JPS5893349A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5893349A
JPS5893349A JP19224181A JP19224181A JPS5893349A JP S5893349 A JPS5893349 A JP S5893349A JP 19224181 A JP19224181 A JP 19224181A JP 19224181 A JP19224181 A JP 19224181A JP S5893349 A JPS5893349 A JP S5893349A
Authority
JP
Japan
Prior art keywords
film
wiring
insulating film
etching
wiring layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19224181A
Other languages
Japanese (ja)
Inventor
Ryozo Nakayama
中山 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19224181A priority Critical patent/JPS5893349A/en
Publication of JPS5893349A publication Critical patent/JPS5893349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form an uneven pattern in uniform depth, and to obtain multilayer wiring structure having high density by etching one of laminated insulating films. CONSTITUTION:The SiO2 film 321 and the polyimide resin film 322 are shaped onto an Si substrate 31. The film 322 is selectively etched, and a concave section is formed. Difference at a stage of the concave section can be made constant because the speed of etching of the film 322 is larger than that of the film 321 at that time. An Al-Si film is coated through a sputtering method, and stage breaking is generated, thus forming wiring layers 331-332. A resist pattern 34 is shaped, and the unnecessary sections of the wiring layers 331-332 are removed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に係シ、特に高集積化、
微細化が進んだ半導体装置の配線構造の形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
The present invention relates to a method of forming a wiring structure of a semiconductor device which is becoming increasingly finer.

〔発明の技術的背景および問題点〕[Technical background and problems of the invention]

最近、半導体装置製造におけるリソダラフィ技術、エツ
チング技術等が進歩し、半導体装置の高集積化、微細化
が一段と進んでいる。半導体装置の微細化が進むと配線
パターンも微細化嘔れ、隣接する配線間隔も微細化ぢれ
て(る。
BACKGROUND ART Recently, lithographing technology, etching technology, etc. in semiconductor device manufacturing have progressed, and semiconductor devices are becoming more highly integrated and miniaturized. As semiconductor devices become increasingly finer, wiring patterns also become finer, and the spacing between adjacent wires also becomes finer.

その結果、隣接する配線間の浮遊容量が増大し、これが
信号伝播の遅延を大きくするという問題が生じる。
As a result, a problem arises in that stray capacitance between adjacent wirings increases, which increases signal propagation delay.

第1図は半導体基板1上に絶縁膜2を介して3本の平行
な配線層11〜1mを形成した例を示している。いま、
配線層j1〜J、の暢Wと間隔日を等しいとし、真中O
配線層j、に注胞すると、しれに付随する単位長swh
bo容量Cは、絶縁膜2の容量をCI、配線層間のギャ
ップによる容量をCIとして CxC鳳+20麿で表わ
される。そして、w−1itの値を変化畜せたときの容
量Cの変化を示すと第2図の実線Oようになる。一点鎖
線は絶縁膜2による容量0膳のみの場合である0図から
明らかなように、容蓋Cは、W=Sが絶縁膜2の膜厚T
axと11 #1!′等しくなゐ点ムで極小値を示し、
これよシ寸法が微細に鬼ると増大する。これは、容量C
Iの減少割合よシも容量C8の増大割合が大きくなるた
めである。
FIG. 1 shows an example in which three parallel wiring layers 11 to 1m are formed on a semiconductor substrate 1 with an insulating film 2 interposed therebetween. now,
Assume that the width W and the interval days of wiring layers j1 to J are equal, and the middle O
When the wiring layer j is injected, the unit length sw associated with the bend is
The bo capacitance C is expressed as CxC + 20m where CI is the capacitance of the insulating film 2 and CI is the capacitance due to the gap between wiring layers. The change in capacitance C when the value of w-1it is varied is shown by the solid line O in FIG. 2. The one-dot chain line indicates the case where the capacitance due to the insulating film 2 is zero.
ax and 11 #1! ′ shows the minimum value at equal points,
This increases as the dimensions become even more subtle. This is the capacity C
This is because the rate of increase in the capacitance C8 is greater than the rate of decrease in I.

このように、配線が微細化されると容量の増大による信
号伝播の遅れが重大な問題となってくる。また従来法に
よる配線の微細化は、電流容量の減少、配線抵抗の増加
、エレクトロiイグレーシ曹ンによる切断等をもたらし
、半導体装置の信頼性低下につながる。
As described above, as wiring becomes finer, delays in signal propagation due to increased capacitance become a serious problem. Further, miniaturization of wiring by the conventional method brings about a decrease in current capacity, an increase in wiring resistance, and disconnection due to electro-irrasis, leading to a decrease in the reliability of semiconductor devices.

