JPH069171B2 - Electromagnetic actuator - Google Patents

Electromagnetic actuator

Info

Publication number
JPH069171B2
JPH069171B2 JP62172250A JP17225087A JPH069171B2 JP H069171 B2 JPH069171 B2 JP H069171B2 JP 62172250 A JP62172250 A JP 62172250A JP 17225087 A JP17225087 A JP 17225087A JP H069171 B2 JPH069171 B2 JP H069171B2
Authority
JP
Japan
Prior art keywords
coil
coils
superconducting
drive shaft
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62172250A
Other languages
Japanese (ja)
Other versions
JPS6415906A (en
Inventor
敏行 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62172250A priority Critical patent/JPH069171B2/en
Publication of JPS6415906A publication Critical patent/JPS6415906A/en
Publication of JPH069171B2 publication Critical patent/JPH069171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、各種アクチュエータに適用される電磁アク
チュエータに関する。
TECHNICAL FIELD The present invention relates to an electromagnetic actuator applied to various actuators.

[従来の技術] 従来の電磁アクチュエータには、強磁性材の鉄心と永久
磁石または電磁石を用いて相互の吸引力を利用した磁気
軸受が実用化されている。また一方、超電導コイルを用
い、その反発力を利用して浮上させるものとして、磁気
浮上列車の開発が行なわれているが、電磁アクチュエー
タにおいても超電導体を利用する研究が行なわれてい
る。しかして、電磁石を用いた従来の電磁アクチュエー
タは、第5図に示すように構成されている。同図におい
て20は非磁性材で作られたケーシングで、この内部に駆
動用コイル21,22が所定間隔を保って同心状に配置され
る。このコイル21,22はリード線(図示せず)を介して
駆動電源に接続される。そして、二つのコイル21,22間
に駆動板23が配置される。この駆動板23には駆動軸24が
装着され一体的に構成されている。駆動軸24は駆動用コ
イル21,22の上側及び下側に設けられた軸受用コイル2
5,26により、その位置が保持されるようになつてい
る。この軸受用コイル25,26は、リード線(図示せず)
を介して駆動電源に接続される。
[Prior Art] As a conventional electromagnetic actuator, a magnetic bearing using a mutual attraction force using an iron core made of a ferromagnetic material and a permanent magnet or an electromagnet has been put into practical use. On the other hand, a magnetic levitation train is being developed as a system that uses a superconducting coil to levitate using its repulsive force, but research is also being conducted on the use of superconductors in electromagnetic actuators. Therefore, the conventional electromagnetic actuator using the electromagnet is configured as shown in FIG. In the figure, reference numeral 20 is a casing made of a non-magnetic material, in which drive coils 21 and 22 are concentrically arranged with a predetermined interval. The coils 21 and 22 are connected to a driving power source via lead wires (not shown). The drive plate 23 is arranged between the two coils 21 and 22. A drive shaft 24 is attached to the drive plate 23 and is integrally configured. The drive shaft 24 is a bearing coil 2 provided above and below the drive coils 21 and 22.
The position is maintained by 5, 26. The bearing coils 25 and 26 are lead wires (not shown).
Is connected to the driving power supply via.

しかし、上記のような構成にした場合、駆動用コイル2
1,22及び軸受用コイル25,26をそれぞれ別個に独立し
て設けており、構成が複雑で組立てが面倒となり、また
信頼性が低下してしまう等の欠点があった。
However, in the case of the above configuration, the driving coil 2
Since 1, 22 and the bearing coils 25, 26 are provided separately and independently, they have drawbacks such as a complicated structure, complicated assembly, and reduced reliability.

