JPS5893351A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS5893351A
JPS5893351A JP19224681A JP19224681A JPS5893351A JP S5893351 A JPS5893351 A JP S5893351A JP 19224681 A JP19224681 A JP 19224681A JP 19224681 A JP19224681 A JP 19224681A JP S5893351 A JPS5893351 A JP S5893351A
Authority
JP
Japan
Prior art keywords
wiring
film
semiconductor device
wiring layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19224681A
Other languages
Japanese (ja)
Inventor
Ryozo Nakayama
中山 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19224681A priority Critical patent/JPS5893351A/en
Publication of JPS5893351A publication Critical patent/JPS5893351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce electrostatic capacitance formed to a parallel wiring layer by previously shaping unevenness according to a predetermined pattern with steep difference at a stage to the surface of an insulating film and forming the wiring layer isolated by the stage difference section of the unevenness. CONSTITUTION:The three mutually parallel and adjacent wiring layers 131-133 are formed onto an Si substrate 11 to which an element region is shaped. The uneven pattern, the surface thereof has steep difference at the stage, is molded while being made correspond to a wiring pattern in the film 12. According to such wiring structure, the degree of integration can largely be increased through the improvement of wiring density because electrostatic capacitance formed to the wiring layers can be reduced and a separated distance is made approximately zero.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置およびその製造方法に係リ、%に高
集積化、微細化が進んだ半導体装置の配線構造とその形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a wiring structure and a method for forming the same in a semiconductor device, which has become extremely highly integrated and miniaturized.

〔発明の技術的背景およびその問題点〕最近、半導体装
置製造におけるリソグラフィ技術、工、チング技術尋が
進歩し、半導体装置の高集積化、微細化が一段と進んで
いる。半導体装置の微細化が進むと配線パターンも微細
化され、隣接する配線間隔も微細化されてくる。
[Technical Background of the Invention and Problems Therewith] Recently, lithography technology, processing, and processing technology in semiconductor device manufacturing have progressed, and semiconductor devices are becoming more highly integrated and miniaturized. As semiconductor devices become increasingly finer, wiring patterns also become finer, and the spacing between adjacent wires also becomes finer.

その結果、隣接する配線間の浮遊容量が増大し、これが
信号伝播の遅延を大きくするという問題が生じる。
As a result, a problem arises in that stray capacitance between adjacent wirings increases, which increases signal propagation delay.

第1図は半導体基板1上に絶縁膜2を介して3本の平行
な配線層31〜3sを形成した例を示している。いま、
配線層31〜3sの幅Wと間隔Sを等しいとし、真中の
配線層3寓に注目すると、これに付随する単位長さ当〕
の容1cは、絶縁膜2の容量をC宜 、配線層間のギヤ
FIG. 1 shows an example in which three parallel wiring layers 31 to 3s are formed on a semiconductor substrate 1 with an insulating film 2 interposed therebetween. now,
Assuming that the width W and the spacing S of the wiring layers 31 to 3s are equal, and focusing on the three wiring layers in the middle, the unit length associated therewith is
The capacitance 1c is the capacitance of the insulating film 2, C, and the gear between the wiring layers.

グによる容量をC,としてC=C1+2 Cmで表わさ
れる。そして、W=Sの値を変化させたときの容量Cの
変化を示すと第2図の実線のようになる。一点鎖線は絶
縁膜2による容量01のみの場合である。図から明らか
なように、容−1cは、W=Sが絶縁膜2の膜原TOX
とほぼ等しくなる点Aで極小値を示し、これより寸法が
微細になると増大する。これ祉、容量CIの減少割合よ
シも容量Cmの増大割合が大きくなるためである。
It is expressed as C=C1+2 Cm, where C is the capacitance due to the plug. The solid line in FIG. 2 shows the change in capacitance C when the value of W=S is changed. The one-dot chain line represents the case where only the capacitance 01 due to the insulating film 2 is present. As is clear from the figure, the capacity -1c is such that W=S is the film original TOX of the insulating film 2.
It shows a minimum value at point A, which is almost equal to , and increases as the dimensions become finer than this. This is because the rate of increase in the capacitance Cm becomes larger than the rate of decrease in the capacity CI.

このように1配線が微細化されると容量の増大による信
号伝播の遅れが重大な問題となってくる。、また従来法
による配線の微細化は、電流容量の減少、配線抵抗の増
加、エレクトロマイグレーションによる切断等をもたら
し、半導体装置の信頼性低下につながる。
When a single wiring is miniaturized in this way, a delay in signal propagation due to an increase in capacitance becomes a serious problem. Further, the miniaturization of wiring by conventional methods results in a decrease in current capacity, an increase in wiring resistance, and disconnection due to electromigration, leading to a decrease in the reliability of semiconductor devices.

