JPS6260241A - Manufacture of multilayer interconnection structure - Google Patents

Manufacture of multilayer interconnection structure

Info

Publication number
JPS6260241A
JPS6260241A JP19997385A JP19997385A JPS6260241A JP S6260241 A JPS6260241 A JP S6260241A JP 19997385 A JP19997385 A JP 19997385A JP 19997385 A JP19997385 A JP 19997385A JP S6260241 A JPS6260241 A JP S6260241A
Authority
JP
Japan
Prior art keywords
wiring layer
wiring
film
organic film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19997385A
Other languages
Japanese (ja)
Inventor
Yasuo Mitsuma
三間 康生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19997385A priority Critical patent/JPS6260241A/en
Publication of JPS6260241A publication Critical patent/JPS6260241A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve throughput and to reduce wiring resistance by a method wherein one or more holes are provided at least in an area near to the center of a third wiring layer and an etchant is allowed to penetrate through the holes for the removal by etching of an organic film positioned just under the third wiring layer. CONSTITUTION:On the surface of a GaAs semiconductor substrate 1, a first wiring layer 2 and second wiring layer 3 are formed. An organic film 4 is formed to cover the first wiring layer 2 and the second wiring layer 3 with some portion of the second wiring layer 3 remaining uncovered. The entire surface is covered by a metal coating 5, which is then covered by a photoresist film 6. The photoresist film 6 serves as a mask in a process wherein the metal coating 5 undergoes Au-plating for the formation of an Au film 7. The metal coating 5 is then patterned to assume the same shape as the Au film 7. A third wiring layer 8 is formed and through its center a hole 9 is provided. The organic film 4 is exposed to O2 plasma etching or wet etching using hydrazine or the like for removal for the formation of a cavity 10 under the wiring layer 8. In a structure designed as such, cross talk is reduced among signal during their transmission and interlayer capacity is decreased, which results in improved wiring structure throughput.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置における多層配線構造の製造方法に
関し、特にエアブリッジ構造を有する多層配線構造の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a multilayer wiring structure in a semiconductor device, and particularly to a method for manufacturing a multilayer wiring structure having an air bridge structure.

〔従来の技術〕[Conventional technology]

近年の半導体装置の微細化、高集積化に伴ない半導体装
置に形成される配線の多層化が進められている。従来こ
の種の多層配線構造では大きく分けて2種類の構造が実
用化されている。
2. Description of the Related Art In recent years, as semiconductor devices have become smaller and more highly integrated, wiring formed in semiconductor devices has become more multilayered. Conventionally, this type of multilayer wiring structure is roughly divided into two types of structures that have been put into practical use.

第1の構造は、第2図のように半導体装置の絶縁層21
上に第1配線層22を形成し、その上に層間絶縁膜23
を形成し、更にこの上に第2配線層24を形成し、コン
タクトにおいて相互接続を図るように形成した構造であ
る。この構成の配線構造では、第1、第2の各配線層2
2.24間に存在する層間絶縁膜23の誘電率によって
両配線層間の容量大きくなり、伝達信号のクロストーク
が生じ易く、素子の微細化に対応することが難しい。
The first structure consists of an insulating layer 21 of a semiconductor device as shown in FIG.
A first wiring layer 22 is formed thereon, and an interlayer insulating film 23 is formed thereon.
This is a structure in which a second wiring layer 24 is formed on top of the second wiring layer 24 for interconnection through contacts. In the wiring structure of this configuration, each of the first and second wiring layers 2
The capacitance between both wiring layers increases due to the dielectric constant of the interlayer insulating film 23 existing between 2.2 and 24, which tends to cause crosstalk of transmission signals, making it difficult to respond to miniaturization of elements.

第2の構造は、エアブリッジ配線構造とも称されており
、第3図のように半導体装置の絶縁膜層31上に第1の
配線層32と、その両側位置に第2の配線層33を形成
し、この第1の配線層32を跨ぐように第3の配線層3
4を形成した構造である。この構成の配線構造では第1
の配線層32と第3の配線層34とは誘電率の最も小さ
い空気が絶縁層として構成されるため、両配線層間での
伝達信号のクロストークが非常に小さく、配線容量も小
さくできる。
The second structure is also called an air bridge wiring structure, and as shown in FIG. 3, a first wiring layer 32 is formed on an insulating film layer 31 of a semiconductor device, and a second wiring layer 33 is formed on both sides of the first wiring layer 32. A third wiring layer 3 is formed so as to straddle this first wiring layer 32.
This is the structure in which 4 was formed. In this wiring structure, the first
Since the wiring layer 32 and the third wiring layer 34 are formed of air, which has the lowest dielectric constant, as an insulating layer, the crosstalk of transmission signals between the two wiring layers is extremely small, and the wiring capacitance can also be reduced.

