetically levitating linear guide - Google Patents

Magnetically levitating linear guide

Info

Publication number
JPS6032581A
JPS6032581A JP58140735A JP14073583A JPS6032581A JP S6032581 A JPS6032581 A JP S6032581A JP 58140735 A JP58140735 A JP 58140735A JP 14073583 A JP14073583 A JP 14073583A JP S6032581 A JPS6032581 A JP S6032581A
Authority
JP
Japan
Prior art keywords
permanent magnet
movable body
magnetic flux
electromagnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58140735A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsuda
隆一 松田
Mitsuo Nakagawa
中川 三男
Makoto Asakawa
誠 浅川
Hisao Kuroda
黒田 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58140735A priority Critical patent/JPS6032581A/en
Publication of JPS6032581A publication Critical patent/JPS6032581A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0472Active magnetic bearings for linear movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

PURPOSE:To obtain stable levitating state by modulating the magnetic flux of a permanent magnet by the magnet of an electromagnet, thereby maintaining the gap constant. CONSTITUTION:Even if a variation occurs in a gap 23a, magnetically attracting force is controlled by modulating in gaps 23b, 23c in the magnetic flux 25 of an electromagnet formed of a yoke 21b and a coil 22a by permanent magnets 20a, 20b, thereby maintaining the gaps 23a-23d constant. Thus, the weight of the movable element can be supported by the attracting force of the permanent magnet, thereby obtaining stable levitating state.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁気力によって固定部に対し可動体を非接触状
態で支える磁気浮上案内に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a magnetic levitation guide that supports a movable body against a fixed part in a non-contact state by magnetic force.

〔従来技術〕[Prior art]

従ヰ、電誰宏内は水内面あスいtレールf対1−軸受等
を介して金属接触する構成が一般的である。
Accordingly, it is common for the inside of the electric pipe to have a structure in which metal contact is made between the water surface and the T-rail F to 1 via a bearing or the like.

そのため騒音、摩擦、JI粍等が発生し、用途によって
は望ましくないものでおった。また、空気や油を用いる
案内は金属接触は無いが、潤滑媒体を必要とし、コンプ
レッサや油圧機器の保守を必要とし、真空中や高度に清
浄さが必要な雰囲気では使用が不可能かまたは制限され
ることがある。
As a result, noise, friction, JI noise, etc. are generated, which may be undesirable depending on the application. In addition, although air and oil guides do not have metal contact, they require a lubricating medium, require maintenance of compressors and hydraulic equipment, and are impossible or limited to use in a vacuum or in an atmosphere that requires a high degree of cleanliness. may be done.

このような問題の対策としては、第1図に斜視図で示す
磁気浮上案内が提案されている。すなわち同図において
、1は可動体、2は案内である。
As a solution to this problem, magnetic levitation guidance, shown in a perspective view in FIG. 1, has been proposed. That is, in the figure, 1 is a movable body and 2 is a guide.

そして、可動体1はその上下面に磁極面を斜線で示す例
えば4個の電磁石3〜6がそれぞれ配設され、両側面に
同じく磁極面を斜線で示す例えば2個の電磁石7,8が
それぞれ配設されることによシ合計12個の電磁石を備
えている。この場合、上面と下面および左側面と右側面
の電磁石同志は対称な位置忙配設され、かつ個々の電磁
石3,4.5・・・・は案内2との隙間を検出する検出
器9(但し図においては電磁石3に対してのみ示す)を
備えている。各電磁石3,4.5・・・・のコイル電流
は付随する検出器9からの信号によって制御され、この
時の磁気吸引力によシ可動体1を案内2に対して非接触
状態で支持し、案内2との隙間を一定に保持している。
The movable body 1 has, for example, four electromagnets 3 to 6, whose magnetic pole faces are indicated by diagonal lines, on its upper and lower surfaces, and two electromagnets 7 and 8, whose magnetic pole faces are indicated by diagonal lines, on both sides. This arrangement provides a total of 12 electromagnets. In this case, the electromagnets on the upper and lower surfaces, the left side and the right side are arranged in symmetrical positions, and each electromagnet 3, 4, 5, etc. is connected to a detector 9 ( However, in the figure, only the electromagnet 3 is shown). The coil current of each electromagnet 3, 4, 5, etc. is controlled by the signal from the accompanying detector 9, and the magnetic attraction force at this time supports the movable body 1 with respect to the guide 2 in a non-contact state. However, the gap with the guide 2 is kept constant.