〔発明の目的〕[Purpose of the invention]

本本発明鉱、配線層に付随する静電容量の大幅な低減を
図シ、もって配線の微細化による信号伝播の遅延を抑え
、また従来のリングラフィ技術を用いて配線のより一層
の微細化を行うことなく容易に高集積化を可能とし、信
頼性向上を図シ得る半導体装置の製造方法を提供するも
のである。
The present invention significantly reduces the capacitance associated with wiring layers, thereby suppressing delay in signal propagation due to miniaturization of interconnections, and further miniaturization of interconnections using conventional phosphorography technology. The present invention provides a method for manufacturing a semiconductor device that can easily achieve high integration without any additional steps and can significantly improve reliability.

〔発明の概要〕 本発明は、素子領域が形成された半導体基板上に絶縁膜
を介して同一導電膜形成工程で形成される互いに平行に
隣接する部分を有する配線層を配設する方法であって、
まず半導体基板上に異なる材料からなる第1.第2の絶
縁膜を順次被着形成し、第2の絶縁膜を選択エツチング
して配線パターンに対応した凹凸を形成する。
[Summary of the Invention] The present invention is a method of disposing a wiring layer having parallel adjacent portions formed in the same conductive film forming process with an insulating film interposed therebetween on a semiconductor substrate on which an element region is formed. hand,
First, a first film made of different materials is placed on a semiconductor substrate. A second insulating film is sequentially deposited and selectively etched to form irregularities corresponding to the wiring pattern.

このとき第2の絶縁膜に対するエツチング速度が第1の
絶縁膜に対するそれよシ十分大なるエツチング法を用い
ることによル、第1の絶縁膜をエツチングのストッΔと
して確実に一定*−a;の凹部を形成する。その後全面
に導体膜を被着し前記凹凸の段差部で分離された互いに
平行に隣接する配線層を形成するものである。
At this time, by using an etching method in which the etching rate for the second insulating film is sufficiently higher than that for the first insulating film, the first insulating film is reliably kept constant as the etching stop Δ*-a; form a recess. Thereafter, a conductor film is applied over the entire surface to form parallel adjacent wiring layers separated by the uneven step portions.

〔発明の効果〕〔Effect of the invention〕

l・。 l・.

本発明によれば、積層絶縁膜を用いて均一な深さで再現
性よく凹凸Δターンを形成することができ、この凹凸I
ザターンに自己整合され良状態で同一導電膜からなる配
線層の互いに平行して隣接す4部分の一方を凹部に、他
方を凸部に配設することがで遺る。従って隣接する配線
層同志が直接対向することがないか、対向し九としても
その対向面積を極めて小さいものとすることができるか
ら、配線間の静電容量が小さくなシ、配線での信号伝播
の遅れが小さくなる。
According to the present invention, it is possible to form an uneven Δ turn with a uniform depth and good reproducibility using a laminated insulating film, and the uneven I
One of the four parallel and adjacent portions of the wiring layer made of the same conductive film that is self-aligned to the pattern and in good condition is disposed in the concave portion and the other in the convex portion. Therefore, adjacent wiring layers do not directly oppose each other, or even if they do, the opposing area can be made extremely small, so the capacitance between wirings is small, and signal propagation in wiring is delay becomes smaller.

しかも凹凸の深さが均一である九め、配線層に付随する
静電容量4ばらつきがなく均一になる。
Moreover, since the depth of the unevenness is uniform, there is no variation in capacitance 4 associated with the wiring layer, and the capacitance 4 is uniform.