このエアブリッジ配線構造の製造方法としては、例えば
第1及び第2の配線層32.33を形成した後、第3の
配線層34を形成する箇所に、後の工程で除去可能な有
機物の膜を選択的に形成し、その上でこの有機物膜の上
に第3の配線層34を形成する。そして、その後にごの
有機物膜のみをドライエッチ法やウェットエッチ法等に
より選択的に除去してこの部分を空洞化する方法が用い
られている。
As a method for manufacturing this air bridge wiring structure, for example, after forming the first and second wiring layers 32 and 33, an organic film that can be removed in a later process is applied to the area where the third wiring layer 34 is to be formed. is selectively formed, and then a third wiring layer 34 is formed on this organic film. Thereafter, a method is used in which only the organic film is selectively removed by a dry etching method, a wet etching method, etc., and this portion is hollowed out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のエアブリッジ配線構造の製造方法では、
有機物膜の上に形成した第3の配線層34の幅寸法が、
長さ寸法に比較して大きいと、有機物膜のエツチング時
にエッチャントが第3の配線層に邪魔されてその内側に
まで十分侵入せず、第3の配線層の下側にエツチングさ
れない有機物膜が残存されることがある。また、完全に
除去するにしてもエツチング時間が長くなる。
In the conventional air bridge wiring structure manufacturing method described above,
The width dimension of the third wiring layer 34 formed on the organic film is
If it is large compared to the length dimension, the etchant will be obstructed by the third wiring layer when etching the organic film and will not penetrate sufficiently into the inside of the third wiring layer, leaving an unetched organic film under the third wiring layer. It may be done. Furthermore, even if it is completely removed, the etching time will be longer.

このため、残存した有機物膜によって配線層間の誘電率
が初期の空気のみの場合に比較して大きくなり、エアブ
リッジ配線構造本来の効果を得ることができなくなる。
Therefore, the remaining organic film causes the dielectric constant between the wiring layers to be larger than that in the initial case of only air, making it impossible to obtain the original effect of the air bridge wiring structure.

また、エツチング時間が長くなることにより、他の素子
に悪影響を与える恐れが生じ、かつスループットが低下
される。更に、エッチャントを十分に浸透させるために
、第3の配線層34の幅寸法に制限を受け、配線抵抗や
設計上の点で不利になることもある。
Furthermore, the longer etching time may adversely affect other elements and reduce throughput. Furthermore, in order to allow the etchant to penetrate sufficiently, the width of the third wiring layer 34 is limited, which may be disadvantageous in terms of wiring resistance and design.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多層配線構造の製造方法は、エアブリッジ配線
構造を前記した種々の問題を生じさせることなく実現す
るために、第1の配線層を覆うように有機物膜を形成し
、この有機物膜上にこの第1の配線層を跨ぎかつ第1の
配線層の両側に配置した第2の配線層に接続するように
第3の配線層を形成し、その後前記有機物膜をエツチン
グ除去してエアブリッジ配線構造を形成するに際し、前
記第3の配線層の少なくとも中央よりの位置に1つまた
は複数個の孔を形成し、この孔を通して有機物膜のエッ
チャントを侵入させて第3の配線層直下の有機物膜をエ
ツチング除去する工程を備えている。
In order to realize an air bridge wiring structure without causing the various problems described above, the method for manufacturing a multilayer wiring structure of the present invention involves forming an organic film to cover a first wiring layer, and forming an organic film on the organic film. Next, a third wiring layer is formed so as to straddle this first wiring layer and connect to the second wiring layer placed on both sides of the first wiring layer, and then the organic film is etched away to form an air bridge. When forming the wiring structure, one or more holes are formed at least at a position near the center of the third wiring layer, and an etchant for the organic film is allowed to enter through the holes to remove the organic material directly under the third wiring layer. The method includes a step of etching away the film.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を製造工程に従って示す図で
あり、(a、)〜(gl)は平面構成図、(a2)〜(
g2)はそのAA線断面構成図である。
FIG. 1 is a diagram showing an embodiment of the present invention according to the manufacturing process, (a,) to (gl) are plan configuration diagrams, and (a2) to (
g2) is a cross-sectional configuration diagram taken along line AA.