そして、可動体1はリニアモータ(図示せず)静の手段
による駆動力によって移動軸10の方向に動かされるよ
うに構成されている。
The movable body 1 is configured to be moved in the direction of the movement axis 10 by the driving force of a linear motor (not shown).

このような磁気浮上案内機構によれば可動体1を案内2
に対して非接触に支持することができ、前述した潤滑謀
体を使用する案内機構の欠点を除くことができ、また可
動体1の上下面、すなわち重力方向の面に夫々4個の電
磁石を対称に配置し、軸受剛性を大きくしているので、
電磁石の吸引力によって非接触に拘束されている方向に
外乱が作用しても案内2との隙間の変動を小さく抑える
ことが可能となる。
According to such a magnetic levitation guide mechanism, the movable body 1 is guided by the
The movable body 1 can be supported in a non-contact manner, thereby eliminating the drawbacks of the guide mechanism using a lubricating body as described above. The symmetrical arrangement increases bearing rigidity, so
Even if a disturbance acts in a direction that is restrained in a non-contact manner by the attractive force of the electromagnet, it is possible to suppress fluctuations in the gap with the guide 2 to a small value.

しかしながら、このような磁気浮上案内においては、電
磁石3,4.5・・・・の数が多く、かつ可動体1の荷
重を支えるために常に電磁石3等に電流を流しておかな
ければならないという不都合があり、消費電力の増大に
基づく電力的にも劣るものである。
However, in such magnetic levitation guidance, there are a large number of electromagnets 3, 4, 5, etc., and in order to support the load of the movable body 1, it is necessary to constantly supply current to the electromagnets 3, etc. This method has disadvantages and is inferior in terms of power consumption due to increased power consumption.

〔発明の目的および構成〕[Object and structure of the invention]

したがって、本発明はこれらの欠点を解決するため、可
動体の重量を永久磁石の吸引力によって支え、かつ安定
な浮上状態を得るために永久磁石の磁束を電磁石の磁束
で変調してすきまを一定に保ち得る複合磁石部を用いた
磁気浮上案内を提供することを目的としている。
Therefore, in order to solve these drawbacks, the present invention supports the weight of the movable body by the attractive force of the permanent magnet, and modulates the magnetic flux of the permanent magnet with the magnetic flux of the electromagnet to maintain a constant gap in order to obtain a stable floating state. The object of the present invention is to provide a magnetic levitation guide using a composite magnet part that can maintain a high temperature.

以下、図面を用いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明による磁気浮上案内の一実施例を示す構
成図である。同図において、11は可動体、12a、1
2bは永久磁石回路、13a 、13b 、13c。
FIG. 2 is a configuration diagram showing an embodiment of the magnetic levitation guide according to the present invention. In the figure, 11 is a movable body, 12a, 1
2b is a permanent magnet circuit, 13a, 13b, 13c.

13dは複合磁石部、14a 、14b 、14e 、
14dは案内レールである。なお、座標は垂直方向をy
、水平方向をX、可動体11の移動方向を2とする。θ
13d is a composite magnet part, 14a, 14b, 14e,
14d is a guide rail. Note that the coordinates are y in the vertical direction.
, the horizontal direction is X, and the moving direction of the movable body 11 is 2. θ
.

φ、Fはそれらの軸まわシの回転の座標である。φ and F are the coordinates of rotation of these axes.

