JPS58133185A - Magnetic floating guidance device - Google Patents

Magnetic floating guidance device

Info

Publication number
JPS58133185A
JPS58133185A JP1438382A JP1438382A JPS58133185A JP S58133185 A JPS58133185 A JP S58133185A JP 1438382 A JP1438382 A JP 1438382A JP 1438382 A JP1438382 A JP 1438382A JP S58133185 A JPS58133185 A JP S58133185A
Authority
JP
Japan
Prior art keywords
movable body
electromagnets
space
displacement sensors
reference plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1438382A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsuda
隆一 松田
Makoto Asakawa
誠 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1438382A priority Critical patent/JPS58133185A/en
Publication of JPS58133185A publication Critical patent/JPS58133185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Abstract

PURPOSE:To simplify the constitution and to perform highly accurate positioning at a high speed, by constituting the guidance device, which supports a movable body in a completely frictionless state, by combining a plurality of electromagnets and displacement sensors. CONSTITUTION:A tubular space 25 is formed by a reference surface 22 of a member 21 comrising a magnetic body and second and third reference surfaces 24a and 24b of members 23a and 23b. The movable body 20 is housed in said space 25 so that the body 20 can be freely moved. The minimum of six electromagnets 31-36 and the minimum of five displacement sensors are provided in the movable body 20. The electromagnets 31-36 are excited in response to the outputs of the displacement sensors, and the amounts of the gaps between the reference surfaces 22, 24a, and 24b and the movable body 20 are kept constant.

Description

【発明の詳細な説明】 本発明は、磁気ディ武光ディスク等において、記録ヘッ
ド等を記録媒体に対して正確に位置決め工物あるいは加
工用具を正確に位置決めのうえ移動させる場合等に使用
される案内装置の改JLKImするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a guide for use in accurately positioning a recording head, etc. with respect to a recording medium in a magnetic disk, etc., and for accurately positioning and moving a workpiece or processing tool. This is a modification of the device.

従来のか−る案内装置においては、移動体の移動を円滑
とするため、移動体と支持機構きの摩擦力を極力減少さ
せねばならず、油圧または空気圧により無接触状態とし
て移動体を支持する案内機構が一般に用いられている。
In such conventional guide devices, in order to make the movement of the moving object smooth, it is necessary to reduce the frictional force between the moving object and the support mechanism as much as possible. mechanisms are commonly used.

しかし、油圧または空気圧を使用する場合には、ポンプ
またはコンプレッサ等を要するうえ配管を要し、これら
の保守点検が容易でなく、更に1半導体加工装置におい
ては、不純物微粒子の発生を防止するため、油圧の使用
上細心の注意を要する一方、真空中において作業を行な
うため、空気圧の使用が不可能になる等の問題を生じ、
油圧または空気圧によらない案内装置の出現が要望され
るに至っている。
However, when using hydraulic or pneumatic pressure, a pump or compressor is required, as well as piping, making maintenance and inspection of these difficult. While the use of hydraulic pressure requires extreme caution, the work is carried out in a vacuum, which poses problems such as the inability to use pneumatic pressure.
There is a growing demand for guidance devices that do not rely on hydraulic or pneumatic pressure.

か−る問題の対策としては、第1図に#)l1図を示す
出猟軸受案内装置がまず考えられる。
As a countermeasure to this problem, a hunting bearing guide device as shown in FIG. 1 is first considered.

