JPH0343767B2 - - Google Patents

Info

Publication number
JPH0343767B2
JPH0343767B2 JP22705082A JP22705082A JPH0343767B2 JP H0343767 B2 JPH0343767 B2 JP H0343767B2 JP 22705082 A JP22705082 A JP 22705082A JP 22705082 A JP22705082 A JP 22705082A JP H0343767 B2 JPH0343767 B2 JP H0343767B2
Authority
JP
Japan
Prior art keywords
current
displacement
electromagnet
magnetic attraction
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22705082A
Other languages
Japanese (ja)
Other versions
JPS59119807A (en
Inventor
Yoshinori Kamya
Kyoshi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP22705082A priority Critical patent/JPS59119807A/en
Publication of JPS59119807A publication Critical patent/JPS59119807A/en
Publication of JPH0343767B2 publication Critical patent/JPH0343767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F7/00Regulating magnetic variables

Description

【発明の詳細な説明】 本発明は制御形磁気軸受装置等における磁気吸
引力を制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling magnetic attraction force in a controlled magnetic bearing device or the like.

制御形磁気軸受装置とは永久磁石を用いる無制
御形磁気軸受装置に対して称されるもので、例え
ば第1図に例示したように回転している物体1を
電磁石2による磁気吸引力によつて浮遊させ、空
中に支持するものであり、摩耗がないので長寿命
になること、潤滑油を必要としないこと等のすぐ
れた特色を有する反面安定した空中支持がむずか
しいという問題点がある。
A controlled magnetic bearing device refers to an uncontrolled magnetic bearing device that uses permanent magnets. For example, as shown in FIG. Although it has excellent features such as a long service life without wear and no need for lubricating oil, it has the problem that stable support in the air is difficult.

従来、磁気吸引力を制御して安定な空中支持状
態を保持するためには、変位、速度(変位の微
分)、加速度、及び電流の4つの状態量のうち、
一つもしくは複数をフイードバツクする方法が知
られているが、いずれも非線形特性等のため良好
な制御性能は得られていない。
Conventionally, in order to control the magnetic attraction force and maintain a stable air support state, among the four state quantities of displacement, velocity (differential of displacement), acceleration, and current,
Methods of feeding back one or more signals are known, but none of them provide good control performance due to nonlinear characteristics.

ところで、制御形磁気軸受装置において磁気吸
引力を制御する方法と吸引式磁気浮上列車等の吸
引浮上力を制御する方法とは理論的に全く同一で
あり、当業者であれば容易に双方に応用可能なの
で、以後区別せずに説明する。
By the way, the method of controlling the magnetic attraction force in a controlled magnetic bearing device and the method of controlling the attraction levitation force of an attraction type magnetic levitation train, etc. are theoretically exactly the same, and a person skilled in the art can easily apply it to both. Since it is possible, the following explanation will be made without distinction.

さて、変位をフイードバツクする方法は「磁気
軸受の新制御方式について」(渡部透氏他、日本
機械学会論文集、昭45−4)にて指摘されている
とおり、電磁石の時定数や非線形特性が影響し
て、安定した制御が不可能である。
Now, as pointed out in "About a new control method for magnetic bearings" (Toru Watanabe et al., Transactions of the Japan Society of Mechanical Engineers, 1972-4), the method of feedbacking the displacement depends on the time constant and nonlinear characteristics of the electromagnet. As a result, stable control is impossible.

また、前記4つの状態量をいくつか組み合わせ
て線形フイードバツクする方法は、「本振幅動作
に適した磁気吸引つり下げ糸」(松村文夫氏他、
電気学会論文誌、54−B4)にて指摘されている
とおり、動作点が大きく変化するような場合には
制御不能となるおそれがある。
In addition, the method of performing linear feedback by combining some of the four state quantities described above is based on the ``magnetic attraction suspension string suitable for this amplitude operation'' (Fumio Matsumura et al.
As pointed out in the Journal of the Institute of Electrical Engineers of Japan, 54-B4), there is a risk of loss of control if the operating point changes significantly.

本発明は、上記の問題点に鑑みて安定した空中
支持の可能な磁気吸引力制御方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a magnetic attraction force control method that allows stable aerial support.

まず従来例の問題点を図面を用いてくわしく説
明する。
First, the problems of the conventional example will be explained in detail using the drawings.