[発明が解決しようとする問題点] この発明は上記のような点に鑑みてなされたもので、作
動を滑らかにし、さらに制御及び組立てが簡単な信頼性
の高い電磁アクチュエータを提供することを目的とす
る。
[Problems to be Solved by the Invention] The present invention has been made in view of the above points, and an object thereof is to provide a highly reliable electromagnetic actuator which has a smooth operation and is easy to control and assemble. And

[問題点を解決するための手段] この発明は、ケーシング内に所定間隔離して同心状に二
つのコイルを配置し、このコイルの中心軸に沿って設け
られる駆動軸を、上記二つのコイル間に位置するように
上記駆動軸に装着する超電導板によつて駆動を行ない、
上記超電導板の両側において上記二つのコイルのそれぞ
れ相対向するように上記駆動軸に設けられる超電導軸に
よつて、駆動軸が駆動の前後においてもコイルの中心軸
からはずれないように構成するものである。
[Means for Solving the Problems] According to the present invention, two coils are concentrically arranged in a casing with a predetermined space therebetween, and a drive shaft provided along a central axis of the coil is provided between the two coils. Driven by a superconducting plate attached to the drive shaft so as to be located at,
With the superconducting shafts provided on the drive shaft so that the two coils face each other on both sides of the superconducting plate, the drive shaft does not deviate from the central axis of the coil before and after driving. is there.

[作用] 二つのコイルに任意の電流を通電させると、超電導体が
磁場中に置かれた時に生ずるマイスナー効果による反発
力を発生し、これが駆動力及び軸受反力となり駆動軸の
位置制御及び制動を行なう。
[Operation] When an arbitrary current is applied to the two coils, a repulsive force is generated by the Meissner effect that occurs when the superconductor is placed in a magnetic field, and this becomes a driving force and a bearing reaction force, which controls the position and braking of the drive shaft. Do.

[実施例] 以下、図面を参照してこの発明の一実施例を説明する。
第1図はこの発明の一実施例に係わる電磁アクチュエー
タの構成概念を示すものである。そして、第1図(a)
はケーシングを一部切り欠いて示す斜視図で、第1図
(b)はその縦断面図である。非磁性材で作られた円筒
状ケーシング1の内部に、コイル2,3の二つのコイル
が、所定間隔(L)だけ相隔たって同心状に配置され
る。(固定金具、リード線等は図示せず。)この時、駆
動距離(l)はl≦L−t、ただしtは後述する超
電導板4の板厚である。非磁性材の駆動軸5は、超電導
板4,超電導軸6,7と共に一体的に構成されたもの
で、コイル2,3の間に配置され、超電導軸6はコイル
2に、超電導軸7はコイル3に相対する位置に配置され
る。超電導軸6,7は駆動のどの位置においても十分な
軸受反力が確保できるように、それぞれが相対するコイ
ル2,3から逸脱しない長さ(a,b)を有するもので
あり、例えば、a≧l,b≧l程度の長さを有する。こ
こで超電導板4,超電導軸6,7の超電導体は、動作
時、それぞれ超電導状態にある。図中、使用している超
電導体の臨海温度以下に冷却するための冷却概念を矢印
で示す。当該臨海温度以下の温度の冷却ガスまたは液体
を用いる。この場合、例えば超電導セラミツクス等、常
温で超電導が得られるものであれば冷却の必要はない。
また、コイル2,3は常電導コイルでも超電導コイルで
もよい。さらに、コイル2,3の間隔(L)は必要駆動
距離より大きいことは当然であるが、コイルに通電する
電流より決まる駆動パワーとなる磁気力を考慮して適正
な値が選ばれる。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a conceptual concept of an electromagnetic actuator according to an embodiment of the present invention. And FIG. 1 (a)
Is a perspective view showing a casing with a part cut away, and FIG. 1 (b) is a longitudinal sectional view thereof. Inside the cylindrical casing 1 made of a non-magnetic material, two coils 2 and 3 are concentrically arranged with a predetermined gap (L) between them. (Fixing metal fittings, lead wires, etc. are not shown.) At this time, the driving distance (l) is l ≦ L−t 0 , where t 0 is the plate thickness of the superconducting plate 4 described later. The drive shaft 5 made of a non-magnetic material is integrally formed with the superconducting plate 4, the superconducting shafts 6 and 7, and is arranged between the coils 2 and 3, and the superconducting shaft 6 is located in the coil 2 and the superconducting shaft 7 is located in the coil 2. It is arranged at a position facing the coil 3. The superconducting shafts 6 and 7 have lengths (a, b) that do not deviate from the coils 2 and 3 facing each other so that a sufficient bearing reaction force can be secured at any driving position. It has a length of ≧ l and b ≧ l. Here, the superconductors of the superconducting plate 4, the superconducting shafts 6 and 7 are in a superconducting state during operation. In the figure, the arrows show the cooling concept for cooling below the critical temperature of the superconductor used. A cooling gas or liquid with a temperature below the seaside temperature is used. In this case, cooling is not required as long as superconductivity can be obtained at room temperature, such as superconducting ceramics.
The coils 2 and 3 may be normal conducting coils or superconducting coils. Further, the distance (L) between the coils 2 and 3 is naturally larger than the required drive distance, but an appropriate value is selected in consideration of the magnetic force that is the drive power determined by the current passed through the coil.