すなわち、断面方形の筒状空間1を有する磁性体からな
る支持体2の空間1中へ、立方体状の可動体3を移動自
声として収容のうえ、これの上下両面表各゛4個の電磁
石4〜1等を設けると共に、可動体3の両側面へ各2個
の電磁石8 、114を設け、これらによって空間1の
内面と吸引力を働かせ、可動体3を浮遊状態とする一方
、各所へ変位センサ10等を設け、これKよシ、可動体
3と空間1の内面との間隙量を検出し、これの検出々力
に応じて各電磁石4〜S等の吸引力を制御し、空間1の
内面と可動体3との間隙量が常に一定に保たれるものと
した後、図上省略したリニアモータ等によシ可動体3を
軸線11の方向へ駆動するものとすればよい。
That is, a cubic movable body 3 is housed as a moving body in a space 1 of a support body 2 made of a magnetic material having a cylindrical space 1 having a square cross section, and four electromagnets are placed on each of the upper and lower surfaces of the cube-shaped movable body 3. 4 to 1, etc., and two electromagnets 8 and 114 are provided on each side of the movable body 3, and these act on the inner surface of the space 1 and the suction force to keep the movable body 3 in a floating state, while at the same time providing magnets to various places. A displacement sensor 10 etc. is provided, which detects the amount of gap between the movable body 3 and the inner surface of the space 1, and controls the attraction force of each electromagnet 4 to S etc. according to the detected force of the displacement sensor K, and 1 and the movable body 3 is always kept constant, the movable body 3 may be driven in the direction of the axis 11 by a linear motor or the like not shown in the figure.

しかし、第1図の構成による場合には、電磁石4〜9等
を計12個も要するうえ、空間1を形成する内面が4面
あり、これらを正確に製作するのが困難になる等の欠点
を生ずる。
However, in the case of the configuration shown in Fig. 1, a total of 12 electromagnets 4 to 9, etc. are required, and there are four inner surfaces forming space 1, making it difficult to manufacture them accurately. will occur.

本発明は、従来のか\る要望を完全に充足すると共に1
第1図における欠点を根本的に解消する目的を有し、最
低6個の電磁石を用いて第1図と同等の機能を実現した
極めて効果的な、磁気浮上案内装置を提供するものであ
る。
The present invention completely satisfies the conventional demands and also provides:
The present invention aims to fundamentally eliminate the drawbacks in FIG. 1, and provides an extremely effective magnetic levitation guide device that uses at least six electromagnets to achieve the same functionality as in FIG.

以下、実施例を示す第2図以降によp本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIG. 2 showing an embodiment.

第2図は斜視図、第3図は第2図における可動体20の
平面図、第4図は第3図におけるA−B鵞たはC−D断
面図、第5図は第3図におけるE−F断面図であ〕、軟
磁性材等の磁性体からなる部材21の内面側第1基準面
22と、これと等角度によシ交差する部材23m、21
bの内面側第2基準面24mおよび第3基準面24bと
によって、上面側の一辺を開放し、かつ、直線状圧延長
された筒状の空間25を形成していると共に1部材21
.23m、23bKよシ基準体26を形成している。
FIG. 2 is a perspective view, FIG. 3 is a plan view of the movable body 20 in FIG. 2, FIG. 4 is a sectional view taken along A-B or CD in FIG. 3, and FIG. This is a sectional view taken along the line E-F, showing the inner first reference surface 22 of the member 21 made of a magnetic material such as a soft magnetic material, and members 23m and 21 that intersect with this at equal angles.
The second reference surface 24m and the third reference surface 24b on the inner surface side of b form a cylindrical space 25 with one side open on the upper surface side and linearly extended.
.. 23m and 23bK form a reference body 26.

一方、空間25内へ移動自在として収容され、かつ、各
基準面22.24m、24bと対向する対向面21およ
び281〜211(lを有する可動体20には、はり中
央部の両側方へ、第1基準面22と対向する電磁石31
.32″が各個に設けであると共に1可動体20の両側
方各対称部へ、第2基準面24mおよび第3基準面24
bと対向する電磁石33〜36が、各個Kかつ両側方毎
に各同数として設けである。
On the other hand, the movable body 20, which is movably accommodated in the space 25 and has opposing surfaces 21 and 281 to 211 (l) facing each of the reference surfaces 22.24m and 24b, has a movable body 20 that is movable on both sides of the central part of the beam. Electromagnet 31 facing the first reference plane 22
.. 32'' is provided for each one, and a second reference plane 24m and a third reference plane 24 are provided at each symmetrical part on both sides of one movable body 20.
Electromagnets 33 to 36 facing b are provided in K pieces each and in the same number on both sides.