また隣接する配線層量線水平方向O離関距離がほぼ零で
To)、従って配線幅をそれ程微細にしなくても配線密
度を高くして素子のよル一層の高集積化が図られる。t
た配線幅をそれ程微細にしなくてもよいため、従来のり
ソグラフィ技術を用いて容易に半導体装置の高集積化を
達成できる。同様の還由で、配線O電流容量の減少、エ
レクトロマイダレーシ冒ンによる断線、高抵抗化などを
防止して、半導体装置の信頼性向上を図ることができる
In addition, the separation distance in the horizontal direction between adjacent wiring layers (O) is almost zero (To), so that even if the wiring width is not made very fine, the wiring density can be increased to achieve even higher integration of the device. t
Since the wiring width does not have to be made so small, high integration of semiconductor devices can be easily achieved using conventional lithography technology. For the same reason, it is possible to prevent reduction in the current capacity of the wiring O, disconnection due to electromider radiation, and increase in resistance, thereby improving the reliability of the semiconductor device.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例による要部断面な示している
。11は素子領域が形成された81基板であり、この上
に相異なる材料からなる第1゜第2の絶縁膜121.1
21を介して互いに平行に隣接する3本の配線層131
〜13sを形成したものである。第1の絶縁膜121は
例えば0.5μm、第2の絶縁膜123は例えば1μm
の厚さとして、第2の絶縁膜123を選択エツチングし
て約1μmの急峻な段差をもつ凹凸パターンが配縁ノリ
−ンに対応させて形成されておシ、3本の配線層131
〜J’Jsは凹凸の段差よシ薄い同一導体膜によって、
真中の配線層1B、が凹部に、両側の配縁層”1m13
Bが凸部に配設されている。配線層13□〜13゜の水
平方向離間距離はほぼ零である・ このような配線構造とすれば、第1図と比較して明らか
なように、配縁層に付随する静電容量は非常に小さく、
また離間距離がほば零であるため配線密度の向上よシ大
幅な高集積化が図られることがわかる。
FIG. 3 shows a cross section of a main part according to an embodiment of the present invention. Reference numeral 11 denotes a substrate 81 on which an element region is formed, and a first and second insulating film 121.1 made of different materials is formed on this substrate.
Three wiring layers 131 adjacent to each other in parallel with each other via 21
~13s was formed. The first insulating film 121 is, for example, 0.5 μm thick, and the second insulating film 123 is, for example, 1 μm thick.
By selectively etching the second insulating film 123, a concavo-convex pattern with steep steps of about 1 μm is formed corresponding to the interconnection grooves.
~J'Js is made of the same conductive film that is thinner than the uneven steps.
The wiring layer 1B in the middle is in the recess, and the wiring layer on both sides is 1 m 13
B is arranged on the convex portion. The horizontal distance between wiring layers 13□ to 13° is almost zero. With such a wiring structure, as is clear from the comparison with Figure 1, the capacitance associated with the wiring layer is extremely small. small,
Furthermore, it can be seen that since the separation distance is almost zero, it is possible to improve the wiring density and achieve a significantly higher degree of integration.

第4図は同様の配線構造を多層に積ねた例である。即ち
81基板21に積層絶縁膜221 。
FIG. 4 shows an example in which similar wiring structures are stacked in multiple layers. That is, a laminated insulating film 221 is formed on the 81 substrate 21.

22.を介してその表面の凹凸で分離された3本の第1
層配線層231〜23畠を形成し、同様にその上に積層
絶縁膜24..24.を介してその表面に凹凸で分離さ
れた3本の第2層配線層251y:1M諺を形成したも
のである。これにより高密度の多層配線構造を実現する
ことができる。
22. The first of three is separated by the unevenness of its surface through the
Layer wiring layers 231 to 23 are formed, and a laminated insulating film 24 is similarly formed thereon. .. 24. Three second-layer wiring layers 251y:1M are formed on the surface of the wiring layer 251y separated by unevenness. This makes it possible to realize a high-density multilayer wiring structure.

第5図(a)〜(・)はこの発明の一実施例の製造工程
を説明するための図であ、る、まず素子領域が形成され
た81基板31上に、第1の絶縁膜としてCVD法によ
る8102膜32里を174の厚さに形成し、更にこの
上に第2の絶縁膜として、スピンコードによシ塗布し4
00℃でベーキングした1μmのポリイミド樹脂膜12
3を形成する(荀。
FIGS. 5(a) to 5() are diagrams for explaining the manufacturing process of an embodiment of the present invention. First, a first insulating film is formed on a substrate 31 having an element region formed thereon. A 32mm thick 8102 film was formed by CVD to a thickness of 174mm, and a second insulating film was coated on top of this using a spin code.
1μm polyimide resin film 12 baked at 00℃
Form 3 (Xun.