〔発明の目的〕[Purpose of the invention]

本発明は、配線層に付随する静電容量の大幅な低減を図
シ、もって配線の微細化による信号伝播の遅延を抑え、
″”また従来のリングラフィ技術を用いて配線のよ)一
層の微細化を行うことなく容易に高集積化を可能とし、
信頼性向上を図り九半導体装置およびその製造方法を提
供するものである。
The present invention significantly reduces the capacitance associated with wiring layers, thereby suppressing delay in signal propagation due to miniaturization of wiring.
``Also, using conventional phosphorography technology, it is possible to easily achieve high integration without further miniaturization (such as wiring).
The present invention provides a semiconductor device with improved reliability and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上に絶縁膜を介して同一導電膜形
成工程で形成される互いに平行に隣接する部分を有する
配線層を設けてなる半導体装置において、前記絶縁膜の
表面に急峻な段差をもつ所定ノfターンの凹凸を設けて
おき、前記配線層の互いに平行に隣接する部分の一方を
凹部、他方を凸部上に水平方向の離間距離がほぼ零とな
るように配設したこと、換言すれば、凹凸の段差部で分
離された平行配線層を設けたことを特徴とする。
The present invention provides a semiconductor device in which a wiring layer is formed on a semiconductor substrate through an insulating film in the same conductive film forming process and has portions adjacent to each other in parallel, in which a steep step is formed on the surface of the insulating film. providing unevenness with a predetermined number of turns, and arranging one of the mutually parallel adjacent portions of the wiring layer on the recess and the other on the protrusion so that the distance in the horizontal direction is approximately zero; In other words, it is characterized by providing parallel wiring layers separated by uneven step portions.

本発明はまた、上記の如き配線構造を形成するに尚って
、まず素子領域が形成された半導体基板上の絶縁膜表面
に配線ノ臂ターンに対応した凹凸を形成し、その上に全
面に導体膜を被着し、更にその表面全面に段差部でエツ
チング速度の速いマスク材を堆積して全面エツチングを
行って前記凹凸の段差でこのマスク材を選択的に除去し
、残されたマスク材を用いて前記導体膜を選択工、チン
グして凹凸の段差部で分離された互いに平行に隣接する
配線層を形成することを特徴とする。
The present invention also provides that when forming the wiring structure as described above, first, an unevenness corresponding to the arm turn of the wiring is formed on the surface of the insulating film on the semiconductor substrate on which the element region is formed, and then the entire surface is formed on the surface of the insulating film. A conductive film is deposited, and then a masking material with a high etching rate is deposited on the entire surface of the conductive film at the stepped portions, the entire surface is etched, and this masking material is selectively removed at the uneven steps, and the remaining masking material is removed. The method is characterized in that the conductive film is selectively etched using a method of etching to form parallel adjacent wiring layers separated by uneven step portions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、凹凸/?ターンに自己整合された状態
で同一導電膜からなる配線層の互いに平行して隣接する
部分の一方が凹部に、他方が凸部に配設される。従りて
隣接する配線層同志が直接対向することがないか、対向
したとしてもその対向面積を極めて小さいものとするこ
とができるから、配線間の静電容量が小さくなり、配線
での信号伝播の遅れが小さくなる。また隣接する配線層
間は水平方向の離間距離がほぼ零であシ、従って配線幅
をそれ程微細にしなくて本配線密度を高くして素子のよ
り一層の高集積化が図られる。また配線幅をそれ程微細
にしなくてもよいため、従来のリソグラフィ技術を用い
て容易に半導体装置の高集積化を達成できる。
According to the present invention, unevenness/? One of the parallel and adjacent portions of the wiring layer made of the same conductive film is arranged in the concave portion and the other in the convex portion in a self-aligned state with the turns. Therefore, adjacent wiring layers do not directly oppose each other, or even if they do, the opposing area can be made extremely small, which reduces the capacitance between wirings and improves signal propagation in the wirings. delay becomes smaller. In addition, the horizontal separation distance between adjacent wiring layers is almost zero, so that the wiring density can be increased without making the wiring width so fine, thereby achieving even higher integration of the device. Further, since the wiring width does not have to be made so small, it is possible to easily achieve high integration of the semiconductor device using conventional lithography technology.