第2図は上記構成によるアクチュエータの動作概念を模
式的に示す図である。第2図(a)に示す位置から上方
への駆動を行なう場合、第2図(a)においてコイル3
に所定の電流Iを流す。この時、超電導板4には超電
導体に特有のマイスナー効果により、超電導体の位置で
の磁場、即ちコイル通電量の関数として表皮電流i
同心状に流れ、これに基く磁場と、コイル3に流れる電
流Iに基く元々の磁場との反発作用により駆動力Fa
が発生し、図中上方へ駆動される。ここに、コイル3と
超電導板4との間における平均的な磁場をB34とする
と、Fa∝A/2μ・B34 (ただしAは超電導板
4の面積、μは真空透磁率)となる。厳密には位置の
関数である磁場B34に対して、積分形より求められ
る。また、超電導軸6,7にもコイル2の電流I,コ
イル3の電流I等に応じて表皮電流i,iが同心
状に流れ、これに基く磁場と元々の電流I,Iによ
る磁場との反発作用(以下、軸受反力と称する)によ
り、最も安定な中心位置に保持される。このように駆動
軸が駆動され、超電導板4がコイル2に近ずいた状態を
第2図(b)に示す。コイル3から遠ざかったことによ
るコイル3からの反発力の減少と同時に、コイル2の磁
場と超電導板4の表皮電流iによる磁場との反発力の
増加が重畳して、駆動力Fbは初期の値Faに比してか
なり小さくなる。ここで、コイル3と超電導板4との間
における平均的な磁場をB34とし、コイル2と超電導
板4との間における平均的な磁場をB24とすると、F
b∝A/2μ・(B34 −B24 )となる。そし
て、第2図(c)に示すように、各反発力間のバランス
により最終的位置に落着く。ただし、上記では重力の作
用方向を考慮していない。このようにして駆動軸5が上
方へ駆動される。
FIG. 2 is a diagram schematically showing an operation concept of the actuator having the above structure. When driving upward from the position shown in FIG. 2 (a), the coil 3 in FIG.
A predetermined current I B is passed through. At this time, due to the Meissner effect peculiar to the superconductor, the skin current i 1 flows concentrically in the superconductor plate 4 as a function of the magnetic field at the position of the superconductor, that is, the coil energization amount, and the magnetic field based on the skin current i 1 and the coil 3 driving force Fa by repulsion to the original magnetic field based on the current I B flowing through the
Occurs and is driven upward in the figure. Here, assuming that an average magnetic field between the coil 3 and the superconducting plate 4 is B 34 , Fa ∝ A / 2μ 0 · B 34 2 (where A is the area of the superconducting plate 4 and μ 0 is the vacuum permeability). Becomes Strictly speaking, it is obtained from the integral form for the magnetic field B 34 which is a function of position. The current I A of the coil 2 to the superconducting shafts 6 and 7, the skin currents i 2, i 3 flows concentrically according to the current I B and the like of the coil 3, the original current I A and the magnetic field based on this, repulsion between the magnetic field due to I B (hereinafter, referred to as the bearing reaction force) by and held in the most stable center position. FIG. 2B shows a state in which the drive shaft is driven in this way and the superconducting plate 4 approaches the coil 2. At the same time that the repulsive force from the coil 3 decreases due to the distance from the coil 3, an increase in the repulsive force between the magnetic field of the coil 2 and the magnetic field due to the skin current i 1 of the superconducting plate 4 is superimposed, so that the driving force Fb is the initial value. It becomes considerably smaller than the value Fa. Here, if an average magnetic field between the coil 3 and the superconducting plate 4 is B 34, and an average magnetic field between the coil 2 and the superconducting plate 4 is B 24 , F
Biarufaei / a 2μ 0 · (B 34 2 -B 24 2). Then, as shown in FIG. 2 (c), the repulsive forces reach the final position due to the balance between the repulsive forces. However, the above does not consider the direction of action of gravity. In this way, the drive shaft 5 is driven upward.

