JPS6319734B2 - - Google Patents

Info

Publication number
JPS6319734B2
JPS6319734B2 JP22111882A JP22111882A JPS6319734B2 JP S6319734 B2 JPS6319734 B2 JP S6319734B2 JP 22111882 A JP22111882 A JP 22111882A JP 22111882 A JP22111882 A JP 22111882A JP S6319734 B2 JPS6319734 B2 JP S6319734B2
Authority
JP
Japan
Prior art keywords
electromagnet
current command
type
controlled
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22111882A
Other languages
Japanese (ja)
Other versions
JPS59113315A (en
Inventor
Yoshinori Kamya
Kyoshi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP22111882A priority Critical patent/JPS59113315A/en
Publication of JPS59113315A publication Critical patent/JPS59113315A/en
Publication of JPS6319734B2 publication Critical patent/JPS6319734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 本発明は対向式制御形磁気軸受装置における磁
気吸引力を制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling magnetic attraction force in an opposed control type magnetic bearing device.

対向式制御形磁気軸受装置とは、第1図に例示
したような回転物体1あるいは被制御体を挾むよ
うに対向して配置した2個の電磁石2と3,4と
5,6と7,8と9,10と11の磁気吸引力に
よつて回転物体1又は被制御体を浮遊させ、空中
に支持する装置であつて、摩耗を生じないので長
寿命になること、潤滑油を必要としないこと等の
すぐれた特色を有する反面、安定した空中支持が
むずかしいという問題がある。
The opposed type controlled magnetic bearing device is composed of two electromagnets 2 and 3, 4 and 5, 6 and 7, 8 arranged oppositely to sandwich a rotating object 1 or a controlled object as shown in FIG. A device for suspending and supporting a rotating object 1 or a controlled object in the air by the magnetic attraction forces of 9, 10, and 11, which does not cause wear and therefore has a long life and does not require lubricating oil. Although it has such excellent features, it has the problem that stable aerial support is difficult.

なお、対向式というのは磁石一個による釣り下
げ式に対している、また制御形というのは永久磁
石による無制御形に対して各々区別するために使
われる。
Note that "opposed type" is used to distinguish from a hanging type using a single magnet, and "controlled type" is used to distinguish from a non-controlled type using a permanent magnet.

従来の対向式制御形磁気軸受装置は、釣り下げ
式制御形磁気軸受を単純に2つ組み合せただけの
もので、釣り下げ式においても従来技術では安定
した空中支持性能が得られていなかつたので、対
向式でも当然良好な制御性能は得られていなかつ
た。
Conventional opposed-type controlled magnetic bearing devices are simply a combination of two suspended-type controlled magnetic bearings, and even in the suspended type, stable aerial support performance has not been achieved with conventional technology. Naturally, good control performance was not obtained even with the opposed type.

理解を容易にするため従来例を第2図に示して
説明する。
To facilitate understanding, a conventional example will be explained with reference to FIG. 2.

図は被制御体21(回転しているか否か、又、
回転している場合は軸方向支持型(スラスト型)
か半径方向支持型(ジヤーナル型)かは問わな
い)を挟むように電磁石22,23を設けてその
磁気吸引力によつて空中支持している様子を概念
的に示したものである。
The figure shows the controlled object 21 (rotating or not,
If rotating, use axial support type (thrust type)
This figure conceptually shows that electromagnets 22 and 23 are provided to sandwich the electromagnets 22 and 23 (regardless of whether they are of the radial or radial support type) and that the electromagnets are supported in the air by their magnetic attractive force.