同様の理由で、配線の電流容量の減少、エレクトロマイ
グレーションによる断線、高抵抗化などを防止して、半
導体装置の信頼性向上を図ることができる。
For the same reason, the reliability of the semiconductor device can be improved by preventing a decrease in the current capacity of the wiring, disconnection due to electromigration, and an increase in resistance.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例の要部断面を示している。1
1は素子領域が形成された81基板であり、この上に8
102膜12を介して互いに平行に隣接する3本の配線
層131〜131を形成した亀のである。S10.膜1
2は例えId、1.5μmの厚さとしてその表面に約1
μmの急峻な段差をもつ凹凸パターンが配線パターンに
対応させて形成されてお夛、3本の配線層13重〜13
mは凹凸の段差よシ薄い同一導体膜によって、真中の配
線層13鵞が凹部に1両側の配線層131゜131が凸
部罠配設されている。配線層751〜131の水平方向
離間距離は#1ぼ零である。
FIG. 3 shows a cross section of a main part of an embodiment of the present invention. 1
1 is an 81 substrate on which an element region is formed;
This is a turtle in which three wiring layers 131 to 131 are formed parallel to each other and adjacent to each other with a 102 film 12 in between. S10. Membrane 1
2 is for example Id, with a thickness of 1.5 μm and about 1
A concavo-convex pattern with steep steps of μm is formed corresponding to the wiring pattern, and three wiring layers 13 to 13 layers are formed.
The middle wiring layer 13 is disposed in the concave portion, and the wiring layers 131 on both sides are disposed in the convex portion by using the same conductive film which is thinner than the uneven steps. The horizontal separation distance between the wiring layers 751 to 131 is approximately #1 and zero.

このような配線構造とすれば、第1図と比較して明らか
なように、配線層に付随する静電容量は非常に小さく、
また離間距離がほぼ零であるため配線密度の向上によ)
大幅な高集積化が図られることがわかる。
With such a wiring structure, the capacitance associated with the wiring layer is extremely small, as is clear from a comparison with Figure 1.
Also, since the separation distance is almost zero, the wiring density is improved)
It can be seen that a significant increase in integration is achieved.

例である。即ち別基板21に5tO2膜22を介してそ
の表面の凹凸で分離された3本の第1層配線層23鳳〜
231を形成し、更にその上にsto、MIXz 4を
介してその表面に凹凸で分離された3本の第2層配線層
251〜253を形成したものである。これによシ、高
密度の多層配線構造を実現することができる。
This is an example. That is, three first-layer wiring layers 23 are formed on a separate substrate 21 via a 5tO2 film 22 and separated by the unevenness of its surface.
231 is formed, and three second-layer wiring layers 251 to 253 separated by unevenness are formed on the surface thereof via sto and MIXz 4. As a result, a high-density multilayer wiring structure can be realized.

次に本発明の方法の一実施例を第5図(&)〜(・)を
用いて説明する。まず素子領域が形成されたsi基板3
1上にsio、膜32を約2μmの厚さに形成し、ホト
レジストをマスクにして反応性イオンエツチングにより
8SO3膜320表面に段差が約1μmの凹部を形成す
る。いまの場合、凹部はこの5102膜32上に形成さ
れる3本の平行な配線層のうち真中の配線・々ターンに
対応する。そ、1・:1゜ の後、全面にCVD法によシリンド−!多結晶シリコン
膜33を約500X堆積し、更にその上にマスク材とし
てプラズマCVD法によ!り 810.膜34を50’
001程度堆積する(a)。この後、NH4Fを用いて
全面エツチングを行ない、810.膜340段差部を選
択的に工、チング除去する(b)。
Next, one embodiment of the method of the present invention will be described using FIGS. First, a Si substrate 3 on which an element region is formed
A film 32 having a thickness of about 2 μm is formed on the 8SO3 film 320, and a recess with a step difference of about 1 μm is formed on the surface of the 8SO3 film 320 by reactive ion etching using a photoresist as a mask. In this case, the concave portion corresponds to the middle wiring of the three parallel wiring layers formed on the 5102 film 32. So, 1.: After 1°, cylinder is applied to the entire surface by CVD method! A polycrystalline silicon film 33 is deposited by about 500X, and then a mask material is used on top of it by plasma CVD! 810. Membrane 34 50'
001 is deposited (a). After this, the entire surface was etched using NH4F, and etching was performed using 810. The stepped portion of the film 340 is selectively etched and removed (b).

プラズマCVD法による810□膜34呟f14Fに対
して段差部でのエツチング速度が平坦部でのそれの約2
0倍あるため、全面エツチングによってこのように段差
部のみ除去することができる。
For the 810□ film 34f14F produced by the plasma CVD method, the etching rate at the stepped portion is approximately 2 times that of the flat portion.
Since it is 0 times larger, only the stepped portion can be removed by etching the entire surface.

そして残された81O1膜34をマスクとしてケ建カル
バドライ・エツチング法により段差部の多結晶シリコン
膜をエツチング除去し、段差部で分離された3本の配線
層331〜338を形成する(c)。凸部上の配線層1
31およびJJsは、更に通常のpip工程によ〕、レ
ジストJ5を形成しくd)、このレジストJ5をマスク
として工。
Then, using the remaining 81O1 film 34 as a mask, the polycrystalline silicon film at the stepped portion is etched away using a carbide dry etching method to form three wiring layers 331 to 338 separated by the stepped portion (c). Wiring layer 1 on the convex part
31 and JJs are further processed by a normal pip process to form a resist J5 (d), using this resist J5 as a mask.