先ず、同図(a+)、  (a2)のように、GaAs
である半絶縁性の半導体基板1の表面上に第1の配線層
2及び第2の配線層3を所定の平面パターンに形成する
。これら配線層2,3は、例えばTiを1000人、P
tを1000人、Auを2μmに夫々積層した多層構造
としている。また、前記半導体基板1は絶縁性の基板で
あれば石英ガラス基板やシリコン等の半導体基板上に酸
化シリコン等の絶縁膜を形成した基板でもよい。
First, as shown in (a+) and (a2) in the same figure, GaAs
A first wiring layer 2 and a second wiring layer 3 are formed in a predetermined planar pattern on the surface of a semi-insulating semiconductor substrate 1. These wiring layers 2 and 3 are made of, for example, 1000 Ti, P
It has a multilayer structure in which T is laminated to a thickness of 1000 and Au is laminated to a thickness of 2 μm. Further, the semiconductor substrate 1 may be an insulating substrate such as a quartz glass substrate or a semiconductor substrate made of silicon or the like on which an insulating film such as silicon oxide is formed.

次いで、同図(b+)、 (bz)のように後述する第
3の配線層を形成すべき箇所において、前記第1の配線
層2を覆い、かつ前記第2の配線層3の少なくとも一部
は覆わないように有機物膜4を被着する。この有機物膜
4は全面に有機物膜を被着した後フォトリソグラフィ技
術等を用いて選択エツチングすることにより形成できる
Next, as shown in (b+) and (bz) in the figure, at locations where a third wiring layer to be described later is to be formed, the first wiring layer 2 is covered and at least a part of the second wiring layer 3 is formed. The organic material film 4 is applied so as not to cover the surface. This organic film 4 can be formed by depositing an organic film on the entire surface and then selectively etching it using photolithography or the like.

次に、同図(C,)、  (C2)のように、全面に金
属被膜5を被着する。この金属被膜5は次の工程におl
dるAuメッキの給電パスとして利用するものであり、
例えばTiを1000人、Auを4000人の厚さにス
パッタ法や真空蒸着法で積層形成する。この金属被膜5
は他の金属構成でもよいが、メッキ時において電圧降下
を起こさぬように低抵抗に構成することが肝要である。
Next, a metal coating 5 is deposited on the entire surface as shown in FIGS. 2C and 2C. This metal coating 5 is used in the next process.
It is used as a power supply path for Au plating.
For example, Ti is laminated to a thickness of 1,000 layers and Au to a thickness of 4,000 layers by sputtering or vacuum evaporation. This metal coating 5
Although other metal compositions may be used, it is important to have a low resistance construction so as not to cause a voltage drop during plating.

しかる上で、同図(di)、  (d2)のように、前
記金属被膜5上をフォトレジスト膜6で覆い、これをマ
スクとして金属被膜5表面にAuメッキを行いAuメッ
キ膜7を形成する。このAuメッキ膜7は3μm程度の
厚さとし、かつ前記第1の配線層2を跨ぎしかも両端は
前記第2の配線層3上に夫々位置するように、即ち、こ
れから形成しようとする第3の配線層と同じ平面パター
ンに形成する。
Then, as shown in (di) and (d2) in the same figure, the metal coating 5 is covered with a photoresist film 6, and using this as a mask, Au plating is applied to the surface of the metal coating 5 to form an Au plating film 7. . This Au plating film 7 has a thickness of about 3 μm, and is arranged so that it straddles the first wiring layer 2 and has both ends located on the second wiring layer 3, that is, the third wiring layer to be formed from now on. Formed in the same planar pattern as the wiring layer.

そして、同図(el)、  (C2)のように、フォト
リソグラフィ技術を用いて前記Auメッキ膜7と同一形
状に金属被膜5をパターニングし、これにより第3の配
線層8を形成する。
Then, as shown in FIGS. 3(el) and (C2), the metal film 5 is patterned into the same shape as the Au plating film 7 using photolithography, thereby forming the third wiring layer 8.