第3図は前述した永久磁石回路12bの詳細図で。FIG. 3 is a detailed diagram of the above-mentioned permanent magnet circuit 12b.

ある。同図において、15はすきま、16は永久磁石、
17a、trbは継鉄、18は支持部である。
be. In the same figure, 15 is a gap, 16 is a permanent magnet,
17a and trb are yokes, and 18 is a support portion.

永久磁石回路12bは支持部1Bを介して可動体11に
取シ付けられておシ、一定のすきt15を保って案内レ
ール14cと対向し、磁気吸引力によって可動体110
M量を支えている。
The permanent magnet circuit 12b is attached to the movable body 11 via the support portion 1B, faces the guide rail 14c with a constant gap t15, and is attached to the movable body 110 by magnetic attraction.
It supports the amount of M.

第4図は前述した複合磁石部の詳細図である。FIG. 4 is a detailed view of the aforementioned composite magnet section.

同図において、Ma 、 14bは案内レール、19は
変位センサ、20は永久磁石、21&、21bは継鉄、
22a 、 22bはコイル、23a、23b、23c
、23dはすきま、24a 、 24bは永久磁石20
から発生する磁束、25はコイル22a、22bに電流
を流した時に発生する磁束である。ここで、説明の便宜
上、永久磁石20の磁極N、Sは図示のとおシとし、磁
束24a、24b、25は矢印の向きとする。
In the same figure, Ma, 14b are guide rails, 19 is a displacement sensor, 20 is a permanent magnet, 21&, 21b is a yoke,
22a, 22b are coils, 23a, 23b, 23c
, 23d is a gap, 24a and 24b are permanent magnets 20
25 is the magnetic flux generated when current is passed through the coils 22a and 22b. Here, for convenience of explanation, the magnetic poles N and S of the permanent magnet 20 are as shown in the figure, and the magnetic fluxes 24a, 24b, and 25 are in the direction of the arrows.

このような構成において、永久磁石2oを発する磁束2
4aは継鉄21bを通シ、すきま23bを貫ぬいてレー
ル14aを通シ、すきま23&を貫ぬき、継鉄21aを
通って永久磁石20へ戻る。同様に磁束24bは継鉄2
1b、すきま23d、案内レール24b 。
In such a configuration, the magnetic flux 2 emitted by the permanent magnet 2o
4a passes through the yoke 21b, passes through the gap 23b, passes through the rail 14a, passes through the gap 23&, passes through the yoke 21a, and returns to the permanent magnet 20. Similarly, the magnetic flux 24b is
1b, clearance 23d, guide rail 24b.

すきま23c、継鉄21aを通っている。一方、コイル
22a 、 22bと継鉄21bとから成る電磁石の磁
束は、電流を流した時に継鉄21b、すきま23b、案
内レール14a、すきま23a、継鉄21a、すきま2
3C9案内レール14b、すきt 23dおよび継鉄2
1bと一巡する。いま、可動体11が何等かの原因で下
方向に変位し、すきま23a 、 23bが犬きくなシ
、すきt 23e 、 23dが小さくなったと仮定す
る。すると、変位センサ19がそれを検知し、その信号
にしたがってコイル22a * 22b K電流を流し
、磁束25を矢印の方向に発生させる。すき123B 
It passes through the gap 23c and the yoke 21a. On the other hand, the magnetic flux of the electromagnet consisting of the coils 22a, 22b and the yoke 21b, when current flows through the yoke 21b, the gap 23b, the guide rail 14a, the gap 23a, the yoke 21a, and the gap 2
3C9 guide rail 14b, plow t 23d and yoke 2
Go around with 1b. Now, assume that the movable body 11 is displaced downward for some reason, the gaps 23a and 23b become narrower, and the gaps t23e and 23d become smaller. Then, the displacement sensor 19 detects this, and in accordance with the signal, K current flows through the coils 22a*22b, generating magnetic flux 25 in the direction of the arrow. Like 123B
.

