JPS5897869A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5897869A
JPS5897869A JP56197262A JP19726281A JPS5897869A JP S5897869 A JPS5897869 A JP S5897869A JP 56197262 A JP56197262 A JP 56197262A JP 19726281 A JP19726281 A JP 19726281A JP S5897869 A JPS5897869 A JP S5897869A
Authority
JP
Japan
Prior art keywords
diffusion
region
source
phosphorus
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197262A
Other languages
Japanese (ja)
Inventor
Yasuo Matsumoto
松元 保男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56197262A priority Critical patent/JPS5897869A/en
Publication of JPS5897869A publication Critical patent/JPS5897869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Abstract

PURPOSE:To inhibit a short-channel effect and a punch-through phenomenon without increasing the resistance of a diffusion layer by diffusing an impurity in shape that diffusion depth is shallow in the vicinity of a channel region and diffusion depth is deep in sections except said region. CONSTITUTION:A polycrystal silicon layer 14 is patterned and a gate electrode 14' is formed, and the unnecessary section of a gate oxide film 13 is removed through etching. Phosphorus is thermally diffused while using a phosphorus added polycrystal silicon layer 15 as a diffusion source through the heat treatment of desirable temperature and time in an oxidizing atmosphere, and n<+> type source region 18 and drain region 19 are shaped. The diffusion constant of phosphorus at a section where the phosphorus added polycrystal silicon layer 15 is protected from the oxidizing atmosphere by a silicon nitride film pattern 16' is made smaller than a section where the diffusion source 15 is exposed directly to the oxidizing atmosphere in thermal diffusion at that time. Accordingly, the stepped source region 18 and drain region 19, diffusion depth thereof is shallow in the vicinity of the channel region and diffusion depth thereof is deep at the outside of the channel region, are formed.

Description

【発明の詳細な説明】 本発明は半導体装置、特に絶縁ダート型電界、効果半導
体装置の製造方法KI!する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, particularly an insulating dart type electric field, effect semiconductor device. do.

MO8型半導体装置に代表される絶縁ダート型電界効果
半導体装置の最近における素子の微細化および高密度化
傾向には極めてめざましいものがある。しかし、一方で
は素子の微細化に伴ってショートチャンネル効果および
7母ンチスルー等による不都合な問題が顕在化している
。この間の事情を説明すれば次の通シである。
2. Description of the Related Art The recent trend toward miniaturization and higher density of insulating dart type field effect semiconductor devices, typified by MO8 type semiconductor devices, is extremely remarkable. On the other hand, however, with the miniaturization of elements, disadvantageous problems such as short channel effects and 7-mother anti-through have become apparent. The situation during this time can be explained as follows.

最初に、nチャンネルのMO8型半導体装置を例として
、素子の微細化されたMO8型半導体装置の従来の製造
方法を概略的に説明する。
First, a conventional manufacturing method of an MO8 type semiconductor device with a miniaturized element will be schematically explained using an n-channel MO8 type semiconductor device as an example.

(1)まず、p型半導体基板1に選択酸化を施してフィ
ールド酸部膜2に囲まれた素子領域を形成する。続いて
、素子領域のチャンネル領域予定部上にダート酸化膜3
を介して多結晶シリコン層からなるダート電極4をノ々
ターンニングする(第1図(、)図示)。
(1) First, a p-type semiconductor substrate 1 is selectively oxidized to form an element region surrounded by a field oxide film 2. Subsequently, a dirt oxide film 3 is formed on the intended channel region of the element region.
The dirt electrode 4 made of a polycrystalline silicon layer is then turned through the polycrystalline silicon layer (as shown in FIG. 1(, )).

(11)次に、f−)電極4をマスクとして素子領域に
燐等のn型不純物をドーピングすることにより、n型の
ソースおよびドレイン領域5゜6をセルファラインで形
成する(同図(b)図示)。
(11) Next, by doping the device region with an n-type impurity such as phosphorus using the f-) electrode 4 as a mask, n-type source and drain regions 5.6 are formed with self-alignment lines (Fig. ).