第2図は被制御体3を変位検出器4で検出した
検出変位xが、目標変位x0に一致するよう電磁石
5に流れる電流IをPID調節計6の出力にもとづ
いて電流変換部7を介して電磁石5を制御する系
を概念的に示すものである。
In FIG. 2, the current I flowing through the electromagnet 5 is changed to the current converter 7 based on the output of the PID controller 6 so that the detected displacement x of the controlled object 3 detected by the displacement detector 4 coincides with the target displacement x 0. This conceptually shows a system for controlling the electromagnet 5 via the electromagnet 5.

ところで、電磁吸引力Fは、次に示す(1)式にて
表現されることは周知である。
By the way, it is well known that the electromagnetic attractive force F is expressed by the following equation (1).

F≒μ0A/8(NI/x)2=KF(I/x)2………(1
) 但し μ0:真空透磁率 A:磁極面積 N:ターン数 I:電流 x:変位 KF=μ0AN2/8 この関係式等によつて第2図にさらにくわしく
表現したものが第3図である。
F≒μ 0 A/8 (NI/x) 2 = K F (I/x) 2 ………(1
) However, μ 0 : Vacuum permeability A : Pole area N : Number of turns I : Current x : Displacement K F = μ 0 AN 2 /8 This relational expression is expressed in more detail in Figure 2 as shown in Figure 3. It is a diagram.

第2図における電流変換部のブロツク7は7
1,72,73で表わされている。
Block 7 of the current converter in FIG.
1, 72, 73.

今こゝで被制御体の質量をmとして、被制御体
に働く力Fを入力として変位の偏差を出力とする
伝達関数を表現したのが、ブロツク8である。
Block 8 represents a transfer function in which the mass of the controlled object is m, the force F acting on the controlled object is input, and the displacement deviation is output.

ブロツク9は乗算器であり、この場合同一入力
を乗算するので自乗器となる。
Block 9 is a multiplier, and in this case it multiplies the same input, so it becomes a squarer.

ブロツク10に入力される点線矢印は、ブロツ
ク10のxが△x+x0によつて定まることを示す
ものである。
The dotted arrow input to block 10 indicates that x in block 10 is determined by Δx+x 0 .

第3図のブロツク図を見てわかるとおり、電流
Iと電磁吸引力F、変位xと電磁吸引力Fとは、
それぞれ非線形関係になつている。このことが、
従来、制御が不安定に陥いつていた最大の原因で
あることは周知である。
As you can see from the block diagram in Figure 3, the current I and the electromagnetic attraction force F, and the displacement x and the electromagnetic attraction force F are:
Each has a nonlinear relationship. This means that
It is well known that this is the biggest cause of control instability in the past.

そこで、本発明は、上記非線形特性の影響を軽
減するためフイードバツク信号を工夫したもので
ある。
Therefore, the present invention devises a feedback signal in order to reduce the influence of the above-mentioned nonlinear characteristics.

本発明の実施例を第4図を用いて説明する。 An embodiment of the present invention will be described using FIG. 4.

本発明は、電流変換部7への入力信号を、PID
調節計6の出力Isから、電流フイードバツク信号
If1を割算器11にて検出変位xで割つたものを、
乗算器12にて自乗した値If2を減じたものとす
る方法である。
The present invention converts the input signal to the current converter 7 into a PID
Current feedback signal from output Is of controller 6
The result obtained by dividing I f1 by the detected displacement x using the divider 11 is
This is a method in which the value I f2 squared by the multiplier 12 is subtracted.

このような方法にすることによつて、前記(1)式
と同一の力Fの単位系に相当する信号、すなわ
ち、(電流/変位)の自乗が、直接フイードバツ
クされるので、実プロセスであるブロツク8を通
して、フイードバツクされる変位信号xのループ
よりも、速く応答するので、前記(1)式に相当する
I−F間の非線形特性を相殺することが可能とな
る。
By using such a method, the signal corresponding to the unit system of the force F, which is the same as in equation (1) above, that is, the square of (current/displacement), is directly fed back, so it is not necessary to use the actual process. Since the response is faster than the loop of the displacement signal x that is fed back through block 8, it is possible to cancel out the nonlinear characteristics between I and F corresponding to equation (1) above.

以上述べたように、本発明によれば、電磁石の
非線形特性の悪影響を除去できるので、安定な制
御が実現できる。
As described above, according to the present invention, the adverse effects of the nonlinear characteristics of the electromagnet can be removed, so stable control can be realized.