次に逆方向への駆動はコイル2とコイル3の通電状態を
取替えれば同じ原理で駆動される。ただし、重力は設置
方向によつて加算される場合と減算される場合があるの
は勿論である。
Next, driving in the opposite direction is performed by the same principle if the energization states of the coils 2 and 3 are exchanged. However, it goes without saying that gravity may be added or subtracted depending on the installation direction.

第3図は他の実施例としてコイル2,3に超電導コイル
を用いる場合に関する。この場合には、上記実施例と同
様にコイル3に電流Iを流してコイル2に電流I
流す方式と、コイル2には通電しない方式が考えられ
る。以下、コイル2に通電しない方式を示す。第3図
(a)においてコイル3に電流Iを通電させることに
基く発生磁場に対し、マイスナー効果によって超電導板
4にはi、超電導軸6,7にはi,i、及び超電
導コイル2にはi,i′等の表皮電流が流れる。こ
れらの表皮電流に基く磁場により、第2図の説明と同様
の駆動力と軸受反力が得られる。第3図(b),第3図
(c)の状況もまた第2図(b),(c)と同様に理解
される。
FIG. 3 relates to a case where superconducting coils are used for the coils 2 and 3 as another embodiment. In this case, a method of flowing a current I A to the coil 2 by applying a current I B in the coil 3 as in the above embodiment, a method is conceivable which is not energized to the coil 2. Hereinafter, a method in which the coil 2 is not energized will be described. In FIG. 3 (a), with respect to the magnetic field generated by passing the current I B through the coil 3, i 1 is applied to the superconducting plate 4, i 2 , i 3 is applied to the superconducting shafts 6 and 7, and superconductivity is caused by the Meissner effect. Skin currents such as i A and i A ′ flow through the coil 2. Due to the magnetic field based on these skin currents, the same driving force and bearing reaction force as those described with reference to FIG. 2 can be obtained. The situation in FIGS. 3 (b) and 3 (c) is also understood in the same manner as in FIGS. 2 (b) and (c).

逆方向の駆動の際には、上記とは逆にコイル2に電流I
を通電し、コイル3に通電しないことにより駆動され
る。
When driving in the reverse direction, the current I is applied to the coil 2 contrary to the above.
Energized and A, is driven by the coil is not energized 3.

なお、上記実施例の説明において表皮電流i,i
,i,i′等は数値的にも、場所的にもある一
定のように記述しているが、通電電流、駆動位置に応じ
て時々刻々、また場所的にも分布をもつものであり、そ
の代表的なものを示しているのみである。
In the description of the above embodiment, the skin currents i 1 , i 2 ,
Although i 3 , i A , i A ′, etc. are described as being constant numerically and spatially, they have a distribution even momentarily and spatially depending on the energizing current and driving position. However, only representative ones are shown.