上記のようにダート電極4に融点の高い多結晶シリコン
層を用いることによシソースおよびドレイン領域5,6
を自己整合で形成する謂所セルファライングロセスは、
マスク合せの余裕度を見込む必要がないため素子の微細
化に有利であシ、チャンネル長の短いMO8型半導体装
置の製造方法として一般に用いられている。
By using a polycrystalline silicon layer with a high melting point for the dart electrode 4 as described above, the source and drain regions 5 and 6 are
The so-called self-alignment process, which is formed by self-alignment, is
Since there is no need to allow for margins in mask alignment, this method is advantageous for miniaturizing elements, and is generally used as a method for manufacturing MO8 type semiconductor devices with short channel lengths.

ところで、ソースおよびドレイン領域5,6け最終的V
C0,5〜1.5μmの拡散深度となるように形成され
るが、不純物の拡散は尋方的であるから、内領域5,6
はセルファラインで形成した場合にも図示のようにダー
ト電極4下に侵入して形成される。この結果、実効チャ
ンネル長が設計チャンネル長よりも短かくなって、閾値
電圧が所定の値よシも低くなる新組ショートチャンネル
効果を生じるととKなる。現在のようにチャンネル長が
2μm以下寸で微細化された素子ではこのシ、−トチヤ
ンネル効果が顕著に現われ、ダート電極4の僅かの寸法
差を反映して閾値電圧が大きくばらつき、装置の信頼性
が低下するという問題が生じる。また、素子が微細化さ
れるとドレイン領域6による空乏層とソース領域5によ
る空乏層とがつながってしまい、f−ト電極4に電圧を
印加しないにもかかわらず素子が導通状態になってしま
う新開パンチスルー現象も生じ易い。そして、上述の理
由で実効チャンネル長が短縮されれば・臂ンチスルー現
象は更に生じ易くなり、装置の信頼性上極めて重大な問
題となる。
By the way, the final V of the source and drain regions 5 and 6
The inner regions 5 and 6 are formed to have a diffusion depth of C0, 5 to 1.5 μm, but since impurity diffusion is dimensional,
Even when formed by self-alignment, they are formed by penetrating under the dart electrode 4 as shown in the figure. As a result, the effective channel length becomes shorter than the designed channel length, resulting in a new short channel effect in which the threshold voltage is lower than a predetermined value. In today's miniaturized devices with channel lengths of 2 μm or less, this channel effect appears prominently, and the threshold voltage varies greatly due to slight dimensional differences in the dart electrodes 4, reducing the reliability of the device. A problem arises in that the value decreases. Furthermore, when the device is miniaturized, the depletion layer formed by the drain region 6 and the depletion layer formed by the source region 5 become connected, and the device becomes conductive even though no voltage is applied to the f-to electrode 4. A new punch-through phenomenon is also likely to occur. If the effective channel length is shortened for the above-mentioned reasons, the knee-through phenomenon becomes even more likely to occur, which becomes an extremely serious problem in terms of device reliability.

上記ショートチャンネル効果および/4’ンチスルー現
象を同時に抑制する最も有効な方法は、ソースおよびド
レイン領域sa6%、拡散層の拡散深度を浅することに
よシ、ソースおよびドレイン領域5.6のダート電極下
への侵入を抑制して実効チャンネル長の短縮を防止する
ことである。しかしながら、拡散層の深さを全体的に浅
くすれば拡散層の抵抗が高くなシ、回路動作に必要な電
流値が得られなかったシ、或いは回路の動作速度が遅く
なるといった別の問題を生じることになる。
The most effective way to simultaneously suppress the short channel effect and the /4' inch-through phenomenon is to reduce the sa6% of the source and drain regions and the diffusion depth of the diffusion layer by making dirt electrodes in the source and drain regions 5.6 The objective is to prevent the effective channel length from shortening by suppressing the downward intrusion. However, if the overall depth of the diffusion layer is made shallow, other problems such as the resistance of the diffusion layer becomes high, the current value necessary for circuit operation cannot be obtained, or the operation speed of the circuit decreases. will occur.

本発明は上述の事情に鑑みてなされたもので、拡散層の
抵抗増大を招くととなくショートチャンネル効果および
パンチスルー現象を抑制することができる半導体装置の
製造方法を捷供するものである。
The present invention has been made in view of the above-mentioned circumstances, and provides a method for manufacturing a semiconductor device that can suppress the short channel effect and punch-through phenomenon without causing an increase in the resistance of the diffusion layer.