チングを行りて所定の配線幅とする(、)。The wiring width is set to the specified width (,).

この実施例によれば、従来のリングラフィ技術をそのま
ま利用して、何ら難しい微細加工を行うことなく、配線
層間容量を小さくして高密度配線を実現することができ
る。特にCPUのように配線面積の大きい大規模集積回
路に適用した場合に、チップ面積の減少、高集積化、高
信頼性化部の効果が得られる。
According to this embodiment, by using the conventional phosphorography technique as is, it is possible to reduce the capacitance between wiring layers and realize high-density wiring without performing any difficult microfabrication. Particularly when applied to a large-scale integrated circuit with a large wiring area such as a CPU, the effects of reduced chip area, higher integration, and higher reliability can be obtained.

なお、この実施例では導体膜として多結晶シリコンを用
いたが、AI、ムj−8i、Wなどの金属や各種金属シ
リサイドを用いることができる。
In this embodiment, polycrystalline silicon is used as the conductor film, but metals such as AI, Muj-8i, W, and various metal silicides can also be used.

また、マスク材としてプラズマCVD法による810、
膜を用いたが、段差部でのエツチング速度が平坦部での
それよ〕大きいものであれば同様のマスク材として用い
ることができる。具体的には、スノ臂ツタ法による81
0.膜が好適する。
In addition, as a mask material, 810 made by plasma CVD method,
Although a film was used, it can be used as a similar mask material as long as the etching rate at the stepped portion is higher than that at the flat portion. Specifically, 81 by the snow ivy method
0. Membranes are preferred.

第6図4(a)〜(、)は本発明の別の実施例を説明す
るための図である1、まず素子領域が形成されたSt基
板41上に5SO2膜42を約2μmの厚さに形成し、
ホトレジストをマスクにして反応性イオンエツチングに
よ、9810.膜420表面に段差が約1μmの凹部を
形成する。先の実施例と同様、との凹部は、このSin
、膜42上に形成される3本の平行表記線層のうち真中
の配線パターンに対応する。、その後、全面に1凹部の
段差の1/2よシ薄いAI −81膜をスフツタ法によ
〕被着して、段差部で段切れをおζすことKよシ互いに
分離されたムj−81配線層411〜43.を形成する
(、)。次いで、通常のPEP工程によプレシスト44
を形成し伽)、このレジスト44をマスクとしてAJ 
−81配線43宜 、4J1の不要な部分をエツチング
除去して所定の配線幅とする(、)。
6. FIGS. 4(a) to 4(,) are diagrams for explaining another embodiment of the present invention. 1. First, a 5SO2 film 42 is deposited to a thickness of about 2 μm on an St substrate 41 on which an element region is formed. formed into
9810. by reactive ion etching using photoresist as a mask. A recess with a step difference of about 1 μm is formed on the surface of the film 420. As in the previous embodiment, the recess with is
, corresponds to the middle wiring pattern among the three parallel marking line layers formed on the film 42. After that, an AI-81 film thinner than 1/2 of the step of one concave portion is coated on the entire surface by the Softuta method, and a step break is made at the step portion to form a layer separated from each other. -81 wiring layers 411 to 43. form (,). Next, the precyst 44 is formed by a normal PEP process.
AJ is formed using this resist 44 as a mask.
-81 wiring 43 Remove unnecessary portions of 4J1 by etching to obtain a predetermined wiring width (,).

この実施例によっても、先の実施例と同様の効果が得ら
れることは明らかである。また仁の実施例によれば、先
の実施例より簡単な工程で、段差部で自動的に分離され
た配線を形成することができる。
It is clear that this embodiment also provides the same effects as the previous embodiment. Furthermore, according to Jin's embodiment, wiring that is automatically separated at a stepped portion can be formed with a simpler process than in the previous embodiment.

第7図は上記実施例を変形して得られる配線構造を示し
ている。即ち、81基板J I K glo。
FIG. 7 shows a wiring structure obtained by modifying the above embodiment. That is, 81 substrate J I K glo.

膜52を形成して、その表面に所定の凹凸パターンを形
成する。そして上記実施例と同様、凹凸の段差の1/2
より薄いAn−11膜を被着することKよシ、凹凸の段
差部で分離され丸、互いに平行に11接するAJ−B1
配線層531〜531を形成する。この場合、平坦部で
配線層ss1゜531の不要部分をエツチング除去する
工程で、例えば電源線のような大きい配線幅を必要とす
る配線53−を同時に形成している。
A film 52 is formed, and a predetermined uneven pattern is formed on its surface. As in the above embodiment, 1/2 of the level difference between the convex and concave surfaces is
By depositing a thinner An-11 film, the AJ-B1 is separated by uneven steps and is circular and parallel to each other.
Wiring layers 531 to 531 are formed. In this case, in the step of etching away unnecessary portions of the wiring layer ss1 531 in the flat portion, the wiring 53-, which requires a large wiring width, such as a power supply line, is formed at the same time.