會た、可動体20の下面備中央部よりや\偏位した部位
に1は、第1基準面22と対向する変位センサ31が設
けであると共に、可動体20における両側勇名対称部位
の対向面288〜28dKは、電磁石33〜3Bの近傍
に1第2および第3基準面’  24M、24bと対向
する変位センサ38〜41が設けてあシ、これらKよっ
て、各基準面22 、248.24bとの間隙量を検出
するものとなっている。
In addition, a displacement sensor 31 facing the first reference plane 22 is provided at a part of the movable body 20 that is deviated from the central part of the lower surface of the movable body 20. The surfaces 288-28dK are provided with displacement sensors 38-41 facing the first, second and third reference surfaces 24M, 24b in the vicinity of the electromagnets 33-3B. 24b is detected.

このため、変位センサ37〜41の検出々力に応じて各
電磁石31〜36を励磁し、各基準面22.24a、2
4bと可動体20との間隙量を一定に保つものとすれば
、空間25内へ可動体20が出猟的吸引力によって浮上
し、図上省略したりニヤモータ等によシ可動体20を駆
動することKより、第2図における軸線51に泊って、
可動体20が無摩擦状態下において自在に移動するもの
となる。
Therefore, each electromagnet 31 to 36 is excited according to the detected force of the displacement sensors 37 to 41, and each reference plane 22.24a, 2
4b and the movable body 20 is kept constant, the movable body 20 floats into the space 25 due to the suction force, and the movable body 20 is driven by a near motor or the like (not shown in the figure). From what I do, I stay on the axis 51 in Figure 2,
The movable body 20 can freely move under a frictionless condition.

たりし、本来は、可動体20の重量とのバランスによシ
、電磁石ss〜3@のみでも可動体20は浮上するが、
第4図および第5図に示すとおり、電磁石s3〜36の
中心線52.53を延長した交点54を中心として、可
動体20が揺動を生じたとき、電磁石33〜36のみで
は揺動を阻止できず、これを阻止するため、変位センサ
37の検出々力に応する電磁石311.32の吸引力が
必賛會た、可動体20は無i状態として浮上しておシ、
すニアモータ等の駆動によ如相当の加速度が印加され、
下方から重力加速度以上の加速度が作用した場合には、
可動体20が規定位置よシも上方へ偏移するおそれを生
ずるが、変位センサ37〜41の検出々力に応じ、電磁
石31〜36の吸引力を制御することKよシ、各基準面
22.24m、24bと可動体20との各方向間隙量を
一定とし、可動体20を規定位置へ保つことができる。
Originally, due to the balance with the weight of the movable body 20, the movable body 20 would levitate with just the electromagnet ss~3@, but
As shown in FIGS. 4 and 5, when the movable body 20 oscillates about the intersection 54 that is an extension of the center lines 52 and 53 of the electromagnets s3 to s36, the electromagnets 33 to 36 alone cannot prevent the oscillation. In order to prevent this, the attractive force of the electromagnets 311 and 32 corresponding to the detection force of the displacement sensor 37 is met, and the movable body 20 floats in an idle state.
A considerable amount of acceleration is applied by driving a near motor, etc.
If an acceleration greater than gravitational acceleration is applied from below,
Although there is a possibility that the movable body 20 may shift upward from the specified position, it is possible to control the attractive force of the electromagnets 31 to 36 according to the detected force of the displacement sensors 37 to 41. .24m, the amount of clearance in each direction between 24b and the movable body 20 can be kept constant, and the movable body 20 can be maintained at a specified position.