この制御系の目標ギヤツプx0に、ギヤツプ検出
器24で検出した検出ギヤツプx1が一致するよう
に制御される系であり、ギヤツプ偏差△xは、
PID調節計25をへて電流変換部26,27に入
力され、電磁石22,23へ流すべき電流I1、I2
に変換されるよう構成されている。
This control system is controlled so that the detected gap x 1 detected by the gap detector 24 matches the target gap x 0 of the control system, and the gap deviation Δx is
Currents I 1 and I 2 are input to the current converters 26 and 27 through the PID controller 25 and are to be passed to the electromagnets 22 and 23 .
It is configured to be converted to

第2図において、電流変換部27と電磁石23
を除去して、電磁石22を被制御体21の鉛直上
方に配置すれば釣り下げ式となるので、従来の対
向式は単純に釣り下げ式を2つ組み合わせただけ
であることがわかる。
In FIG. 2, a current converter 27 and an electromagnet 23
If the electromagnet 22 is removed and the electromagnet 22 is placed vertically above the controlled body 21, it becomes a hanging type, so it can be seen that the conventional facing type is simply a combination of two hanging types.

ところで、電磁石が物体を吸引する力は次の(1)
式にて表わされることは周知である。
By the way, the force with which an electromagnet attracts an object is as follows (1)
It is well known that it is expressed by the following formula.

F≒B2A/2μ0≒μ0A/8(NI/x)2≡KF(I/x)2
……(1) 但し F:電磁吸引力 B:磁束密度 A:磁極面積 μ0:真空透磁率 N:巻き数 I:電流 x:ギヤツプ(電磁石と物体の距離) KF≡μ0AN2/8 上記(1)式の部分もブロツク線図化して表現した
のが第3図である。
F≒B 2 A/2μ 0 ≒μ 0 A/8 (NI/x) 2 ≡K F (I/x) 2
...(1) However, F: Electromagnetic attractive force B: Magnetic flux density A: Magnetic pole area μ 0 : Vacuum permeability N: Number of turns I: Current x: Gap (distance between electromagnet and object) K F ≡μ 0 AN 2 / 8. Figure 3 also represents the part of equation (1) above as a block diagram.

ブロツク28は、被制御体21の質量をmと
し、入力をF、出力を△xとする伝達関数、ブロ
ツク29,30は乗算器(この場合、同一入力を
乗算しているので自乗器となる。)、ブロツク3
1,32のx1、x2は、それぞれx0+△x、x0−△
xによつて定まることを点線矢印にて示してい
る。
Block 28 is a transfer function in which the mass of the controlled body 21 is m, the input is F, and the output is Δx. Blocks 29 and 30 are multipliers (in this case, they are multipliers because the same input is multiplied). ), block 3
x 1 and x 2 of 1,32 are x 0 +△x, x 0 -△ respectively
The dotted arrow indicates that it is determined by x.

すなわち、電流と電磁吸引力、ギヤツプと電磁
吸引力とはそれぞれ非線形関係になつている。こ
の非線形特性が制御を不安定にする大きな原因で
あることも周知の事実である。
That is, the current and the electromagnetic attraction force, and the gap and the electromagnetic attraction force each have a nonlinear relationship. It is also a well-known fact that this nonlinear characteristic is a major cause of unstable control.

本発明は、以上述べた従来の問題点を解消する
ことを目的としてなされたもので、対向式磁気軸
受装置の特徴である。被制御体に働く力は2個の
電磁石の電磁吸引力の和になるということをたく
みに利用して非線形特性を除去するようにしたも
のである。
The present invention was made to solve the above-mentioned conventional problems, and is a feature of an opposed magnetic bearing device. This method cleverly utilizes the fact that the force acting on the controlled object is the sum of the electromagnetic attraction forces of the two electromagnets to eliminate nonlinear characteristics.

以下第4図に具体的実施例を示して説明する。 A specific example will be described below with reference to FIG.

従来装置では、PID調節計25の出力である制
御電流指令I0が、そのまま電流変換部26,27
に入力されていたが、本発明では、乗算器33,
34とバイアス電流指令器35を備え、制御電流
指令I0にバイアス電流指令Ibを加算したものにギ
ヤツプx1を乗じた値を電流変換部26に入力し、
制御電流指令I0からバイアス電流指令Ibを減算し
たものにギヤツプx2を乗じた値を電流変換部27
に入力するよう構成したものである。
In the conventional device, the control current command I0 , which is the output of the PID controller 25, is directly transmitted to the current converters 26 and 27.
However, in the present invention, the multiplier 33,
34 and a bias current command unit 35, and inputs the value obtained by adding the bias current command Ib to the control current command I0 multiplied by the gap x1 to the current conversion unit 26,
The current converter 27 calculates the value obtained by subtracting the bias current command Ib from the control current command I 0 and multiplying it by the gap x 2 .
It is configured so that it can be input.