即ち、本発明は、第一導電型の半導体基板に素子領域を
形成する工程と、該素子領域のチャンネル領域予定部上
にダート絶縁膜を介してダート電極を形成する工程と、
第2導電型の不純物を含む拡散源層を全面に堆積する工
程と、全面に酸素の拡散を抑制する被膜を堆積してこれ
をノやターンニングすることによシ、前6己ダート電極
の両端部外側近傍において前記拡散源層上を被覆する酸
素拡散抑制膜/J?ターンを形成する工程と、酸化性雰
囲気下での熱処理によシ前記拡散源層から第2導電型不
純物の熱拡散を行なりてソース領域およびドレイン領域
を形成する工程とを具備したことを特徴とする半導体装
置の製造方法である。
That is, the present invention includes a step of forming an element region on a semiconductor substrate of a first conductivity type, a step of forming a dart electrode on a portion of the element region where a channel region is to be formed, via a dart insulating film,
By depositing a diffusion source layer containing impurities of the second conductivity type over the entire surface, and depositing a film that suppresses oxygen diffusion over the entire surface and then turning it, it is possible to form a dirt electrode. An oxygen diffusion suppressing film /J? that covers the diffusion source layer near the outside of both ends. and forming a source region and a drain region by thermally diffusing impurities of the second conductivity type from the diffusion source layer by heat treatment in an oxidizing atmosphere. This is a method for manufacturing a semiconductor device.

本発明は非酸化性算囲気下での不純物の熱拡散係数が酸
化性雰囲気下での熱拡散係数よシも小さいという事実に
着目し、この拡散係数の差を利用することによシチャン
ネル領域近傍では拡散深度が浅く、それ以外の部分では
拡散深度の深い不純物拡散を行なって、拡散層の抵抗増
大を伴うことなく実効チャンネル長の減少を防止するも
のである。これによシ、動作速度を犠牲にすることなく
ショートチャンネル効果および・臂ンチスルー現象を抑
制した半導体装置を得ることができる。
The present invention focuses on the fact that the thermal diffusion coefficient of impurities in a non-oxidizing ambient atmosphere is smaller than that in an oxidizing atmosphere, and by utilizing this difference in diffusion coefficient, The impurity is diffused with a shallow diffusion depth in the vicinity and a deep diffusion depth in other parts, thereby preventing a reduction in the effective channel length without increasing the resistance of the diffusion layer. Thereby, it is possible to obtain a semiconductor device in which the short channel effect and the knee-through phenomenon are suppressed without sacrificing the operating speed.

本発明における拡散源層としては不純物を添加した多結
晶シリコン層、シリコン酸化膜等を用いることができる
。この拡散源層中に添加する不純物としては、燐、砒素
勢の、n型不純物あるいはゾロン等のp型不純物を用い
ることができる。
As the diffusion source layer in the present invention, a polycrystalline silicon layer doped with impurities, a silicon oxide film, etc. can be used. As the impurity added to this diffusion source layer, an n-type impurity such as phosphorus or arsenic, or a p-type impurity such as zolon can be used.

本発gAKおける酸素拡散抑制膜としては、耐酸化性膜
として一般に使用されている窒化シリコン膜、アルミナ
膜等の他、厚いCVD−8102膜のように酸素の拡散
を抑制し得るものであればどのようなものを用いてもよ
い。
In addition to the silicon nitride film, alumina film, etc. that are commonly used as oxidation-resistant films, the oxygen diffusion suppression film in the present gAK may be any film that can suppress oxygen diffusion, such as a thick CVD-8102 film. Any material may be used.

以下第2図(a、)〜(g)を参照して本発明の一実施
例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2(a,) to (g).

実施例 (1)まず、p型−7リコン基板11に選択配化を行な
ってフィールド酸化膜12を形成し、該フィールド酸化
膜12よシ分離された素子領域を形成する。続いて、素
子領域表面を熱酸化してf−)酸化膜13を形成した後
、CVD法により全面に多結晶シリコン層14を堆積す
る(第1図(a)図示)。
Embodiment (1) First, a field oxide film 12 is formed by selective placement on a p-type -7 silicon substrate 11, and element regions isolated from the field oxide film 12 are formed. Subsequently, the surface of the element region is thermally oxidized to form an f-) oxide film 13, and then a polycrystalline silicon layer 14 is deposited on the entire surface by CVD (as shown in FIG. 1(a)).