第6図および第7図は、上下関係を反対とし、かつ、空
間25の断面形状を変形させ、側面61a、61bを設
けた場合の第4図および第5図と対応する断面図である
が、第2図乃至第す図と全く同様の結果を得ることがで
きる。
6 and 7 are sectional views corresponding to FIGS. 4 and 5 when the vertical relationship is reversed, the cross-sectional shape of the space 25 is changed, and side surfaces 61a and 61b are provided. , it is possible to obtain results exactly similar to those shown in FIGS.

すなわち、可動体20によシ支持させる物体を、可動体
20と係止する方向に応じ、設置方向を自在に!定する
ことができる。
In other words, the object to be supported by the movable body 20 can be installed in any direction depending on the direction in which it is engaged with the movable body 20! can be determined.

第8図け、変位センサ31〜41の検出々力に応じて電
磁石31〜311のコイル311〜asaを励磁し、各
間隙量を一定とする電気回路のブロック図であシ、変位
センサ38と電磁石33のコイル331との回路を例示
しである。
Figure 8 is a block diagram of an electric circuit that excites the coils 311 to asa of the electromagnets 31 to 311 according to the detected force of the displacement sensors 31 to 41, and keeps each gap constant. The circuit between the electromagnet 33 and the coil 331 is illustrated.

すなわち、変位センサ38の検出々力は、加算増幅器6
1によシ、゛微分回路62およびレベル判別回路63の
各出力と加算さtたうえ増幅されてから、電力増幅器6
4へ与えられてお)、これの直流出力によってコイル3
3Mが励磁されるものとなっている。
That is, the detection force of the displacement sensor 38 is
According to 1, the outputs of the differentiating circuit 62 and the level discrimination circuit 63 are added together, amplified, and then sent to the power amplifier 6.
4), its DC output causes the coil 3 to
3M is excited.

また、変位センサ38の検出々力は、微分回路82にも
与えられており、検出々力の急激な変化に応する励磁状
態の制御も行なわれるーものとなっている。
Further, the detected force of the displacement sensor 38 is also applied to a differential circuit 82, and the excitation state is controlled in response to sudden changes in the detected force.

仁のほか、コイル■1へ通ずる電流は、コイル83麿の
温度上昇*に応じて変化するため、これを直列抵抗器8
5によって検出のうえ、レベル判別回路68によp直流
成分を除外し、変化分のみを加算増幅器61へ与えるも
のとしている。
In addition to the current, the current flowing to the coil 1 changes depending on the temperature rise* of the coil 83, so it is connected to the series resistor 8.
5, the p DC component is removed by the level discrimination circuit 68, and only the change is applied to the summing amplifier 61.

たりし、第8図の構成は、条件に応じて公知技術に基づ
き種々の選定が自在である。
However, the configuration shown in FIG. 8 can be freely selected in various ways based on known techniques depending on the conditions.

したがって、第2図乃至第7図の構成によれば、最低6
個の電磁石31〜36と、最低!54jsの変位センサ
s7〜41とによプ、完全に無摩擦状態として可動体2
0を支持する案内装置が得られ、油圧、空気圧等を全く
必要忙しないと共に、3面の基準面22 、24m、2
4bのみによシ充分に目的が達せられるため、基準体2
6の製作が極めて容易となシ、全体を安価に製すること
ができるうえ、可動体20の駆動エネルギーがわずかと
な)、可動体20の移動所要時間が減少することによシ
、高速かつ高精度の位置決め制御が実現する。
Therefore, according to the configurations shown in FIGS. 2 to 7, at least 6
31 to 36 electromagnets, the lowest! 54js displacement sensors s7 to 41, the movable body 2 is in a completely frictionless state.
0 is obtained, no hydraulic pressure, pneumatic pressure, etc. are required, and three reference planes 22, 24m, 2 are provided.
Since the purpose can be achieved only with reference body 2
6 is extremely easy to manufacture, the whole can be manufactured at low cost, the driving energy of the movable body 20 is small), and the time required for moving the movable body 20 is reduced, resulting in high speed and Highly accurate positioning control is achieved.