23bでは磁束が永久磁石の磁束24aと電磁石の磁束
25との和となシ、増大して吸引力が増加する。
At 23b, the magnetic flux increases to the sum of the magnetic flux 24a of the permanent magnet and the magnetic flux 25 of the electromagnet, and the attractive force increases.

すきま23c 、 23dでは逆に磁束は差となり、吸
引力が減少する。その結果、案内レールから継鉄21&
On the other hand, in the gaps 23c and 23d, there is a difference in magnetic flux, and the attractive force decreases. As a result, from the guide rail to the yoke 21&
.

21bに対し上方向きの力が作用し、増加したすきま2
3a + 23bをもとへもどす。逆にすきま23a。
An upward force acts on 21b, and the increased clearance 2
Return 3a + 23b. On the other hand, gap 23a.

23bが小さくなった時にも、向きは逆であるが、同様
な磁束の変調作用によって復元することができる。
Even when 23b becomes smaller, it can be restored by a similar magnetic flux modulation effect, although the direction is reversed.

このように永久磁石20の磁束241L 、 24bを
電磁石の磁束25で変調し得るように構成されている。
In this way, the magnetic flux 241L, 24b of the permanent magnet 20 can be modulated by the magnetic flux 25 of the electromagnet.

第5図は変位センサの検知出力に基づいて電磁石のコイ
ルに流れる電流を制御する制御回路の一例を示すブロッ
ク図であって、19は第4図に示す変位センサ19に対
応し、26は変位センサ19の出力を微分する微分回路
、27は変位センサ19の出力と微分回路26の出力お
よび制御出力からのフィードバック出力を入力とし、こ
れら各入力を増幅すると共に加算する信号増幅器および
信号加算器(以下、信号増幅・加算器と呼称する)、2
8はこの信号増幅・加算器27の出力を増幅し、その出
力によってコイル22&を制御する電力増幅器、29は
電力増幅器28とコイル22&との間に挿入され変位と
その速度および電流を検出する検出抵抗で、その出力は
上記信号増幅・加算器27にフィードバックするように
構成されている。
FIG. 5 is a block diagram showing an example of a control circuit that controls the current flowing through the coil of the electromagnet based on the detection output of the displacement sensor, where 19 corresponds to the displacement sensor 19 shown in FIG. A differentiation circuit 27 that differentiates the output of the sensor 19 is a signal amplifier and a signal adder ( (hereinafter referred to as signal amplifier/adder), 2
8 is a power amplifier that amplifies the output of this signal amplification/adder 27 and controls the coil 22& by the output, and 29 is a detector inserted between the power amplifier 28 and the coil 22& to detect displacement, its speed, and current. It is a resistor, and its output is configured to be fed back to the signal amplification/adder 27.

このように、変位とその速度およびコイル22aに流れ
る電流を検出して信号増幅・加算器27にフィードバッ
クすることにより、安定に隙間23a〜23dを一定に
保持することができる。
In this way, by detecting the displacement, its speed, and the current flowing through the coil 22a and feeding it back to the signal amplification/adder 27, the gaps 23a to 23d can be stably maintained at a constant value.

このような構成によれば、永久磁石回路12a。According to such a configuration, the permanent magnet circuit 12a.

12bは可動体11の荷重を支えているので、複合磁石
部13m 、 13b 、 13c 、 13dのコイ
ルには平衡状態において、理想的には電流を流す必要は
なく、電力消費を少なくして可動体11を案内レール1
4m。
12b supports the load of the movable body 11, ideally there is no need to pass current through the coils of the composite magnet parts 13m, 13b, 13c, and 13d in a balanced state. 11 to guide rail 1
4m.

14b 、14c 、14dに対し非接触状態に支持す
ることができる。
It can be supported in a non-contact state with respect to 14b, 14c, and 14d.