次に写真食刻法を用いて、−リイミド樹脂膜32、を選
択的にコーフテングして凹部を形成する(b)、このと
き、CF4と02の混合ガスを用いたケばカル・ドライ
・エツチングを用いると、ポリイミド樹脂膜32重のエ
ツチング速度が5to2膜32@に比べて十分大きいた
め、オーバエツチングを行っても5102膜321は殆
んどエツチングされず、確実に凹部底面に5102膜J
2Mを露出させることができる。即ち凹部の段差が一定
の状態を制御性、再現性よく得ることができる。いまの
場合、との凹部は、この上に形成される3本の平行な配
線層のうち真中の配Ils/4ターンに対応する。その
後、全面に、凹部の段差の1/2よシ薄いμ−81膜を
スパッタ法によシ被着して、段差部で段切れをおこすこ
とにより互いに分離され九μm81配線層331〜Jj
Next, the -limide resin film 32 is selectively etched using a photoetching method to form a recess (b). At this time, keratin dry etching is performed using a mixed gas of CF4 and 02. When using the 5102 film 321, the etching speed of the polyimide resin film 32 layer is sufficiently higher than that of the 5to2 film 32@, so even if over-etching is performed, the 5102 film 321 is hardly etched, and the 5102 film J is reliably etched on the bottom surface of the recess.
2M can be exposed. That is, it is possible to obtain a state in which the level difference in the recess is constant with good controllability and reproducibility. In this case, the concave portion corresponds to the middle wiring Ils/4 turn of the three parallel wiring layers formed thereon. Thereafter, a μ-81 film as thin as 1/2 of the step of the concave portion is deposited on the entire surface by sputtering, and the 9 μm 81 wiring layers 331 to 331 to Jj are separated from each other by creating a cut at the step.
.

を形成する(C)0次いで、通常のPEP工程によシレ
ジストi4ターンJ4を形成しく優、このレジス) /
4ターン34をマスクとしてu−81配線411゜4J
aの不要な部分をエツチング除去して所定の配線幅とす
る(・)。
(C)0 Next, form a resist i4 turn J4 by a normal PEP process (this resist) /
U-81 wiring 411°4J using 4 turns 34 as a mask
Unnecessary portions of a are removed by etching to obtain a predetermined wiring width (.).

この実施例によれば、従来のりソグラフィ技術をその1
1利用して、また段切れを積極的に利用することによシ
、何ら難しい微細加工を行うことなく、配線層間容量を
小さくして高11[配線を実現することがで!、6.特
にCPUのように配線面積の大きい大規模集積回路に適
用した場合に、チッ/面積の減少、高集積化、高信頼性
化等の効果が得られる。またこの実施例によれに1耐エ
ツチング性の異なる積層絶縁膜を用いることによ如、オ
ーバエツチングによる段差のばらつきがなく、均一な深
さの凹凸を得ることができ、従うて配線層間の容量を均
一で小さいものとして、半導体装置の一層の高性能化を
図ることができる。また、Iリイイド樹脂膜社比酵電率
が約3.0であるから、8魚02膜のみの場合に比べて
配線層に付随する容量を小さくする上でも好ましい。
According to this embodiment, the conventional lithography technique is
1, and by actively utilizing step breaks, it is possible to reduce the interlayer capacitance and realize high 11[wirings] without any difficult microfabrication. ,6. Particularly when applied to a large-scale integrated circuit with a large wiring area such as a CPU, effects such as reduction in chip/area, higher integration, and higher reliability can be obtained. Furthermore, by using laminated insulating films with different etching resistance in this embodiment, unevenness of uniform depth can be obtained without unevenness due to over-etching, thereby increasing the capacitance between wiring layers. By making it uniform and small, it is possible to further improve the performance of the semiconductor device. Furthermore, since the specific fermentation rate of the resin membrane is about 3.0, it is preferable in terms of reducing the capacitance associated with the wiring layer compared to the case of using only the 8-02 membrane.

第6図は上記実施例を変形して得られる配線構造を示し
ている。即ち、Sl基板4Jに5102膜421、ポリ
イミド樹脂膜42怠を積層形成して、ポリイミド樹脂膜
428を選択エツチングすることによシ所定の凹凸パタ
ーンを形成する。そして上記実施例と同様、凹凸の段差
の1/2よシ薄いAA−81膜を被着することによシ、
凹凸の段差部で分離された、互いに平行に隣接する。u
−S i配線層43t〜4M、を形成すゐ。
FIG. 6 shows a wiring structure obtained by modifying the above embodiment. That is, a 5102 film 421 and a polyimide resin film 42 are laminated on the Sl substrate 4J, and a predetermined uneven pattern is formed by selectively etching the polyimide resin film 428. Then, as in the above embodiment, by depositing an AA-81 film thinner than 1/2 of the level difference between the convexes and convexities,
Adjacent to each other in parallel, separated by uneven steps. u
-Si wiring layers 43t to 4M are formed.