(−)次に1多結晶シリコン層14を写真蝕刻法によシ
・ダターンニングしてf−)電極14′を形成する。続
いて、この?−)電極14をマスクとしてダート酸化膜
13の不要部分を工、チング除去する(同図Cb)図示
)。
(-) Next, the first polycrystalline silicon layer 14 is grain-turned by photolithography to form f-) electrodes 14'. Next, this? -) Unnecessary portions of the dirt oxide film 13 are etched and removed using the electrode 14 as a mask (as shown in Figure Cb).

(+++)次に、CVD法によシ所望の膜厚および燐濃
度を有する燐添加多結晶シリコン層15を全面に堆積し
た後、更にその上にシリコン窒化膜16を堆積する。続
いて、全面に7オトレジスト(例えば、東京応用化学社
製0FPR−800)を塗布し、露光および現偉を行な
ってダート電極14′およびその近傍部分で局部的にシ
リコン窒化膜16上を覆うレゾストツヤターン17を形
成する(同図(c)図示)。
(+++) Next, after a phosphorous-doped polycrystalline silicon layer 15 having a desired thickness and phosphorus concentration is deposited over the entire surface by CVD, a silicon nitride film 16 is further deposited thereon. Subsequently, 7 photoresist (for example, 0FPR-800 manufactured by Tokyo Applied Chemical Co., Ltd.) is coated on the entire surface, and exposed and exposed to form a resist that locally covers the silicon nitride film 16 at the dirt electrode 14' and its vicinity. A straight turn 17 is formed (as shown in FIG. 3(c)).

(lv) 次に、レジスト・臂ターフ17をマスクとし
てCF4+H2の混合ガスを用いたりアクチブイオンエ
ツチングによシリコン窒化膜16をノ量ターンニングし
、ダート電極14およびその近傍部分において局部的に
燐添加多結晶シリコン層15上を被覆するシリコン窒化
膜パターン16′を形成する(同図(d)図示)。
(lv) Next, using the resist/arm turf 17 as a mask, the silicon nitride film 16 is turned by a certain amount by using a mixed gas of CF4 + H2 or by active ion etching, and phosphorus is locally added to the dirt electrode 14 and its vicinity. A silicon nitride film pattern 16' is formed to cover the polycrystalline silicon layer 15 (as shown in FIG. 4D).

(い次に、酸化性雰囲気中において所望の温度および時
間で熱処理を行なうことにょシ、燐添加多結晶シリコン
層15を拡散源として燐の熱拡散を行ない、を型のソー
ス領域18およびドレイン領域19を形成する(同図(
、)図示)。
(Next, by performing heat treatment in an oxidizing atmosphere at a desired temperature and time, phosphorus is thermally diffused using the phosphorus-doped polycrystalline silicon layer 15 as a diffusion source, and the source region 18 and drain region of the mold are 19 (see figure (
,) as shown).

このときの熱拡散において、燐添加多結晶シリコン層1
5がシリコン窒化膜ノ臂ターン16′により酸化性雰囲
気から保護されている部分では、拡散源15が直接酸化
性雰囲気に露されている部分よりも燐の拡散係数が小さ
くなる。従って、図示のようにチャンネル領域の近傍で
は拡散深度が浅く、その外側では拡散深度の深い階段状
のソース領域18およびドレイン領域19が形成される
During thermal diffusion at this time, the phosphorous-doped polycrystalline silicon layer 1
In the portion where the diffusion source 15 is protected from the oxidizing atmosphere by the silicon nitride film arm turn 16', the diffusion coefficient of phosphorus is smaller than in the portion where the diffusion source 15 is directly exposed to the oxidizing atmosphere. Therefore, as shown in the figure, a stepped source region 18 and a drain region 19 are formed with a shallow diffusion depth near the channel region and a deep diffusion depth outside the channel region.

(■1)次に、残存するシリコン窒化膜パターン16’
および燐添加多結晶シリ3フ層15をエツチング除去す
る(同図(f)図示)。
(■1) Next, the remaining silicon nitride film pattern 16'
Then, the phosphorus-doped polycrystalline silica layer 15 is removed by etching (as shown in FIG. 3(f)).

(V+O次に、層間絶縁膜として全面にCVD −5t
O□膜20を堆積した後、コンタクトホールを開孔し、
続いてアルミニ8ウムの蒸着および/lターンニングに
よシアルミニウム配線21.21を形成する(同図(g
)図示)。
(V+O Next, CVD -5t on the entire surface as an interlayer insulating film.
After depositing the O□ film 20, a contact hole is opened,
Subsequently, sia aluminum wirings 21 and 21 are formed by vapor deposition of aluminum 8 and /l turning (see (g) in the same figure).
).

