JPH0343766B2 - - Google Patents

Info

Publication number
JPH0343766B2
JPH0343766B2 JP22111982A JP22111982A JPH0343766B2 JP H0343766 B2 JPH0343766 B2 JP H0343766B2 JP 22111982 A JP22111982 A JP 22111982A JP 22111982 A JP22111982 A JP 22111982A JP H0343766 B2 JPH0343766 B2 JP H0343766B2
Authority
JP
Japan
Prior art keywords
electromagnet
magnetic attraction
displacement
attraction force
controlled object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22111982A
Other languages
Japanese (ja)
Other versions
JPS59112605A (en
Inventor
Yoshinori Kamya
Kyoshi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP22111982A priority Critical patent/JPS59112605A/en
Publication of JPS59112605A publication Critical patent/JPS59112605A/en
Publication of JPH0343766B2 publication Critical patent/JPH0343766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F7/00Regulating magnetic variables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control

Description

【発明の詳細な説明】 本発明は制御形磁気軸受装置等における磁気吸
引力を制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling magnetic attraction force in a controlled magnetic bearing device or the like.

制御形磁気軸受装置とは永久磁石を用いる無制
御形磁気軸受装置に対して称されるもので、例え
ば第1図に例示したように回転している物体1を
電磁石2による磁気吸引力によつて浮遊させ、空
中に支持するものであり、摩耗がないので長寿命
になること、潤滑油を必要としないこと等のすぐ
れた特色を有する反面安定した空中支持がむずか
しいという問題点がある。
A controlled magnetic bearing device refers to an uncontrolled magnetic bearing device that uses permanent magnets. For example, as shown in FIG. Although it has excellent features such as a long service life without wear and no need for lubricating oil, it has the problem that stable support in the air is difficult.

従来、磁気吸引力を制御して安定な空中支持状
態を保持するためには、変位、速度(変位の微
分)、加速度、及び電流の4つの状態量のうち、
一つもしくは複数をフイードバツクする方法が知
られているが、いずれも非線形特性等のため良好
な制御性能は得られていない。
Conventionally, in order to control the magnetic attraction force and maintain a stable air support state, among the four state quantities of displacement, velocity (differential of displacement), acceleration, and current,
Methods of feeding back one or more signals are known, but none of them provide good control performance due to nonlinear characteristics.

ところで、制御形磁気軸受装置において磁気吸
引力を制御する方法と吸引力磁気浮上列車等の吸
引浮上力を制御する方法とは理論的に全く同一で
あり、当業者であれば容易に双方に応用可能なの
で、以後区別せずに説明する。
By the way, the method of controlling the magnetic attraction force in a controlled magnetic bearing device and the method of controlling the attraction levitation force of an attraction force magnetic levitation train, etc. are theoretically exactly the same, and those skilled in the art can easily apply it to both. Since it is possible, the following explanation will be made without distinction.

さて、変位をフイードバツクする方法は「磁気
軸受の新制御方式について」(渡部透氏他、日本
機械学会論文集、昭45−4)にて指摘されている
とおり、電磁石の時定数や非線形特性が影響し
て、安定した制御が不可能である。
Now, as pointed out in "About a new control method for magnetic bearings" (Toru Watanabe et al., Transactions of the Japan Society of Mechanical Engineers, 1972-4), the method of feedbacking the displacement depends on the time constant and nonlinear characteristics of the electromagnet. As a result, stable control is impossible.

また、前記4つの状態量をいくつか組み合せて
線形フイードバツクする方法は、「本振幅動作に
適した磁気吸引つり下げ糸」(松村文夫氏他、電
気学会論文誌、54−B4)にて指摘されていると
おり、動作点が大きく変化するような場合には制
御不能となるおそれがある。
In addition, a method of linear feedback by combining some of the four state quantities mentioned above was pointed out in ``Magnetic attraction hanging string suitable for this amplitude operation'' (Fumio Matsumura et al., Transactions of the Institute of Electrical Engineers of Japan, 54-B4). As described above, if the operating point changes significantly, there is a risk of loss of control.

本発明は、上記の問題点に鑑みて安定した空中
支持の可能な磁気吸引力制御方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a magnetic attraction force control method that allows stable aerial support.

まず従来例の問題点を図面を用いてくわしく説
明する。
First, the problems of the conventional example will be explained in detail using the drawings.

第2図は被制御体3を変位検出器4で検出した
検出変位xが、目標変位x0に一致するよう電磁石
5に流れる電流IをPID調節計6の出力にもとづ
いて電流変換部7を介して電磁石5を制御する系
を概念的に示すものである。
In FIG. 2, the current I flowing through the electromagnet 5 is changed to the current converter 7 based on the output of the PID controller 6 so that the detected displacement x of the controlled object 3 detected by the displacement detector 4 coincides with the target displacement x 0. This conceptually shows a system for controlling the electromagnet 5 via the electromagnet 5.