この場合、平坦部で配線層431 e43m の不要部
分をエツチング除去する工程で、例えば電源線のような
大きい配線−を必要と″を心配線436を同時に形成し
ている。
In this case, in the process of etching away unnecessary portions of the wiring layer 431e43m in the flat portion, a wire 436 is formed at the same time when a large wiring such as a power supply line is required.

こうしてこの実施例によれば、互いに平行して密に隣接
する信号配線部分と大きい電流容量を必要とする電源配
線部分とをそれぞれ要求される性能を満たしながら巧み
に共存させることができる。
Thus, according to this embodiment, the signal wiring portions that are closely adjacent to each other in parallel to each other and the power wiring portions that require a large current capacity can be skillfully made to coexist while satisfying their respective required performances.

なお、上記各実施例では、絶縁膜の組合せとしてポリイ
ミド/ 8102を用いたが81sN4/S 102−
? ht2oA/s to2など、他の組合せを用いる
ことも可能でおる。また段差部で配線層を分離する方法
として、段切れを利用する方法でなく、全面に導体膜を
被着した後その上に段差部でエツチング速度が大きくな
るマスク材として例えばグラズマCVDによる5to2
膜を形成し、全面エツチングを行って七のs 102膜
の段差部のみ除去し、残された5102膜をマスクとし
て導体膜を選択エツチングする、という方法を用いても
よい。また実施例では導体膜としてAj−81膜を用い
たがhLpW等の金属や各種シリサイドあるいは多鈷晶
シリコンなどをいるとともできる。
In each of the above examples, polyimide/8102 was used as the insulating film combination, but 81sN4/S102-
? Other combinations can also be used, such as ht2oA/s to2. In addition, as a method for separating wiring layers at step portions, instead of using a step cut, a conductive film is deposited on the entire surface and then a mask material is used as a mask material that increases the etching rate at the step portions, such as 5to2 by glazma CVD.
A method may also be used in which a film is formed, the entire surface is etched, only the stepped portion of the 7S102 film is removed, and the conductor film is selectively etched using the remaining 5102 film as a mask. Further, in the embodiment, an Aj-81 film was used as the conductor film, but metals such as hLpW, various silicides, polycrystalline silicon, etc. may also be used.

爽に以上の各実施例においては、主として3本の平行な
配線層を形成する場合を説明した。
In each of the above embodiments, the case where three parallel wiring layers are mainly formed has been explained.