上記実施例の製造方法によれば、ソースおよびドレイン
領域1 g e J 9のチャンネル領域近傍部分を浅
い拡散深度で形成することができるから、実効チャンネ
ル長の減少によるショートチャンネル効果およびパンチ
スルー現象を抑制することができ、従って信頼性の高い
MDS型半導体装置を製造することができる。同時に、
ソース、ドレイン領域1g、xyのチャンネル領域近傍
以外の部分および他の拡散層は深い拡散深度で形成され
るから、拡散層の抵抗を充分に低くすることができる。
According to the manufacturing method of the above embodiment, the portion of the source and drain region 1 g e J 9 near the channel region can be formed with a shallow diffusion depth, so that the short channel effect and punch-through phenomenon due to the reduction in the effective channel length can be prevented. Therefore, a highly reliable MDS type semiconductor device can be manufactured. at the same time,
Since the source and drain regions 1g, xy portions other than the vicinity of the channel region, and other diffusion layers are formed with a deep diffusion depth, the resistance of the diffusion layers can be made sufficiently low.

従っ・て、拡散層全体を浅く形成した場合のように高抵
抗化による動作速度の遅延がもたらされることはない。
Therefore, unlike the case where the entire diffusion layer is formed shallowly, the operation speed is not delayed due to increased resistance.

また、r−)電極14′に多結晶シリコン層を用いる場
合には、その配線抵抗を低下するために熱拡散およびイ
オン注入によシネ細物ドープを行なうのが普通であるが
、上記実施例によればソース、ドレイン111.19の
形成と同時Ke−)電極への不純物ドープを行なうこと
ができる。
Furthermore, when a polycrystalline silicon layer is used for the r-) electrode 14', it is common practice to dope the polycrystalline silicon layer by thermal diffusion and ion implantation in order to reduce the wiring resistance. According to the method, impurity doping into the Ke-) electrode can be performed simultaneously with the formation of the source and drain 111.19.

なお、r−)電極14′への不純物拡散を酸化性雰囲気
下で行ないたい場合には、第3図に示すようKf−)電
極14′の両端部外側近傍部分のみにおいて局部的に燐
添加多結晶シリコン層15上を覆うシリコン窒化膜・母
ターン16Nを形成すればよい。
In addition, when it is desired to diffuse impurities into the r-) electrode 14' in an oxidizing atmosphere, as shown in FIG. A silicon nitride film/mother turn 16N covering the crystalline silicon layer 15 may be formed.

また、本発明はpチャンネル型のMO8型半導体装置、
その他総ての絶縁f−)型半導体装置の製造に適用でき
るものである。
The present invention also provides a p-channel MO8 type semiconductor device,
It can be applied to the manufacture of all other insulated f-) type semiconductor devices.