このほか、変位センサ31〜41は、渦電流、静電容量
の変化等により間隙量を検出するものであればよく、ギ
ャップセンサ、マイクロ−kyス、非接触変位検出器等
として市販さねでいるものを用いればよい。
In addition, the displacement sensors 31 to 41 may be of any type as long as they detect the gap amount based on eddy currents, changes in capacitance, etc., and may be commercially available as gap sensors, micro-kyss, non-contact displacement detectors, etc. Just use what you have.

たゾし、電磁石31〜3@の数は、条件に応じて増加す
ればよいが、この際にも、特に変位センサ37〜41は
増加する必要がなく、特定なものの検出々力を用い、あ
るいは、複数のものからの検出々力を演算によシ処理の
うえ用いるものとすればよい。
However, the number of electromagnets 31 to 3 may be increased depending on the conditions, but in this case, there is no need to increase the number of displacement sensors 37 to 41. Alternatively, the detection power from a plurality of things may be used after being processed by calculation.

また、可動体20の形状および空間25の断面形状は、
上述の諸条件を満たすものであればよく、本発明は種々
の変形が自在である。
Further, the shape of the movable body 20 and the cross-sectional shape of the space 25 are as follows.
The present invention can be modified in various ways as long as it satisfies the above-mentioned conditions.

以上の説明によ)明らかなとおシ本発明によれば、簡単
かつ安価な構成によシ、油圧または空気圧等を使用しな
い浮上形の案内装置が得られ、高速かつ高精度の位置決
め制御が実現するため、各糧用途の案内装置として顕著
な効果が得られる。
According to the above explanation, it is clear that according to the present invention, a floating guide device that does not use hydraulic pressure or pneumatic pressure can be obtained with a simple and inexpensive structure, and high-speed and high-precision positioning control can be achieved. Therefore, remarkable effects can be obtained as a guide device for various food applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す斜視図、糖2図以降は本発明の実
施例を示し、第2図は全構成の斜視図、第3図は可動体
の平面図、第4図は第3図に詔けるA−BまたはC−D
断面図、第5図は第3図におけゐE−F断面図、第6図
および第7図は他の実施例を示す第4図および第5図と
対応する断面図、第8図は電気回路のブロック図である
。 20・・・・可動体、22e・・・第1基準面、24a
・・・・i12基準面、24b・・・・第3基準面、2
5・・・・空間、26・・・・基準体、271281〜
28d@ @ @ @対向面、31〜316−・・・電
磁石、31〜41−・−・変位センサ。 特許出願人 日本電信電話公社 代理人 山川政樹 第3図 第4図 28b、28d 第5図 第7@
Fig. 1 is a perspective view showing a conventional example, Fig. 2 and subsequent figures show embodiments of the present invention, Fig. 2 is a perspective view of the entire configuration, Fig. 3 is a plan view of the movable body, and Fig. 4 is a A-B or C-D that can be spelled out in a diagram
5 is a sectional view taken along line E-F in FIG. 3, FIGS. 6 and 7 are sectional views corresponding to FIGS. 4 and 5 showing other embodiments, and FIG. 8 is a sectional view corresponding to FIGS. FIG. 2 is a block diagram of an electric circuit. 20... Movable body, 22e... First reference plane, 24a
... i12 reference surface, 24b ... third reference surface, 2
5...Space, 26...Reference body, 271281~
28d @ @ @ Opposing surface, 31 to 316-... Electromagnet, 31 to 41-... Displacement sensor. Patent Applicant Nippon Telegraph and Telephone Public Corporation Agent Masaki Yamakawa Figure 3 Figure 4 28b, 28d Figure 5 Figure 7 @

Claims (1)