こうしてこの実施例によれば、互いに平行して密に隣接
する信号配線部分と大きい電流容量を必要とする平坦部
での電源配線部分と管、それぞれに要求される性能を満
たしながら巧みに共存させることができる。
In this way, according to this embodiment, the signal wiring sections that are closely adjacent to each other in parallel with each other, and the power supply wiring sections and pipes in flat areas that require large current capacities can coexist skillfully while satisfying the performance requirements of each. be able to.

第6図の実施例では、8102膜11に形成する凹部の
深さとムl −Sl膜31宜〜33畠の膜厚の制御が重
要である。凹凸ノリーンの工、チングのばらつきは必ら
ず生じるが、このためエツチング終点の制御が難しく、
また配線層間の容量のばらつきなどの不都合をもたらす
。これを防ぐには例えば8102膜J2を必要以上に厚
くしなければならなく々る。
In the embodiment shown in FIG. 6, it is important to control the depth of the recess formed in the 8102 film 11 and the thickness of the mul-Sl films 31 to 33. Variations in the etching process and etching of uneven etching inevitably occur, which makes it difficult to control the etching end point.
Further, it brings about inconveniences such as variations in capacitance between wiring layers. To prevent this, for example, the 8102 film J2 must be made thicker than necessary.

第8図(a)〜(、)は仁の点を改良し九実施例を説明
する丸めの図で本る。まず81基板61上に、第1の絶
縁膜としてCVD法による810.l[# Jを1μm
の厚さに形成し、更にこの上に第2の絶縁膜として、ス
ピンコードによJ)Ik布L400Cでベーキングした
1μmのIリイオド樹脂膜63を形成する(、)。次に
写真食刻法を用いて?リイミド樹脂膜63を選択的に工
、テングして凹部を形成する(b)。このとき、CF4
と02の混合ガスを用いたケミカル・ドライ・エツチン
グを用いると、Iリインド樹脂膜63のエツチング速度
が8102膜62に比べて十分大きいため、オーバエ、
デングを行りてもBib、@σ2は殆んどエツチングさ
れず、確実に凹部底面に810.膜−2を露出させるこ
とができる。即ち凹部の段差が一定の状態を得ることが
できる。この後第6図の実施例と同様、スパッタ法にょ
如凹部の段差で段切れをおこすようにムノー8最膜を被
着し、写真食刻法で不要部分をエツチング除去して平行
に@接するムj−81配線層84重〜M4sを形成する
(、)。
FIGS. 8(a) to 8(,) are rounded diagrams for explaining nine embodiments with improved features. First, a first insulating film is formed on an 810.81 substrate 61 by CVD. l [# J is 1 μm
Further, a 1 μm thick I-ion resin film 63 is formed as a second insulating film on this by baking with J) Ik cloth L400C using a spin code. Then using photo-etching? The reimide resin film 63 is selectively etched to form a recess (b). At this time, CF4
When using chemical dry etching using a mixed gas of
Even when denguing is performed, Bib and @σ2 are hardly etched, and the 810. Membrane-2 can be exposed. That is, it is possible to obtain a state in which the level difference in the recessed portion is constant. After this, similarly to the embodiment shown in Fig. 6, the Muno 8 film is applied using a sputtering method so as to create a step cut at the step of the concave portion, and the unnecessary portions are removed using a photoetching method to make parallel contact. 84 layers to M4s of M-J-81 wiring layer are formed (, ).

この実施例によれば、オーバエ、チンダによる段差のば
らつきがなく、従って配線層間の容量を均一で小さいも
のとして、半導体装置の一層の高性能化を図ることがで
きる。また、−リイ建ド樹脂膜は比銹電率が約3.0で
あるから、S10.膜のみの場合に比べて配線層に付随
する容量を小さくする上でも好オしい。
According to this embodiment, there is no variation in the level difference due to overburden or tinder, and therefore the capacitance between wiring layers can be made uniform and small, making it possible to further improve the performance of the semiconductor device. In addition, since the -Liden resin film has a specific electric charge rate of about 3.0, S10. This is also preferable in terms of reducing the capacitance associated with the wiring layer compared to the case of using only a film.

なお、上記実施例では、絶縁膜の組合せとして4リイミ
ド/8tOを用いたが、81.N4/ 5iio。
In the above example, 4limide/8tO was used as the insulating film combination, but 81. N4/5iio.

やムj20. / 810.など、他の組合せを用いる
ことも可能である。また段差部で配線層を分離する方法
として、段切れを利用する方法でなく、第5図の実施例
の方法を適用してもよい。
Yamuj20. / 810. It is also possible to use other combinations, such as. Further, as a method for separating wiring layers at a step portion, the method of the embodiment shown in FIG. 5 may be applied instead of the method using step breaks.