第6図は本発明による磁気浮上案内の他の実施例を示す
構成図であって、第7図はその複合磁石部の詳細図であ
る。第7図において、永久磁石20m 、 20bは2
個あり、継鉄21m、21b、21cの3部分から成る
。他の第4図の複合磁石部と同一部は同じ番号を付しで
ある。本実施例においても、すきま23&等に変動が生
じても、永久磁石20a。
FIG. 6 is a block diagram showing another embodiment of the magnetic levitation guide according to the present invention, and FIG. 7 is a detailed diagram of the composite magnet portion thereof. In Fig. 7, permanent magnet 20m, 20b is 2
It consists of three parts: yokes 21m, 21b, and 21c. The same parts as the other composite magnet parts in FIG. 4 are given the same numbers. In this embodiment as well, even if the gap 23 & etc. change, the permanent magnet 20a.

20bの磁束24m 、 24bが継鉄21bとコイル
22aとから成る電磁石の磁束25ですきま23bと2
3cにおいて変調されて磁気吸引力を制御し、すきt2
3a〜23dを一定に保持させている。この場合、制御
回路は第5図と同一である。第8図は永久磁石回路12
aの構成であシ、この永久磁石回路12aは可動体11
に取シ付けられておシ、案内レール14aの中間部にす
きま15を介して対向している。
The magnetic flux 24m of 20b is the magnetic flux 25 of the electromagnet consisting of the yoke 21b and the coil 22a, and the gap 23b and 2
3c to control the magnetic attraction force, and the gap t2
3a to 23d are held constant. In this case, the control circuit is the same as in FIG. Figure 8 shows the permanent magnet circuit 12.
This permanent magnet circuit 12a is the configuration of movable body 11.
The guide rail 14a is attached to the guide rail 14a and faces the middle part of the guide rail 14a with a gap 15 in between.

第9図は水平方向の運動を制御するための電磁石を設け
た実施例である。同図において、30a。
FIG. 9 shows an embodiment in which an electromagnet is provided to control movement in the horizontal direction. In the figure, 30a.

30b 、 30e 、 30dは電磁石、31a 、
 31bは変位センサであシ、これらはそれぞれ案内レ
ール14&または案内レール14Qに対向して水平方向
に磁気力を発生するように配置されている。ここで、前
述した第4図においては、継鉄21&と案内レール14
@。
30b, 30e, 30d are electromagnets, 31a,
Denoted at 31b are displacement sensors, each of which is arranged to face the guide rail 14 & or the guide rail 14Q so as to generate a magnetic force in the horizontal direction. Here, in the above-mentioned FIG. 4, the yoke 21& and the guide rail 14 are
@.