従って凹凸の段差部で配線層間の分離を行った後、通常
のPEP工程で平坦部での配線層をΔターニングしてい
る。しかしながら、例えば多数の配線ノ臂ターンが基板
全面にわたって互いに平行に配設される場合には、その
配線/fターンに対応する絶縁膜表面の凹凸パターンに
よシ隣接する配線層間を分離するだけで、その後の通常
のPEP工程は不要となる。tた配線パターンを凹凸の
段差部で分離した後、平坦部に残る導体膜をそのまま例
えばシールド−1劣して残すような場合にも、同様にそ
の後のpap工程を省略することができる。更に上記各
実施例では、平行に隣接する3本の配線層の真中のもの
を凹部に配置してその両側の配線を分離したが、真中の
ものを凸部に配置するように凹凸ノ臂ターフ形成をして
もよいことは勿論である。
Therefore, after separating the wiring layers at the uneven step portions, the wiring layers at the flat portions are Δ turned by a normal PEP process. However, for example, when a large number of wiring arm turns are arranged parallel to each other over the entire surface of the substrate, adjacent wiring layers can only be separated by a concavo-convex pattern on the surface of the insulating film corresponding to the wiring/f-turn. , the subsequent normal PEP process is not necessary. Even in the case where the conductor film remaining on the flat part is left as is, for example, in a shield-1 manner, after separating a multi-layered wiring pattern at an uneven step part, the subsequent PAP process can be similarly omitted. Furthermore, in each of the above embodiments, the middle one of the three parallel adjacent wiring layers is placed in the recessed part to separate the wiring on both sides. Of course, it may be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の配線構造の例を示す図、第
2図はその配線幅と配線の浮遊容量との関係を示す図、
第3図は本発明による配線構造の一例を示す図、第4図
は同様の配線構造を2層積層した例を示す図、第5図(
1)〜(・)は本発明の一実施例の製造工程を示す図、
第6図は変形した実施例の配線構造を示す図である。 11、:11,31,41・・・S1基板、12I 。 22凰 al14@  131@  、421・・・第
1の絶縁膜、12諺 # 2 J @  @ j 4 
@  e J j冨 、42寓・・・第2の絶縁膜、1
31〜JJap2J息〜zs、、z5〜ztiaess
*〜jJa。 431〜43s・・・配線層 出願人代理人  弁理士 鈴 江 武 彦第1II *2図 第3図 第4図 第5図 第5図
FIG. 1 is a diagram showing an example of the wiring structure of a conventional semiconductor device, and FIG. 2 is a diagram showing the relationship between the wiring width and the stray capacitance of the wiring.
FIG. 3 is a diagram showing an example of the wiring structure according to the present invention, FIG. 4 is a diagram showing an example in which two layers of the same wiring structure are laminated, and FIG.
1) to (・) are diagrams showing the manufacturing process of one embodiment of the present invention,
FIG. 6 is a diagram showing the wiring structure of a modified embodiment. 11, :11,31,41...S1 substrate, 12I. 22 凰 al14@ 131@ , 421...first insulating film, 12 proverbs # 2 J @ @ j 4
@ e J j Tomi, 42 fable...Second insulating film, 1
31~JJap2Jbreath~zs,,z5~ztiaess
*〜jJa. 431-43s...Wiring layer applicant's agent Patent attorney Takehiko Suzue No. 1II *2 Figure 3 Figure 4 Figure 5 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に第1の絶縁膜を形成し次いでmlの絶縁
膜と異なる材料からなる第2の絶縁膜を形成する工程と
、第2の絶縁膜に対するエツチング速度が第1の絶縁膜
に対するそれよシ十分大なるエツチング法で第2の絶縁
膜を選択エツチングして配線パターンに対応した凹凸を
形成する工程と、全面に導体膜を被着し前記凹凸の段差
部で分離された互いに平行にIiI接する配線層を形成
する工程とを備えたことを特徴とする半導体装置の製造
方法。
The step of forming a first insulating film on a semiconductor substrate and then forming a second insulating film made of a material different from the ml insulating film, and the etching rate of the second insulating film compared to that of the first insulating film, are performed. A step of selectively etching the second insulating film using a sufficiently large etching method to form unevenness corresponding to the wiring pattern, and a step of depositing a conductive film on the entire surface and forming IiI in parallel to each other separated by the stepped portions of the unevenness. 1. A method of manufacturing a semiconductor device, comprising the step of forming a contacting wiring layer.
JP19224181A 1981-11-30 1981-11-30 Manufacture of semiconductor device Pending JPS5893349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19224181A JPS5893349A (en) 1981-11-30 1981-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19224181A JPS5893349A (en) 1981-11-30 1981-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5893349A true JPS5893349A (en) 1983-06-03

Family

ID=16287999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19224181A Pending JPS5893349A (en) 1981-11-30 1981-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5893349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033105A (en) * 2012-08-03 2014-02-20 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033105A (en) * 2012-08-03 2014-02-20 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
JPH08250592A (en) Air - dielectric transmission line for integrated circuit
JPS6398134A (en) Wiring structure and manufacture thereof
JPH1074834A (en) Semiconductor device and manufacture thereof
JPH02265243A (en) Multilayer wiring and its formation
JPH0286146A (en) Semiconductor device
JPS5893349A (en) Manufacture of semiconductor device
JPS63240045A (en) Semiconductor device
JPS5893348A (en) Manufacture of semiconductor device
JPH02183536A (en) Semiconductor device
JPS61239646A (en) Formation of multilayer interconnection
JPS6020523A (en) Electronic device
JPS5893351A (en) Semiconductor device and its manufacture
JPH098007A (en) Method for flattening insulation film
JPS61189654A (en) Formation of multilayer interconnection structure
JPH01189939A (en) Semiconductor integrated circuit
JPH02196428A (en) Semiconductor device
JPS63107141A (en) Manufacture of semiconductor device
JPS592351A (en) Manufacture of semiconductor device
JPH07122632A (en) Semiconductor device
JPS6324622A (en) Semiconductor device
JPS6120353A (en) Manufacture of semiconductor device
JPS61121347A (en) Manufacture of semiconductor device
JPS63175443A (en) Manufacture of semiconductor device
JPS58197844A (en) Manufacture of semiconductor device