第9図(、)〜(d)は、配線層の基板とのコンタクト
部の形成工程を含めた実施例を説明するための図!ある
。まず素子領域が形成された81基板rlK約2 fi
mの8102膜12をCVD法ニヨ)形成し、写真食刻
法を用いて選択的にコンタクトホール131〜y3=を
開孔する(1)。次に先の実施例と同様の方法によシ、
このStO,膜12上に形成される3本の平行な配線層
のうち真中の配線パターンに対応する凹部を、コンタク
トホールVX、の部分に重なるように形成する(b)。
FIGS. 9(a) to 9(d) are diagrams for explaining an embodiment including the process of forming a contact portion between a wiring layer and a substrate! be. First, the 81 substrate rlK approximately 2 fi on which the element region was formed
An 8102 film 12 of m is formed using the CVD method, and contact holes 131 to y3 are selectively formed using a photolithography method (1). Next, in the same manner as in the previous example,
A recess corresponding to the middle wiring pattern of the three parallel wiring layers formed on the StO film 12 is formed so as to overlap the contact hole VX (b).

その後、例えばリフトオフ技術を用いてコンタクトホー
ル7 J、 〜7 J、KAj膜141〜14mを堆め
込む(c)。そしてとの状態で先の実施例と同様の方法
、あるいは第5図の実施例の方法によって、凹凸の段差
部で分離された互いに平行に隣接する人ノー81配線層
751〜151を形成する(d)。
Thereafter, contact holes 7J, 7J and KAj films 141 to 14m are deposited using, for example, a lift-off technique (c). Then, in the same state as in the previous embodiment, or by the method in the embodiment shown in FIG. 5, wiring layers 751 to 151 are formed which are adjacent to each other in parallel and separated by uneven step portions ( d).

第10図は得られた配線パターンの平面図でめる1、第
10図のムーム′断面が第9図(d) K相当する。
FIG. 10 is a plan view of the obtained wiring pattern 1, and the cross section of Moom' in FIG. 10 corresponds to FIG. 9(d) K.

この実施例によれば、41に凸部上の配線層のコンタク
トホールが深いものであっても、コンタクトホールに予
め接続部材を埋込んでいるため、コンタクトホール部で
の配線の段切れが確実に防止される。
According to this embodiment, even if the contact hole in the wiring layer on the convex portion 41 is deep, the connection member is embedded in the contact hole in advance, so that the wiring is not disconnected at the contact hole portion. is prevented.

なおこの実施例では、配線パターンに対応する凹凸を形
成した後にコンタクトホールに接続部材を埋込んだが、
第9図(&)の萩態でコンタクトホールに接続部材を埋
め込み、その後凹凸パターンを形成する選択エツチング
を行って第9図(、)の状態を得るようKしてもよい。
In this example, the connection member was embedded in the contact hole after forming the unevenness corresponding to the wiring pattern.
A connection member may be buried in the contact hole in the form shown in FIG. 9(&), and then selective etching may be performed to form a concavo-convex pattern to obtain the state shown in FIG. 9(,).

また第10図から明らかなように、隣接する配線層間に
水平方向の離間距離は殆んどない丸め、配線幅が小さい
ときにコンタクトホールはそれよ)更に小さい寸法とな
る。これは良好なコンタクトをとる上で好ましくない。
Further, as is clear from FIG. 10, when there is almost no horizontal separation between adjacent wiring layers and the wiring width is small, the contact hole becomes even smaller in size. This is unfavorable for making good contact.

この点を改善するには、第10図に対して@11図に示
すように少しずつずれた位置にコンタクトホールra鳳
’〜111′を形成すればよい。こうすれば、コンタク
トホールIJν〜73a′の寸法をそれぞれ配線層7j
i〜151の幅とほぼ等しくすることができ、確実なコ
ンタクトをとることが可能となる。
In order to improve this point, contact holes RA' to 111' may be formed at positions slightly shifted from those in FIG. 10, as shown in FIG. 11. By doing this, the dimensions of the contact holes IJν to 73a' can be adjusted to the wiring layer 7j.
The width can be made approximately equal to the width of i to 151, and reliable contact can be made.

なお、以上の各実施例においては、主として3本の平行
な配線層を形成する場合を説明した。
In each of the above embodiments, the case where three parallel wiring layers are mainly formed has been described.