次に通電電流(I,I)の時刻歴制御により、駆動
力を自在な値となし例を説明する。今、簡単化のためコ
イル3に電流I(t)を流し、コイル2には通電しな
い場合の正方向駆動を例にとる。この時、時刻tにおけ
る駆動力F(t)は概ね、F(t)∝I(t)/r
(t)の関係にある。r(t)は時刻tにおける
超電導板4のコイル3からの距離である。従って、各時
刻における距離r(t)を検知して、I(t)∝r
(t)なる制御関数で通電電流I(t)を制御す
れば、駆動力F(t)は概ね一定値とすることができ
る。同様に制御関数の選び方により、所望の駆動力の設
定が可能である。実際にはコイル2との相互作用による
制動力が作用するので、これを考慮に入れた厳密な関係
式に基き、通電電流I(t)を制御する。更に、I
(t),I(t)を同時に制御する場合もある。
Then flowing current (I A, I B) by time history control, illustrating the universal values and without example driving force. For simplification, the forward drive in the case where the current I B (t) is passed through the coil 3 and the coil 2 is not energized is taken as an example. At this time, the driving force F (t) at time t is generally, F (t) αI B ( t) 2 / r
There is a relationship of B (t) 6 . r B (t) is the distance from the coil 3 of the superconducting plate 4 at time t. Therefore, by detecting the distance r B (t) at each time, I B (t) ∝r
When the energizing current I B (t) is controlled by the control function of B (t) 3 , the driving force F (t) can be made a substantially constant value. Similarly, the desired driving force can be set by selecting the control function. In practice, since a braking force due to the interaction with the coil 2 acts, the energizing current I B (t) is controlled based on a strict relational expression taking this into consideration. Furthermore, I B
(T) and I A (t) may be controlled simultaneously.

第4図に時刻歴制御方式の一実施例を示す。任意の時刻
tにおいて位置検出器8により検知された位置信号が計
算機9に伝達され、初期位置設定情報と、前述のL,t
から加減計算によりr(t),r(t)が求めら
れる。当初の目標設定情報(必要駆動力等)の発言器10
からの情報と上述のr(t),r(t)をもとに、
計算機11にて所定の関数計算を行ないI(t),I
(t)を決定し、この指示に基き電源12,13からのコイ
ル2,3への通電電流が制御される。
FIG. 4 shows an embodiment of the time history control method. The position signal detected by the position detector 8 at an arbitrary time t is transmitted to the computer 9, and the initial position setting information and the above L, t
R A (t) and r B (t) are obtained from 0 by the addition / subtraction calculation. Initial target setting information (required driving force, etc.) speaker 10
Based on the information from and the above r A (t) and r B (t),
A predetermined function calculation is performed by the computer 11 and I A (t), I B
(T) is determined, and the energizing currents from the power sources 12 and 13 to the coils 2 and 3 are controlled based on this instruction.