ところで、電磁吸引力Fは、次に示す(1)式にて
表現されることは周知である。
By the way, it is well known that the electromagnetic attractive force F is expressed by the following equation (1).

F≒μ0A/8(NI/x)2=KF(I/x)2………(1
) 但し μ0:真空透磁率 A:磁極面積 N:ターン数 I:電流 x:変位 KF≡μ0AN2/8 この関係式等によつて第2図をさらにくわしく
表現したものが第3図である。
F≒μ 0 A/8 (NI/x) 2 = K F (I/x) 2 ………(1
) However, μ 0 : Vacuum permeability A : Magnetic pole area N : Number of turns I : Current x : Displacement K Fμ 0 AN 2 /8 The third diagram expresses Figure 2 in more detail using this relational expression etc. It is a diagram.

第2図における電流変換部のブロツク7は7
1,72,73で表わされている。
Block 7 of the current converter in FIG.
1, 72, 73.

今こゝで被制御体の質量をmとして、被制御体
に働く力Fを入力として変位の偏差を出力とする
伝達関数を表現したのが、ブロツク8である。
Block 8 represents a transfer function in which the mass of the controlled object is m, the force F acting on the controlled object is input, and the displacement deviation is output.

ブロツク9は乗算器であり、この場合同一入力
を乗算するので自乗器となる。
Block 9 is a multiplier, and in this case it multiplies the same input, so it becomes a squarer.

ブロツク10に入力される点線矢印は、ブロツ
ク10のxが△x+x0によつて定まることを示す
ものである。
The dotted arrow input to block 10 indicates that x in block 10 is determined by Δx+x 0 .

第3図のブロツク図を見てわかるとおり、電流
Iと電磁吸引力F、変位xと電磁吸引力Fとは、
それぞれ非線形関係になつている。このことが、
従来、制御が不安定に陥いつていた最大の原因で
あることは周知である。そこで、本発明は上記非
線形特性を除去するためフイードバツク信号を工
夫したものである。
As you can see from the block diagram in Figure 3, the current I and the electromagnetic attraction force F, and the displacement x and the electromagnetic attraction force F are:
Each has a nonlinear relationship. This means that
It is well known that this is the biggest cause of control instability in the past. Therefore, in the present invention, the feedback signal is devised in order to eliminate the above-mentioned nonlinear characteristics.

本発明の実施例を第4図を用いて説明する。 An embodiment of the present invention will be described using FIG. 4.

本発明はPID調節計6の出力Isを開平演算器1
1で開平したのち、乗算器12にて検出変位xと
の積をとつて電流変換部7に入力する方法であ
る。
The present invention uses the output Is of the PID controller 6 as the square root calculator 1
1, the multiplier 12 calculates the product with the detected displacement x, and inputs the product to the current converter 7.

簡単にするため一次おくれ要素ブロツク72を
無視して、AI/1+A2KI=1とおくと、次の(2)式が 成立する。
For simplicity, if we ignore the primary delay element block 72 and set A I /1+A 2 K I =1, the following equation (2) holds true.

I=x√ ………(2) (2)式を(1)式に代入すれば F=KF(I/x)2=KF(x√Is/x)2=KFIs となる。 I=x√ ………(2) Substituting equation (2) into equation (1), we get F=K F (I/x) 2 =K F (x√Is/x) 2 =K F Is .

すなわちPID調節計6の出力Isと被制御体に働
く力Fとは線形関係となるので、電流Iと被制御
体に働く力Fとの非線形関係を影響ないものにす
ることができる。
That is, since the output Is of the PID controller 6 and the force F acting on the controlled object have a linear relationship, the nonlinear relationship between the current I and the force F acting on the controlled object can be made to have no influence.

以上述べたように、本発明によれば、電磁石の
非線形特性の悪影響を除去できるので、安定な制
御が実現できる。
As described above, according to the present invention, the adverse effects of the nonlinear characteristics of the electromagnet can be removed, so stable control can be realized.