14bとの間にはすきま23a 、 23Cにおいて磁
気吸引力が作用しておシ、継鉄211Lと案内レール1
4aが水平方向にずれを生じても復元させる機能がある
が、この力は制御されたカではないため、ダンピング効
果がなく、可動体11の質量とこの水平方向の復元力の
剛性で定まる周波数と同一周波数の外力が作用した時に
振動が大きくなったシ、振動が減衰しにくい現象が現わ
れるが、この第9図はこれを補償するようにしたもので
ある。すなゎち、第9図において、電磁石30a 、 
30b 、 30c、30dは第5図の制御回路によっ
て電流を制御し、ダンピング効果を与えることができ、
第2図のX、φ方向の運動の安定性を高めることができ
る。この場合、第9図において、Xlφ2方向の運動を
検出するには、変位センサ31& 、 31bは2個で
十分であシ、電磁石3Qa 、 30cにはセンサ31
m 、 31bから得た信号で制御するとよい。
A magnetic attraction force acts between the yoke 211L and the guide rail 1 in the gaps 23a and 23C between the yoke 211L and the guide rail 1.
4a has a function to restore it even if it shifts in the horizontal direction, but since this force is not a controlled force, there is no damping effect, and the frequency is determined by the mass of the movable body 11 and the rigidity of this horizontal restoring force. When an external force of the same frequency is applied, a phenomenon occurs where the vibration becomes large and the vibration is difficult to damp, but this figure is designed to compensate for this. In other words, in FIG. 9, the electromagnet 30a,
30b, 30c, and 30d can control the current by the control circuit shown in FIG. 5 and provide a damping effect.
The stability of movement in the X and φ directions in FIG. 2 can be improved. In this case, in FIG. 9, two displacement sensors 31&, 31b are sufficient to detect the movement in the two directions of
It is preferable to control using a signal obtained from 31b.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による磁気浮、上直進案内は
、制御電磁力によってすきまを一定に保つ浮上機能部を
少なくすることができ、かつ永久磁石回路の磁気力によ
って可動体の重量を支えるので、経済的な装置を提供で
きる極めて優れた効果が得られる。
As explained above, the magnetic levitation and vertical straight guide according to the present invention can reduce the number of levitation parts that maintain a constant clearance using control electromagnetic force, and also support the weight of the movable body by the magnetic force of the permanent magnet circuit. , an extremely excellent effect can be obtained by providing an economical device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気浮上案内の構成図、第2図は本発明
による磁気浮上案内の一実施例を示す構成図、第3図は
永久磁石回路の図、第4図は複合磁石部の図、第5図は
制御回路のブロック図、第6図は本発明の他の実施例の
図、第7図は複合磁石部の図、第8図は永久磁石回路の
図、第9図は水平方向に電磁石を設けた実施例の図であ
る。 11−−−−可動体、12a、12b−・・争永久磁石
回路、13a、13b、13c、13d ・・・−複合
磁石部、14a、14b、14c、14d・・・・案内
レール、16.20.20a、20b @−、、永久磁
石、17a。 17b、21a、21b・・・・継鉄、22菖、22b
・・・・コイル、19 +31m+31b * @ @
 11変位セyす、26・・・・微分回路、27・・φ
・信号増幅器および信号加算器、28・・・・電力増幅
器。 特許出願人 日本電信電話公社 代理人 山 川 政 樹 路1図 第2図 ビ(”’+ [’−;(l
Fig. 1 is a block diagram of a conventional magnetic levitation guide, Fig. 2 is a block diagram showing an embodiment of a magnetic levitation guide according to the present invention, Fig. 3 is a diagram of a permanent magnet circuit, and Fig. 4 is a diagram of a composite magnet section. 5 is a block diagram of the control circuit, FIG. 6 is a diagram of another embodiment of the present invention, FIG. 7 is a diagram of a composite magnet section, FIG. 8 is a diagram of a permanent magnet circuit, and FIG. 9 is a diagram of a permanent magnet circuit. It is a figure of the Example which provided the electromagnet in the horizontal direction. 11--Movable body, 12a, 12b--Permanent magnet circuit, 13a, 13b, 13c, 13d...-Composite magnet section, 14a, 14b, 14c, 14d...Guide rail, 16. 20.20a, 20b @-,, permanent magnet, 17a. 17b, 21a, 21b...Yoke, 22 Iris, 22b
...Coil, 19 +31m+31b * @ @
11 displacement, 26...differential circuit, 27...φ
- Signal amplifier and signal adder, 28...power amplifier. Patent applicant Masa Yamakawa Agent, Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] 可動体に永久磁石と電磁石とを組み合せその組み合わせ
た各々に変位センサを付加してなる少なくとも4個の複
合磁石部と、該可動体の荷重を支える磁気力を発生する
永久磁石回路部とを設け、前記永久磁石の磁束を前記電
磁石の磁束で変調し得るようになし、前記可動体を前記
永久磁石回路の磁気力と前記複合磁石部の制御磁気力と
によって案内レールに対し非接触に支持することを特徴
とした磁気浮上案内。
A movable body is provided with at least four composite magnet parts formed by combining a permanent magnet and an electromagnet and adding a displacement sensor to each combination, and a permanent magnet circuit part that generates a magnetic force that supports the load of the movable body. , the magnetic flux of the permanent magnet can be modulated by the magnetic flux of the electromagnet, and the movable body is supported in a non-contact manner with respect to the guide rail by the magnetic force of the permanent magnet circuit and the control magnetic force of the composite magnet section. Magnetic levitation guidance.
JP58140735A 1983-08-01 1983-08-01 Magnetically levitating linear guide Pending JPS6032581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140735A JPS6032581A (en) 1983-08-01 1983-08-01 Magnetically levitating linear guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140735A JPS6032581A (en) 1983-08-01 1983-08-01 Magnetically levitating linear guide