続いて、同図(fl)、  (f2)のように、この第
3の配線層8を貫通するようにその中央部に孔9を開設
する。この孔9の形成方法はフォトレジストをマスクに
利用した選択エツチング法がそのまま利用でき、エツチ
ング法もイオンミリング、反応性イオンエツチング等の
ドライエツチングはもとよりウェットエツチングを採用
できる。また、前記孔9は、本例では第3の配線層8を
長さ25μm、幅50μmの短冊状とした場合、直径7
μmの円形の孔として形成している。勿論、この孔8は
第3の配線層8の形状を保持しかつその導電性を損なわ
ず、しかも後述する有機物膜のエッチャントがこの孔を
通過できる程度のものであればよく、形状や大きさはこ
の構成に限定されるものではない。例えば、多角形成い
は方形にしてもよい。また、孔8は複数個設けてもよく
、場合によっては多数個の孔を整列配置して第3の配線
層8をメツシュ状に構成してもよい。
Subsequently, as shown in FIGS. 3(fl) and (f2), a hole 9 is formed in the center of the third wiring layer 8 so as to pass through it. The hole 9 can be formed by selective etching using a photoresist as a mask, and wet etching as well as dry etching such as ion milling and reactive ion etching can be used as the etching method. Further, in this example, when the third wiring layer 8 is formed into a strip shape with a length of 25 μm and a width of 50 μm, the hole 9 has a diameter of 7
It is formed as a μm circular hole. Of course, the hole 8 only needs to be of a size that maintains the shape of the third wiring layer 8, does not impair its conductivity, and allows the etchant of the organic film, which will be described later, to pass through the hole. is not limited to this configuration. For example, it may be polygonal or rectangular. Further, a plurality of holes 8 may be provided, and in some cases, a large number of holes may be arranged in a line to form the third wiring layer 8 in a mesh shape.

次いで、同図(g+)、  (gz)のように、前 −
記有機物膜4を0□プラズマ或いはヒドラジン系等のウ
ェットエツチングによって除去する。この時、エッチャ
ントは第3の配線層8の両側から侵入して有機物膜4を
エツチング除去するのは勿論であるが、孔9を通しても
侵入し、第3の配線層8直下の有機物膜4をこの孔9を
起点としてエツチングを進行させ、これを除去すること
ができる。
Next, as shown in the same figure (g+) and (gz), the front −
The organic material film 4 is removed by 0□ plasma or wet etching using hydrazine or the like. At this time, the etchant not only enters from both sides of the third wiring layer 8 and etches and removes the organic film 4, but also enters through the holes 9 and etches the organic film 4 immediately below the third wiring layer 8. This hole 9 can be used as a starting point for etching to be removed.

これにより、第3の配線層8の幅寸法が長さ寸法に比較
して大きな場合でも、第3の配線層8下の有機物膜4を
確実にかつ短時間でエツチング除去し、第3の配線層8
の下に空洞部10を形成することができる。
As a result, even if the width dimension of the third wiring layer 8 is larger than the length dimension, the organic film 4 under the third wiring layer 8 can be reliably and quickly etched away, and the third wiring layer 8 can be etched away. layer 8
A cavity 10 can be formed below.

以上の工程により、第3の配線層の幅寸法に制限を受け
ることなく有機物膜のエツチング残りのないエアブリッ
ジ配線構造を容易かつ短時間で形成でき、エアブリッジ
配線構造本来の効果を得ることができ、しかもスループ
ットを向上することができる。
Through the above steps, an air bridge wiring structure with no etching residue of the organic film can be easily and quickly formed without being limited by the width dimension of the third wiring layer, and the original effects of the air bridge wiring structure can be obtained. Moreover, the throughput can be improved.

ここで、前記各工程は次のように変更することが可能で
ある。
Here, each of the above steps can be modified as follows.

第2の配線層3は、第1の配線層2と同時に形成するの
ではなく、後に第3の配線層8の一部として同時に形成
してもよい。
The second wiring layer 3 may not be formed simultaneously with the first wiring layer 2, but may be formed simultaneously as part of the third wiring layer 8 later.

また、有機物膜4を形成する前に、この有機物膜4とは
異なる絶縁性の膜、例えばS i 02を2000人の
厚さに形成しておき、第3の配線層8、ここでは金属被
膜5を形成する前にこれと導通させるコンタクトホール
をこの5iOz膜に形成するようにしてもよい。但し、
この場合においても、前述のように第2の配線層3を第
3の配線層8と同時に形成する場合にはコンタクトホー
ルは不要である。
Furthermore, before forming the organic film 4, an insulating film different from the organic film 4, for example Si02, is formed to a thickness of 2000 nm, and the third wiring layer 8, here a metal film, is formed. A contact hole may be formed in this 5iOz film before forming the 5iOz film. however,
Even in this case, if the second wiring layer 3 is formed at the same time as the third wiring layer 8 as described above, contact holes are not required.