本発明は、第1図に例示したつり下げ式磁気軸
受装置をはじめ、対向式磁気軸受、磁気浮上列車
等磁気吸引力の制御を行なう分野に幅広く応用可
能である。
The present invention can be widely applied to fields where magnetic attraction is controlled, such as the hanging type magnetic bearing device illustrated in FIG. 1, opposed type magnetic bearings, and magnetically levitated trains.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はつり下げ式磁気軸受装置の概略図、第
2図は従来の制御回路のブロツク図、第3図は、
その詳細ブロツク図、第4図は、本発明の実施例
のブロツク図である。 3……被制御体、4……変位検出器、5……電
磁石、6……PID調節計、7……電流変換部、7
1,73……増幅要素、72……一次おくれ要
素、9,12……乗算器、11……開平演算器。
Figure 1 is a schematic diagram of a suspended magnetic bearing device, Figure 2 is a block diagram of a conventional control circuit, and Figure 3 is a
A detailed block diagram thereof, FIG. 4, is a block diagram of an embodiment of the present invention. 3... Controlled object, 4... Displacement detector, 5... Electromagnet, 6... PID controller, 7... Current converter, 7
1, 73... Amplification element, 72... Primary delay element, 9, 12... Multiplier, 11... Square root operator.

Claims (1)

【特許請求の範囲】[Claims] 1 電磁石に流れる電流を制御して被制御体を磁
気吸引して空中支持する制御形磁気吸引装置にお
いて、電磁石に与える指令電流を、制御電流指令
の平方根に、電磁石と被制御体とのギヤツプ(す
きま)値を乗じたものとすることを特徴とする磁
気吸引力の制御方法。
1. In a controlled magnetic attraction device that controls the current flowing through an electromagnet to magnetically attract and support a controlled object in the air, the command current given to the electromagnet is set to the square root of the control current command, and the gap between the electromagnet and the controlled object ( 1. A method for controlling magnetic attraction force, characterized in that the magnetic attraction force is multiplied by a gap) value.
JP22111982A 1982-12-18 1982-12-18 Controlling method of magnetic attractive force Granted JPS59112605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22111982A JPS59112605A (en) 1982-12-18 1982-12-18 Controlling method of magnetic attractive force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22111982A JPS59112605A (en) 1982-12-18 1982-12-18 Controlling method of magnetic attractive force

Publications (2)

Publication Number Publication Date
JPS59112605A JPS59112605A (en) 1984-06-29
JPH0343766B2 true JPH0343766B2 (en) 1991-07-03

Family

ID=16761767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22111982A Granted JPS59112605A (en) 1982-12-18 1982-12-18 Controlling method of magnetic attractive force

Country Status (1)

Country Link
JP (1) JPS59112605A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152411A (en) * 1984-08-22 1986-03-15 Yaskawa Electric Mfg Co Ltd Controller for magnetic bearing apparatus
JPS61171918A (en) * 1985-01-28 1986-08-02 Mitsubishi Electric Corp Magnetic bearing
JPH02164288A (en) * 1988-12-17 1990-06-25 Yaskawa Electric Mfg Co Ltd Non-contact supporting device
FR2750244B1 (en) * 1996-06-20 1998-11-06 Clausin Jacques PROPORTIONAL FORCE CONTROL DEVICE DELIVERED BY AN ELECTROMAGNET INDEPENDENT OF VARIATIONS IN SUPPLY VOLTAGES AND GAPS
WO1999021198A1 (en) * 1997-10-17 1999-04-29 Jacques Clausin Device for proportionally controlling a force delivered by an electromagnet independently of voltage and air gap variations

Also Published As

Publication number Publication date
JPS59112605A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
US3860300A (en) Virtually zero powered magnetic suspension
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US9293971B2 (en) Active magnetic bearings control system
Roy et al. An efficient rotor suspension with active magnetic bearings having viscoelastic control law
JPH0343766B2 (en)
JPS6319734B2 (en)
Johnson et al. Adaptive variable bias magnetic bearing control
EP0445294A4 (en) Method of control of moving element of magnetic levitation carrier apparatus
JPH0343767B2 (en)
Morizane et al. Simultaneous control of propulsion and levitation of linear induction motor in a novel maglev system
Gandhi et al. Modeling of current and voltage controlled electromagnetic levitation system based on novel approximation of coil inductance
US2946930A (en) Magnetic suspension
JP2002039178A (en) Magnetic bearing device
JPH0112970B2 (en)
JPH02219455A (en) Linear motor supporting mechanism
Moreno Design and Implementation of an Uncoupled and Parallelly Actuated Control for the Highly Nonlinear Suspension System of a Maglev Train
JP2556036B2 (en) Magnetic bearing control device
JPS6387713A (en) Electromagnet apparatus for magnetic levitation with attenuating oscillation function
KR940002049B1 (en) Controlling method for guiding of magnetic flooting system
Chen Active magnetic bearing design methodology-A conventional rotordynamics approach
JPH05336614A (en) Superconducting magnetic bearing carrier
JPH0984214A (en) Magnetic levitation controller
JP2711048B2 (en) Control method of magnetic levitation system including magnetic material
JP3311394B2 (en) Electromagnet control device
JPS61102106A (en) Levitating type conveyor