従って凹凸の段差部で配線層間の分離を行った後、通常
のPEP工程士平坦部での配線層を・臂り1111:1 一ニングしている。しかしながら、例えば多数の配線パ
ターンが基板全面にわたりて互いに平行に配設される場
合には、その配線パターンに対応する絶縁膜表面の繰返
し凹凸パターンにより隣接する配線層間を分離するだけ
で、その後の通常のPEP工程は不要となる。また配線
パターンを凹凸の段差部で分離した後、平坦部に残る導
体膜をそのまま例えばシールド膜として残すような場合
にも、同様にその後のPEPI鵬を省略することができ
る。更に上記各実施例では、平行に隣接する3本の配線
層の真中のものを凹部に配置してその両側の配線と分離
したが、真中のものを凸部に配置するように凹凸パター
ン形成をしてもよいことは勿論である。
Therefore, after separating the wiring layers at the uneven step portions, the wiring layers at the flat portions are subjected to a 1111:1 process by an ordinary PEP engineer. However, for example, when a large number of wiring patterns are arranged parallel to each other over the entire surface of the board, adjacent wiring layers are simply separated by a repeated uneven pattern on the surface of the insulating film corresponding to the wiring patterns. The PEP process becomes unnecessary. Further, in the case where the conductor film remaining on the flat part is left as it is, for example, as a shield film after the wiring pattern is separated by uneven step parts, the subsequent PEPI process can be similarly omitted. Furthermore, in each of the above embodiments, the middle layer of the three parallel adjacent wiring layers is placed in the concave part and separated from the wiring on both sides, but the uneven pattern is formed so that the middle layer is placed in the convex part. Of course, you can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の配線構造の例を示す図、第
2図はその配線幅と静電容量の関係を示す図、第3図は
本発明の一実施例の配線構造を示す図、第4図は同様の
配線層を2層に積ねた例を示す図、第5図(、)〜(・
)は本発明の方法の一実施例の製造工程を説明するため
の図、第6図(、)〜(、)は他の製造工程を説明する
ための図、117図は更に他の実施例の配線構造を示す
図、第8図(a)〜(、)は本発明の方法の改良された
実施発明の方法の実施例の製造工程を説明するための図
、第10図社得られた配線ノ9ターンの平面図、第11
図は第9図の工程を改良した実施例による配線/fター
ンの平面図である。 11.22 、jJ 、4J 、51 、il 、rl
・・・81基板、11.22,14.31.42゜12
、il、6J、’12・・・810□膜、131〜II
s  e23*  〜231 1151 〜25B  
。 331〜J 31  e 431〜43m、531〜5
16  e g 4麿〜64m  m151〜rtsl
・・・配線層、34・・・プラズマCVD−810,膜
(iスフ材)出願人代理人  弁理士 鈴 江 武 彦
$111 A −W(=S) M3図 第4図 jI5図 4 第5図 第6図 第7図 第8図 第9図 s9図 第10図 第11図
FIG. 1 is a diagram showing an example of the wiring structure of a conventional semiconductor device, FIG. 2 is a diagram showing the relationship between the wiring width and capacitance, and FIG. 3 is a diagram showing the wiring structure of an embodiment of the present invention. , Fig. 4 is a diagram showing an example in which two similar wiring layers are stacked, and Fig. 5 (,) to (・
) is a diagram for explaining the manufacturing process of one embodiment of the method of the present invention, FIGS. 6(,) to (,) are diagrams for explaining other manufacturing processes, and FIG. Figures 8(a) to 8(a) are diagrams showing the wiring structure of the present invention, and Figure 10 is a diagram for explaining the manufacturing process of an embodiment of the method of the present invention, which is an improved implementation of the method of the present invention. Plan view of 9 turns of wiring, 11th
The figure is a plan view of wiring/f-turn according to an embodiment that improves the process of FIG. 9. 11.22, jJ, 4J, 51, il, rl
...81 board, 11.22, 14.31.42°12
, il, 6J, '12...810□ membrane, 131-II
s e23* ~231 1151 ~25B
. 331~J 31 e 431~43m, 531~5
16 e g 4maro~64m m151~rtsl
...Wiring layer, 34...Plasma CVD-810, film (i-sulfur material) Applicant's representative Patent attorney Takehiko Suzue $111 A-W (=S) M3 Figure 4 jI5 Figure 4 No. 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure s9 Figure 10 Figure 11

Claims (5)