更に、第2の配線層3を第3の配線層8と同時に形成す
る場合には、第3の配線層8を形成するAuメソキ工程
においては、前記SiO□膜を形成するしないに関わら
ず第2の配線層を形成すべき箇所にもAuメッキを施ず
ようにする。
Furthermore, in the case where the second wiring layer 3 is formed simultaneously with the third wiring layer 8, in the Au mesolithography process for forming the third wiring layer 8, the first Au plating is also not applied to the portion where the second wiring layer is to be formed.

また、第3の配線層8の孔9は、前記金属被膜5のエツ
チング時に同時に行ってもよく、この場合には前の工程
で孔を形成する箇所にはAuメッキを施さないようにす
る。
Further, the holes 9 in the third wiring layer 8 may be etched at the same time as the metal coating 5 is etched, and in this case, Au plating is not applied to the areas where the holes are to be formed in the previous step.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、第3の配線層の少なくと
も中央よりの位置に1つまたは複数個の孔を形成し、こ
の孔を通して有機物膜のエッチャントを侵入させ、第3
の配線層直下の有機物膜をエツチング除去しているので
、第3の配線層の幅寸法に制限を受けることなく確実に
かつ短時間で第3の配線層下の有機物膜をエツチング除
去することができる。これにより、エアブリッジ配線構
造本来の低誘電率効果を得て伝達信号のクロストークの
低減および配線層間容量の低減を図るとともに、配線構
造の製造スルーブツトの向上を達成することができる。
As explained above, the present invention forms one or more holes at least in a position near the center of the third wiring layer, allows the etchant of the organic film to penetrate through the holes, and
Since the organic film directly under the wiring layer is removed by etching, the organic film under the third wiring layer can be reliably etched and removed in a short time without being limited by the width dimension of the third wiring layer. can. As a result, it is possible to obtain the low dielectric constant effect inherent to the air bridge wiring structure, thereby reducing the crosstalk of transmitted signals and the capacitance between wiring layers, and at the same time achieving an improvement in the manufacturing throughput of the wiring structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a+ ) 〜(g+ ) 、  (ax ) 
〜(g2)は本発明方法を工程順に説明するための平面
図及びそのAA線に沿う断面図、第2図は層間絶縁膜を
用いた配線構造の断面図、第3図はエアブリソジ配線構
造の断面図である。 1・・・半絶縁性基板、2・・・第1の配線層、3・・
・第2の配線層、4・・・有機物膜、5・・・金属被膜
、6・・・フォトレジスト、7・・・Auメッキ膜、8
・・・第3の配線層、9・・・孔、10・・・空洞部、
21.31・・・絶縁層、22.32・・・第1の配線
層、23・・・層間絶縁膜、24.33・・・第2の配
線層、34・・・第3の配線層。 第1図(dl) 第1図(fl) (d2) (e2) (f2) 手続補正書(方式)
Figure 1 (a+) ~ (g+), (ax)
~(g2) is a plan view and a cross-sectional view along the line AA for explaining the method of the present invention step by step, FIG. 2 is a cross-sectional view of a wiring structure using an interlayer insulating film, and FIG. 3 is a cross-sectional view of an air bridge wiring structure. FIG. DESCRIPTION OF SYMBOLS 1... Semi-insulating substrate, 2... First wiring layer, 3...
- Second wiring layer, 4... Organic film, 5... Metal coating, 6... Photoresist, 7... Au plating film, 8
... third wiring layer, 9 ... hole, 10 ... cavity,
21.31... Insulating layer, 22.32... First wiring layer, 23... Interlayer insulating film, 24.33... Second wiring layer, 34... Third wiring layer . Figure 1 (dl) Figure 1 (fl) (d2) (e2) (f2) Procedural amendment (formality)

Claims (1)