[発明の効果] 以上、詳述したようにこの発明によれば、駆動軸及びこ
れを駆動させる駆動板を超電導材とすることにより、駆
動軸の制御がたやすく、また可動部分の結線の必要がな
くなるために構成を簡単にして信頼性を向上させること
ができる。
[Effects of the Invention] As described above in detail, according to the present invention, the drive shaft and the drive plate for driving the drive shaft are made of a superconducting material, so that the drive shaft can be easily controlled and the connection of the movable portion is required. Therefore, the structure can be simplified and reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例に係わる電磁アクチュエー
タの一部切り欠いて示す斜視図及び縦断面図、第2図は
同実施例の動作を説明するための動作概念図、第3図は
他の実施例の動作を説明するための動作概念図、第4図
はこの発明の一実施例の制御を行なう周辺部の構成を示
すブロツク図、第5図は従来の電磁アクチュエータの構
成を示す縦断面図である。 1……ケーシング、2,3……コイル、4……超電導
板、5……駆動軸、6,7……超電導軸、8……位置検
出器、9,11……計算機、10……発信器、12,13……電
源。
FIG. 1 is a perspective view and a vertical sectional view showing a partially cutaway view of an electromagnetic actuator according to an embodiment of the present invention, FIG. 2 is an operation conceptual diagram for explaining the operation of the embodiment, and FIG. FIG. 4 is a block diagram showing a configuration of a peripheral portion for performing control of one embodiment of the present invention, and FIG. 5 is a configuration of a conventional electromagnetic actuator, for explaining the operation of another embodiment. FIG. 1 ... Casing, 2, 3 ... Coil, 4 ... Superconducting plate, 5 ... Drive shaft, 6,7 ... Superconducting shaft, 8 ... Position detector, 9, 11 ... Computer, 10 ... Transmission Vessel, 12, 13 ... Power supply.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ケーシングと、このケーシング内に設けら
れ、所定間隔を保って同心状に配置される二つのコイル
と、この二つのコイルの中心軸に沿つて設けられる駆動
軸と、上記二つのコイル間に位置するように上記駆動軸
に装着される超電導板と、この超電導板の両側において
上記二つのコイルのそれぞれに相対向するように上記駆
動軸に設けられる超電導軸とを具備したことを特徴とす
る電磁アクチュエータ。
1. A casing, two coils provided in the casing and concentrically arranged at a predetermined interval, a drive shaft provided along a central axis of the two coils, and the two coils. A superconducting plate mounted on the drive shaft so as to be located between the coils; and a superconducting shaft provided on the drive shaft so as to face each of the two coils on both sides of the superconducting plate. Characteristic electromagnetic actuator.
JP62172250A 1987-07-10 1987-07-10 Electromagnetic actuator Expired - Lifetime JPH069171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62172250A JPH069171B2 (en) 1987-07-10 1987-07-10 Electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62172250A JPH069171B2 (en) 1987-07-10 1987-07-10 Electromagnetic actuator

Publications (2)

Publication Number Publication Date
JPS6415906A JPS6415906A (en) 1989-01-19
JPH069171B2 true JPH069171B2 (en) 1994-02-02

Family

ID=15938406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62172250A Expired - Lifetime JPH069171B2 (en) 1987-07-10 1987-07-10 Electromagnetic actuator

Country Status (1)

Country Link
JP (1) JPH069171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055698A1 (en) * 2008-11-17 2010-05-20 国立大学法人福井大学 Linear actuator
CN112750750B (en) * 2019-10-31 2022-12-02 夏泰鑫半导体(青岛)有限公司 Lifting mechanism

Also Published As

Publication number Publication date
JPS6415906A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
JPS6115557A (en) Levitating type conveying apparatus
US4506205A (en) Electro-magnetic alignment apparatus
JPH09303283A (en) Magnetic levitation type pump
JPS6359523B2 (en)
JPH069171B2 (en) Electromagnetic actuator
JP3280536B2 (en) Actuator
WO1998037335A1 (en) Magnetic bearing and drive
JPS59113315A (en) Control method of magnetic bearing
JPWO2005039019A1 (en) Actuator
EP0918229A3 (en) Magnet system
JPH0340566B2 (en)
JPH02219455A (en) Linear motor supporting mechanism
JPH0741992B2 (en) Magnetic levitation carrier
JP4831719B2 (en) Magnetically levitated XY surface linear synchronous motor
JPH07123321B2 (en) Suction type magnetic levitation guide device
GB1502529A (en) Alternating current electro-magnet
JPS5847824Y2 (en) linear motor
JP3296890B2 (en) Polarized linear actuator
JPH0255503A (en) Magnetic levitation traveling device
JPH0640722B2 (en) Magnetic bearing device
JPS6032580A (en) Magnetically levitating linear guide
JPH02226130A (en) Light quantity controller
JP2643161B2 (en) Brake device for linear DC motor
JPS63167660A (en) Stopping device for linear motor
JPS62160004A (en) Magnetic levitating conveyor apparatus