本発明は、第1図に例示したつり下げ式磁気軸
受装置をはじめ、対向式磁気軸受、磁気浮上列車
等磁気吸引力の制御を行なう分野に幅広く応用可
能である。
The present invention can be widely applied to fields where magnetic attraction is controlled, such as the hanging type magnetic bearing device illustrated in FIG. 1, opposed type magnetic bearings, and magnetically levitated trains.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はつり下げ式磁気軸受装置の概略図、第
2図は従来の制御回路のブロツク図、第3図は、
その詳細ブロツク図、第4図は、本発明の実施例
のブロツク図である。 3……被制御体、4……変位検出器、5……電
磁石、6……PID調節計、7……電流変換部、7
1,73……増幅要素、72……一次おくれ要
素、9,12……乗算器、11……割算器。
Figure 1 is a schematic diagram of a suspended magnetic bearing device, Figure 2 is a block diagram of a conventional control circuit, and Figure 3 is a
A detailed block diagram thereof, FIG. 4, is a block diagram of an embodiment of the present invention. 3... Controlled object, 4... Displacement detector, 5... Electromagnet, 6... PID controller, 7... Current converter, 7
1, 73... Amplification element, 72... Primary delay element, 9, 12... Multiplier, 11... Divider.

Claims (1)

【特許請求の範囲】[Claims] 1 電磁石に流れる電流を制御して被制御体を磁
気吸引して空中支持する制御形磁気吸引装置にお
いて、電磁石に与える指令電流を、制御電流指令
から、電流フイードバツク信号を検出変位xで割
つた値を自乗したものを減じたものとすることを
特徴とする磁気吸引力の制御方法。
1 In a controlled magnetic attraction device that magnetically attracts and supports a controlled object in the air by controlling the current flowing through the electromagnet, the value obtained by dividing the command current given to the electromagnet from the control current command by the current feedback signal by the detected displacement x A method for controlling magnetic attraction force, characterized by subtracting the squared value of .
JP22705082A 1982-12-27 1982-12-27 Control of magnetic attracting force Granted JPS59119807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22705082A JPS59119807A (en) 1982-12-27 1982-12-27 Control of magnetic attracting force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22705082A JPS59119807A (en) 1982-12-27 1982-12-27 Control of magnetic attracting force

Publications (2)

Publication Number Publication Date
JPS59119807A JPS59119807A (en) 1984-07-11
JPH0343767B2 true JPH0343767B2 (en) 1991-07-03

Family

ID=16854739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22705082A Granted JPS59119807A (en) 1982-12-27 1982-12-27 Control of magnetic attracting force

Country Status (1)

Country Link
JP (1) JPS59119807A (en)

Also Published As

Publication number Publication date
JPS59119807A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
US3860300A (en) Virtually zero powered magnetic suspension
US3512852A (en) Stabilized levitation of magnetic elements
Roy et al. An efficient rotor suspension with active magnetic bearings having viscoelastic control law
KR20090123884A (en) Electromagnetic attraction tape magnetic bearing and control method thereof
JPH0343766B2 (en)
JPS6319734B2 (en)
JPH0343767B2 (en)
Sivrioglu Adaptive control of nonlinear zero-bias current magnetic bearing system
Morizane et al. Simultaneous control of propulsion and levitation of linear induction motor in a novel maglev system
Cho Experimental results on sliding mode control of an electromagnetic suspension
US2946930A (en) Magnetic suspension
CN109298647A (en) High-speed maglev train suspension control method based on lap joint structure whole
JPH0112970B2 (en)
JPH0788875B2 (en) Vibration control device
Moreno Design and Implementation of an Uncoupled and Parallelly Actuated Control for the Highly Nonlinear Suspension System of a Maglev Train
Narisawa et al. Realization of zero-power control in a two-degree-of-freedom double parallel magnetic suspension system
JPS6032580A (en) Magnetically levitating linear guide
Chen Active magnetic bearing design methodology-A conventional rotordynamics approach
Ishino et al. Stiffness control of magnetic suspension by local current feedback
JP2556036B2 (en) Magnetic bearing control device
Sinha On the design of magnetic suspension systems
RU2037436C1 (en) Levitation system
ISHINO et al. Control of magnetic suspension with elastic ferromagnetic substance for vibration isolation system
JP2711048B2 (en) Control method of magnetic levitation system including magnetic material
JPS6387713A (en) Electromagnet apparatus for magnetic levitation with attenuating oscillation function