【特許請求の範囲】[Claims] 第1基準面ならびに皺第1基準面と等角度によシ交差す
る第2および第3基準面により一辺開放の直線状Kg長
された筒状空間を形成する磁性体からなる基準体と、前
記空間内へ移動自在として収容された可動体と、咳可動
体の両側方へ各個に設けられた前記第1基準面と対向す
る電磁石と、前記可動体へ設けられた前記第1基準面と
対向する変位センサと、前記可動体の両側方各対称部位
へ各個に゛設けられた前記第2詔よび第3基準面と各同
数が対向する電磁石と、該電磁石の近傍へ各個に設けら
れた前記第2および第3基準面と各同数が対向する変位
センサとを備えたことを特許とする磁気浮上案内装置。
a reference body made of a magnetic material forming a linear cylindrical space with one side open and having a length of Kg by a first reference plane and second and third reference planes that intersect at equal angles with the wrinkled first reference plane; A movable body housed in a movable manner in a space, an electromagnet facing the first reference plane provided on both sides of the cough movable body, and facing the first reference plane provided on the movable body. a displacement sensor, an equal number of electromagnets each facing the second and third reference planes provided at symmetrical parts on both sides of the movable body, and electromagnets each provided in the vicinity of the electromagnets, respectively. A magnetic levitation guide device patented as comprising second and third reference planes and an equal number of opposing displacement sensors.
JP1438382A 1982-02-02 1982-02-02 Magnetic floating guidance device Pending JPS58133185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1438382A JPS58133185A (en) 1982-02-02 1982-02-02 Magnetic floating guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1438382A JPS58133185A (en) 1982-02-02 1982-02-02 Magnetic floating guidance device

Publications (1)

Publication Number Publication Date
JPS58133185A true JPS58133185A (en) 1983-08-08

Family

ID=11859520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1438382A Pending JPS58133185A (en) 1982-02-02 1982-02-02 Magnetic floating guidance device

Country Status (1)

Country Link
JP (1) JPS58133185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177274A2 (en) * 1984-09-29 1986-04-09 Kabushiki Kaisha Toshiba Positioning device of magnetic suspension type
WO2006081770A1 (en) * 2005-02-06 2006-08-10 Ningbo Tianming Electron Shares Co. Ltd A moveable magnetic suspension device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177274A2 (en) * 1984-09-29 1986-04-09 Kabushiki Kaisha Toshiba Positioning device of magnetic suspension type
WO2006081770A1 (en) * 2005-02-06 2006-08-10 Ningbo Tianming Electron Shares Co. Ltd A moveable magnetic suspension device

Similar Documents

Publication Publication Date Title
US4624617A (en) Linear induction semiconductor wafer transportation apparatus
US4857781A (en) High-speed non-contact linear motor with magnetic levitation
US4689529A (en) Linear stepping motor
IE812082L (en) Magnetic linear bearing
KR20210101134A (en) Transport system
JPS62171518A (en) Non-contact positioning device
JPS58133185A (en) Magnetic floating guidance device
JPS62165019A (en) Magnetic levitation slide
JP3216157B2 (en) Precision 1 stage 6 degrees of freedom stage
JPS6360636B2 (en)
JPS63133803A (en) Conveyer utilizing magnetic levitation
JP2006084034A (en) Linear guide device with hydrostatic air bearing
JP4180128B2 (en) Magnetic levitation transport device
JPH02219455A (en) Linear motor supporting mechanism
JP4215899B2 (en) Static pressure linear guide device
JPS6032581A (en) Magnetically levitating linear guide
JP2706184B2 (en) Movable stage device
JPS61278913A (en) Magnetic floating-type positioning device
JPH03168410A (en) Magnetic bearing device
KR100434975B1 (en) Positioning System of Nano-Meter Stage and Method Thereof
JPS58119782A (en) Magnetic levitating guide mechanism
JPH0615441Y2 (en) Magnetic levitation device
JPS61224855A (en) Supporting device for linearly moving mechanism
JPS6032580A (en) Magnetically levitating linear guide
JPS6149673A (en) Guiding device for magnetic levitation