このような構成にすることにより、制御電流指
令I0と被制御体21に働く力Fとは線形関係とな
る。今こゝで電流変換部26,27の伝達関数G
(S)を簡単にするためG(S)=1とすると I1=(I0+Ib)×x1 ……(2) I2=(I0−Ib)×x2 ……(3) となる。
With this configuration, the control current command I 0 and the force F acting on the controlled body 21 have a linear relationship. Now, the transfer function G of the current converters 26 and 27
To simplify (S), let G(S) = 1, then I 1 = (I 0 + Ib) × x 1 ... (2) I 2 = (I 0 - Ib) × x 2 ... (3) Become.

被制御体21に働く力Fは(1)式より F=F1−F2=KF{(I1/x12−(I2/x22} ……(4) となり、この(4)式に(2)、(3)式を代入すると F=KF{x1 2(I0+Ib)2/x1 2−x2 2(I0−Ib)2/x2 2} =KF{(I0+Ib)2−(I0−Ib)2} =4KFIbI0 ……(5) となる。すなわちKF、Ibは共に定数なので、被
制御体21に働く力Fと制御電流指令I0とは線形
関係が得られたことになる。
From equation (1), the force F acting on the controlled body 21 is F=F 1 −F 2 =K F {(I 1 /x 1 ) 2 −(I 2 /x 2 ) 2 } ...(4), Substituting equations (2) and (3) into equation (4), F=K F {x 1 2 (I 0 + Ib) 2 /x 1 2 −x 2 2 (I 0 −Ib) 2 /x 2 2 } =K F {(I 0 + Ib) 2 − (I 0 − Ib) 2 } = 4K F IbI 0 ...(5). That is, since K F and Ib are both constants, a linear relationship is obtained between the force F acting on the controlled object 21 and the control current command I 0 .

なお、ブロツク36は倍算器で、x2を式2x0
x1によつてみちびくためのものであるので、x2
ギヤツプ検出器を独自に備え、x2をブロツク24
に入力させれば不要である。
Note that block 36 is a multiplier that converts x 2 into the formula 2x 0
Since it is intended to lead by x 1 , it is equipped with its own gap detector for x 2 , and
It is not necessary if you input it into .

以上述べたように、本発明によれば、制御電流
指令と被制御体に働く力を線形化できるので、制
御の安定性を大幅に向上できるため、きわめて高
性能な磁気軸受装置を提供できる。
As described above, according to the present invention, since the control current command and the force acting on the controlled object can be linearized, the stability of control can be greatly improved, so that an extremely high-performance magnetic bearing device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、磁気軸受装置の一例を示す斜視図、
第2図は従来の制御方法のブロツク図、第3図は
従来例のくわしいブロツク図、第4図は本発明の
具体的実施例のブロツク図である。 21……被制御体、22,23……電磁石、2
4……ギヤツプ(すきま)検出器、25……PID
調節計、26,27……電流変換部、29,3
0,33,34……乗算器、35……バイアス電
流指令器、36……倍算器。
FIG. 1 is a perspective view showing an example of a magnetic bearing device;
FIG. 2 is a block diagram of a conventional control method, FIG. 3 is a detailed block diagram of the conventional example, and FIG. 4 is a block diagram of a specific embodiment of the present invention. 21... Controlled object, 22, 23... Electromagnet, 2
4...Gap detector, 25...PID
Controller, 26, 27...Current converter, 29, 3
0, 33, 34... Multiplier, 35... Bias current command device, 36... Multiplier.