以上詳述したように、本発F!AKよれば、動作速度の
低下を招くことなくショートチャンネル効果および・9
ンチスルー現象を抑制し得る半導体装置の製造方法を提
供できるものである。
As detailed above, the original F! According to AK, short channel effects and 9.
Accordingly, it is possible to provide a method for manufacturing a semiconductor device that can suppress the chip-through phenomenon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) # (b)は従来のMO8型半導体装置
の製造工程における要部を示す断面図、第2図6)〜j
)は本発明の一実施例[4−る製造工程を示す断面図、
第3図は本発明の他の実施例を説明するための断面図で
ある。 11・・・p型シリコン基板、12・・・フィールド酸
化膜、lj・・・ff−)酸化膜、14・・・多結晶シ
リコン層、14′・・・f−)電極、15・・・燐添加
多結晶シリコン層、16・・・シリコン窒化m、16’
e16N・・・シy コyQ化JIL’ターン、17・
・・レシス)/臂)−ン、1g・・・ソース領JLxy
・・・ドレイン領域、J 0−CVD −810□膜、
jM−フル<=つ・4、配線。 第1図 第2図
Figures 1 (a) and (b) are cross-sectional views showing the main parts in the manufacturing process of a conventional MO8 type semiconductor device, and Figure 2 6)-j
) is a cross-sectional view showing the manufacturing process of one embodiment of the present invention [4-
FIG. 3 is a sectional view for explaining another embodiment of the present invention. DESCRIPTION OF SYMBOLS 11... P-type silicon substrate, 12... Field oxide film, lj... ff-) oxide film, 14... Polycrystalline silicon layer, 14'... f-) electrode, 15... Phosphorus-doped polycrystalline silicon layer, 16... silicon nitride m, 16'
e16N... cy y Q conversion JIL' turn, 17.
...resis)/arm)-n, 1g...source area JLxy
...Drain region, J0-CVD-810□ film,
jM-full<=tsu・4, wiring. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  第1導電型の半導体基板に素子領域を形成す
る工程と、該素子領域のチャンネル領域予定部上にr−
)絶縁膜を介してダート電極を形成する工程と、第2導
電型の不純物を含む拡散源層を全面に堆積する工程と、
全面に酸素の拡散を抑制する被膜を堆積してこれをパタ
ーンニングすることKより、前記ダート電極の両端部外
側近傍において前記拡散源層上を被覆する酸素拡散抑制
膜・母ターンを形成する工程と、酸化性雰囲気下での熱
処理により前記拡散源層から第2導電型不純物の熱拡散
を行なってソース領域およびドレイン領域を形成する工
程とを具備したことを%徽とする半導体装置の製造方法
(1) A step of forming an element region on a semiconductor substrate of a first conductivity type, and forming an r-
) a step of forming a dirt electrode through an insulating film; a step of depositing a diffusion source layer containing a second conductivity type impurity over the entire surface;
A step of forming an oxygen diffusion suppressing film/main turn covering the diffusion source layer near the outside of both ends of the dirt electrode by depositing a film that suppresses oxygen diffusion over the entire surface and patterning it. and a step of thermally diffusing second conductivity type impurities from the diffusion source layer by heat treatment in an oxidizing atmosphere to form a source region and a drain region. .
(2)前記酸素拡散抑制膜パターンがe−)電極部分に
おいても前記拡散源層上を被覆するようにノ量ターンニ
ングすることを特徴とする特許請求の範囲第(1)項記
載の半導体装置の製造方法。
(2) The semiconductor device according to claim (1), wherein the oxygen diffusion suppressing film pattern is turned by a certain amount so as to cover the diffusion source layer also in the e-) electrode portion. manufacturing method.
JP56197262A 1981-12-08 1981-12-08 Manufacture of semiconductor device Pending JPS5897869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197262A JPS5897869A (en) 1981-12-08 1981-12-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197262A JPS5897869A (en) 1981-12-08 1981-12-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5897869A true JPS5897869A (en) 1983-06-10

Family

ID=16371536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197262A Pending JPS5897869A (en) 1981-12-08 1981-12-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5897869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653173A (en) * 1985-03-04 1987-03-31 Signetics Corporation Method of manufacturing an insulated gate field effect device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653173A (en) * 1985-03-04 1987-03-31 Signetics Corporation Method of manufacturing an insulated gate field effect device

Similar Documents

Publication Publication Date Title
EP0067206B1 (en) Method for fabricating complementary semiconductor devices
US5034336A (en) Method of producing insulated gate bipolar tranistor
US4532696A (en) Method of manufacturing a semiconductor device for forming a deep field region in a semiconductor substrate
JPH0638496B2 (en) Semiconductor device
US5612557A (en) Semiconductor device having an inter-layer insulating film disposed between two wiring layers
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
JPS5897869A (en) Manufacture of semiconductor device
JPH0563206A (en) Manufacture of nonvolatile semiconductor memory
US5191402A (en) Semiconductor device having an inter-layer insulating film disposed between two wiring layers
JPS60175458A (en) Semiconductor device and manufacture thereof
JPH05114734A (en) Semiconductor device
JPH0127589B2 (en)
JPS61150376A (en) Semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
JP2695812B2 (en) Semiconductor device
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
EP0213352A2 (en) Method of manufacturing a lateral transistor
JPS6237543B2 (en)
JPS63275181A (en) Manufacture of semiconductor device
JPH06163576A (en) Manufacture of semiconductor device
JPS5917866B2 (en) hand tai souchi no seizou houhou
JPS6156448A (en) Manufacture of complementary semiconductor device
KR100357299B1 (en) Method for manufacturing thin film transistor
JPS6039868A (en) Manufacture of semiconductor device
JPS59114869A (en) Non-volatile semiconductor memory device having floating gate of polycrystalline silicon