Publications (1)

Publication Number Publication Date
JPS6032581A true JPS6032581A (en) 1985-02-19

Family

ID=15275487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140735A Pending JPS6032581A (en) 1983-08-01 1983-08-01 Magnetically levitating linear guide

Country Status (1)

Country Link
JP (1) JPS6032581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279116A (en) * 1988-03-12 1989-11-09 Kernforschungsanlage Juelich Gmbh Magnetic bearing to which permanent magnet receiving holding power in axial direction is mounted
JPH0232775A (en) * 1988-07-19 1990-02-02 Nippon Seiko Kk Non-contact actuator
WO2003017458A1 (en) * 2001-08-17 2003-02-27 Obschestvo S Ogranichennoy Otvetstvennostu 'laboratorii Amfora' Method for non-contact displacement of a movable element
FR2901403A1 (en) * 2006-05-19 2007-11-23 Cose Sarl Sarl Payload e.g. radar, position controlling device for e.g. terrestrial vehicle, has magnet exerting force by magnetic attraction in part contrary to action of weight on payload and exerting electrodynamic force necessary to position payload

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279116A (en) * 1988-03-12 1989-11-09 Kernforschungsanlage Juelich Gmbh Magnetic bearing to which permanent magnet receiving holding power in axial direction is mounted
JPH0232775A (en) * 1988-07-19 1990-02-02 Nippon Seiko Kk Non-contact actuator
WO2003017458A1 (en) * 2001-08-17 2003-02-27 Obschestvo S Ogranichennoy Otvetstvennostu 'laboratorii Amfora' Method for non-contact displacement of a movable element
FR2901403A1 (en) * 2006-05-19 2007-11-23 Cose Sarl Sarl Payload e.g. radar, position controlling device for e.g. terrestrial vehicle, has magnet exerting force by magnetic attraction in part contrary to action of weight on payload and exerting electrodynamic force necessary to position payload

Similar Documents

Publication Publication Date Title
JP4587870B2 (en) Magnet unit, elevator guide device, and weighing device
JPH0463625B2 (en)
JP5611790B2 (en) Magnetic levitation device
JPS6032581A (en) Magnetically levitating linear guide
US5601027A (en) Positioning system with damped magnetic attraction stopping assembly
Mizuno et al. Flux-path control magnetic suspension system using voice coil motors
JP2005298073A (en) Elevating and guiding device for elevator
JPH07123321B2 (en) Suction type magnetic levitation guide device
JPS602067A (en) Magnetically levitating straight line travel guide
JPS6032580A (en) Magnetically levitating linear guide
JPH02219455A (en) Linear motor supporting mechanism
JPS6032579A (en) Magnetically levitating linear guide
Komori et al. Basic study of a magnetically levitated conveyer using superconducting magnetic levitation
KR102429302B1 (en) A linear active magnetic bearing
JPS602068A (en) Magnetically levitating straight line travel guide
JPH0686576A (en) Electromagnetic actuator
JP3218118B2 (en) Magnetic bearing device
JPS5822587A (en) Magnetic floating guide mechanism
JPS61224807A (en) Levitating conveyor
JPH08296643A (en) Control device of magnetic bearing
JP3311394B2 (en) Electromagnet control device
JPS627301A (en) Levitating conveying apparatus
JPS61102106A (en) Levitating type conveyor
JP5936918B2 (en) Magnetic levitation device
JPH06294444A (en) Vibration resisting device