Claims (1)

【特許請求の範囲】[Claims] 1 対向式制御形磁気軸受装置において、一方の
電磁石に与える指令電流としてその電磁石と被制
御体とのギヤツプ(すきま)値に、制御電流指令
にバイアス電流指令を加算したものを乗じたもの
を与え、他方の電磁石に与える指令電流として
は、その電磁石と被制御体とのギヤツプ値に、制
御電流指令からバイアス電流指令を減算したもの
を乗じたものを与えることを特徴とする磁気軸受
装置の制御方法。
1 In an opposed control type magnetic bearing device, the command current given to one electromagnet is the gap value between that electromagnet and the controlled object multiplied by the control current command plus the bias current command. , the command current given to the other electromagnet is given by multiplying the gap value between the electromagnet and the controlled object by the value obtained by subtracting the bias current command from the control current command. Method.
JP22111882A 1982-12-18 1982-12-18 Control method of magnetic bearing Granted JPS59113315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22111882A JPS59113315A (en) 1982-12-18 1982-12-18 Control method of magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22111882A JPS59113315A (en) 1982-12-18 1982-12-18 Control method of magnetic bearing

Publications (2)

Publication Number Publication Date
JPS59113315A JPS59113315A (en) 1984-06-30
JPS6319734B2 true JPS6319734B2 (en) 1988-04-25

Family

ID=16761752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22111882A Granted JPS59113315A (en) 1982-12-18 1982-12-18 Control method of magnetic bearing

Country Status (1)

Country Link
JP (1) JPS59113315A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152411A (en) * 1984-08-22 1986-03-15 Yaskawa Electric Mfg Co Ltd Controller for magnetic bearing apparatus
US4642501A (en) * 1985-10-15 1987-02-10 Sperry Corporation Magnetic suspension and pointing system with flux feedback linearization
JPS6313917A (en) * 1986-07-03 1988-01-21 Ebara Res Co Ltd Control device for magnetic bearing
JPS63171723U (en) * 1987-04-30 1988-11-08
JPH0534336Y2 (en) * 1988-08-11 1993-08-31
FR2635292B1 (en) * 1988-08-12 1990-11-16 Henkel France PROCESS FOR TREATING CORK STOPPERS
JPH02154828A (en) * 1988-12-06 1990-06-14 Yaskawa Electric Mfg Co Ltd Vibration suppressing/controlling device for machine
JPH02164288A (en) * 1988-12-17 1990-06-25 Yaskawa Electric Mfg Co Ltd Non-contact supporting device
JPH0537526U (en) * 1991-10-23 1993-05-21 三菱自動車エンジニアリング株式会社 Vehicle triangular window device

Also Published As

Publication number Publication date
JPS59113315A (en) 1984-06-30

Similar Documents

Publication Publication Date Title
US3791704A (en) Trimming apparatus for magnetic suspension systems
US5319273A (en) Fixed gain electromagnetic actuator and electromagnetic bearing incorporating same
US4379598A (en) Magnetic bearing
US3976339A (en) Magnetic suspension apparatus
US3860300A (en) Virtually zero powered magnetic suspension
US5250865A (en) Electromagnetic thrust bearing for coupling a rotatable member to a stationary member
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US3026151A (en) Bearing construction
US5767597A (en) Electromagnetically biased homopolar magnetic bearing
US4983869A (en) Magnetic bearing
US6703735B1 (en) Active magnetic thrust bearing
US11465783B2 (en) Single-gimbal magnetically suspended control moment gyroscope
GB2129068A (en) Pump with magnetic bearings
JPS6319734B2 (en)
JPH0369821A (en) Magnetic bearing
JPH03504997A (en) Radial and axial bearings for rotors with large radii
JPS5612095A (en) Turbo molecular vacuum pump
US3929390A (en) Damper system for suspension systems
US4268095A (en) Magnetic bearing
EP0763169B1 (en) Dc-biased axial magnetic bearing
JPH0343766B2 (en)
JPH0112970B2 (en)
US5140209A (en) Method of controlling electromagnets in electromagentic bearings
US5046151A (en) Magnetic bearing device
JPH0343767B2 (en)