【特許請求の範囲】[Claims] (1)素子領域が形成された半導体基板上に絶縁膜を介
して同一導電膜形成工程で形成された互いに平行に隣接
する部分を有する配線層を設けてなる半導体装置におい
て、前記絶縁M#iその表面に急峻迩段差をもつ所定・
9ターフの凹凸を有し、前記配線層は互いに平行に隣接
する部分が前記凹凸の段差部で分離されて水平方向の離
間距離がほぼ零となるように配−されていることを特徴
とする半導体装置。
(1) In a semiconductor device in which a wiring layer having parallel adjacent portions formed in the same conductive film forming step via an insulating film is provided on a semiconductor substrate on which an element region is formed, the insulating M#i A predetermined surface with steep steps on its surface.
The wiring layer has a 9-turf unevenness, and the wiring layer is arranged so that parallel adjacent portions are separated by step portions of the unevenness so that the distance apart in the horizontal direction is approximately zero. Semiconductor equipment.
(2)  凹凸の段差を配線層の厚みより大とし、配線
層の互いに平行に隣接する部分を相対向させないようK
した特許請求の範囲第1項記載の半導体装置。
(2) Make the level difference between the concave and convex portions larger than the thickness of the wiring layer, and make sure that the adjacent parallel parts of the wiring layer do not face each other.
A semiconductor device according to claim 1.
(3)素子領域が形成された半導体基板上に絶縁膜を形
成しその表面に配曽ノ々ターンに対応した凹凸を形成す
る工程と、前記絶縁膜上全面に導体膜を被着する工程と
、前記導体膜上全面に段差部でエツチング速度の速いマ
スク材を堆積し全面エツチングを行って前記凹凸の段差
部で仁のマスク材を選択的に除去する工程と、残された
マスク材を用いて前記導体膜を選択エツチングして前記
凹凸の段差部で分離された互いに平行に隣接する配線層
を形成する工程とを備えたことを特徴とする半導体装置
の製造方法。
(3) a step of forming an insulating film on the semiconductor substrate on which the element region is formed, and forming unevenness corresponding to the patterned pattern on the surface of the insulating film; and a step of depositing a conductor film on the entire surface of the insulating film. , a step of depositing a masking material having a high etching rate at the stepped portions on the entire surface of the conductor film, etching the entire surface, and selectively removing the thick masking material at the uneven stepped portions; and using the remaining masking material. A method of manufacturing a semiconductor device, comprising the step of selectively etching the conductor film to form parallel adjacent wiring layers separated by the uneven step portions.
(4)  qスフ材はCVD法またはスノ臂ツタ法によ
るシリコン酸化膜でア)、これを全図工、チンダする方
法は■4Fを用いた湿式1.チングである特許請求の範
囲M3項記載の半導体装置の製造方法。
(4) The q surface material is a silicon oxide film made by the CVD method or the snow vine method. The method of manufacturing a semiconductor device according to claim M3, wherein the method is a method of manufacturing a semiconductor device.
(5)絶縁膜表面に凹凸/4ターンを形成する方法は、
反応性イオンエツチング法によシ選択エツチングを行う
ものである特許請求の範囲第3項記載の半導体装置の製
造方法。
(5) The method of forming unevenness/4 turns on the surface of the insulating film is as follows:
4. The method of manufacturing a semiconductor device according to claim 3, wherein selective etching is performed by a reactive ion etching method.
JP19224681A 1981-11-30 1981-11-30 Semiconductor device and its manufacture Pending JPS5893351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19224681A JPS5893351A (en) 1981-11-30 1981-11-30 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19224681A JPS5893351A (en) 1981-11-30 1981-11-30 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS5893351A true JPS5893351A (en) 1983-06-03

Family

ID=16288090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19224681A Pending JPS5893351A (en) 1981-11-30 1981-11-30 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS5893351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086531A (en) * 2001-09-07 2003-03-20 Seiko Instruments Inc Method for manufacturing pattern electrode, and pattern electrode manufactured by the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134981A (en) * 1979-04-09 1980-10-21 Ibm Method of manufacturing semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134981A (en) * 1979-04-09 1980-10-21 Ibm Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086531A (en) * 2001-09-07 2003-03-20 Seiko Instruments Inc Method for manufacturing pattern electrode, and pattern electrode manufactured by the method

Similar Documents

Publication Publication Date Title
JPH04229627A (en) Electric relay section structure and formation method
KR900001834B1 (en) Method of manufacturing semiconductor device
JPS5893351A (en) Semiconductor device and its manufacture
JPH02117153A (en) Method of forming semiconductor element
JPS6260241A (en) Manufacture of multilayer interconnection structure
JPS58197851A (en) Manufacture of semiconductor device
JPH04287326A (en) Semiconductor device and its manufacture
JPH0427125A (en) Method of producing wiring member
JPH098007A (en) Method for flattening insulation film
KR100226755B1 (en) Interconnection structure and manufacturing method of the same in semiconductor device
JPH0562972A (en) Semiconductor device and manufacture thereof
JPS63107043A (en) Forming method of conductive line for semiconductor device
JPH0936222A (en) Semiconductor device and its manufacture
JPS59175124A (en) Manufacture of semiconductor device
JPH0945771A (en) Manufacture of semiconductor integrated circuit
KR100372657B1 (en) Method for forming contact of semiconductor device
JPS63272050A (en) Manufacture of semiconductor device
JPS5893348A (en) Manufacture of semiconductor device
JPS58155A (en) Manufacture of semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JPS58110055A (en) Semiconductor device
KR20000039692A (en) Method for forming via hole of semiconductor device
JPH04115535A (en) Semiconductor device and its manufacture
JPS6043844A (en) Manufacture of semiconductor device
KR20010003458A (en) Method of forming wiring for semiconductor device