【特許請求の範囲】 1、半導体装置の絶縁層上に第1の配線層を形成する工
程と、この第1の配線層を覆うように有機物膜を形成す
る工程と、この有機物膜上に前記第1の配線層を跨ぎか
つ第1の配線層の両側に配置した第2の配線層に接続す
るように第3の配線層を形成する工程と、その後前記有
機物膜をエッチング除去してエアブリッジ配線構造を形
成する工程とを備える多層配線構造の製造方法において
、少なくとも前記有機物膜をエッチング除去する工程の
前に、前記第3の配線層の少なくとも中央よりの位置に
1つまたは複数個の孔を形成し、この孔を通して有機物
膜のエッチャントを侵入させて第3の配線層直下にある
前記有機物膜をエッチング除去する工程を備えたことを
特徴とする多層配線構造の製造方法。 2、第3の配線層の形成工程は、全面に金属被膜を形成
する工程と、この金属被膜を給電パスとして金属被膜上
に選択的にAuメッキを施す工程と、Auメッキされて
いない金属被膜部分をエッチング除去する工程とを含む
特許請求の範囲第1項記載の多層配線構造の製造方法。 3、第2の配線層は第1の配線層と同時に形成してなる
特許請求の範囲第1項または第2項記載の多層配線構造
の製造方法。
[Claims] 1. A step of forming a first wiring layer on an insulating layer of a semiconductor device, a step of forming an organic material film so as to cover this first wiring layer, and a step of forming a first wiring layer on an insulating layer of a semiconductor device; a step of forming a third wiring layer so as to straddle the first wiring layer and connect to a second wiring layer disposed on both sides of the first wiring layer, and then etching away the organic film to form an air bridge. forming a wiring structure, at least before the step of etching away the organic film, one or more holes are formed at least at a position closer to the center of the third wiring layer; 1. A method for manufacturing a multilayer wiring structure, comprising the steps of: forming an organic film, and infiltrating an etchant for the organic film through the hole to etch away the organic film directly below the third wiring layer. 2. The process of forming the third wiring layer includes a process of forming a metal film on the entire surface, a process of selectively applying Au plating on the metal film using this metal film as a power supply path, and a process of forming a metal film on the metal film not plated with Au. 2. The method of manufacturing a multilayer wiring structure according to claim 1, further comprising the step of etching away a portion. 3. The method for manufacturing a multilayer wiring structure according to claim 1 or 2, wherein the second wiring layer is formed simultaneously with the first wiring layer.
JP19997385A 1985-09-09 1985-09-09 Manufacture of multilayer interconnection structure Pending JPS6260241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19997385A JPS6260241A (en) 1985-09-09 1985-09-09 Manufacture of multilayer interconnection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19997385A JPS6260241A (en) 1985-09-09 1985-09-09 Manufacture of multilayer interconnection structure

Publications (1)

Publication Number Publication Date
JPS6260241A true JPS6260241A (en) 1987-03-16

Family

ID=16416665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19997385A Pending JPS6260241A (en) 1985-09-09 1985-09-09 Manufacture of multilayer interconnection structure

Country Status (1)

Country Link
JP (1) JPS6260241A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248247B1 (en) * 1998-12-01 2001-06-19 Visteon Global Technologies, Inc. Method of fortifying an air bridge circuit
JP2016181758A (en) * 2015-03-23 2016-10-13 太陽誘電株式会社 Elastic wave device and method for manufacturing the same
CN111063657A (en) * 2019-11-29 2020-04-24 福建省福联集成电路有限公司 Air bridge for high current and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248247B1 (en) * 1998-12-01 2001-06-19 Visteon Global Technologies, Inc. Method of fortifying an air bridge circuit
JP2016181758A (en) * 2015-03-23 2016-10-13 太陽誘電株式会社 Elastic wave device and method for manufacturing the same
CN111063657A (en) * 2019-11-29 2020-04-24 福建省福联集成电路有限公司 Air bridge for high current and manufacturing method

Similar Documents

Publication Publication Date Title
JPS5967649A (en) Manufacture of multilayer wiring
JPS6260241A (en) Manufacture of multilayer interconnection structure
KR950006343B1 (en) Fabricating method of semiconductor device
JPH05206292A (en) Semiconductor integrated circuit
JPH0570301B2 (en)
JPH01170031A (en) Semiconductor device and manufacture thereof
JPS5827664B2 (en) Method for manufacturing a device with a flat surface
KR100366612B1 (en) Method for manufacturing semiconductor device having flat field isolation layer
JPH04287326A (en) Semiconductor device and its manufacture
JPS6149439A (en) Manufacture of semiconductor device
JPH03239331A (en) Manufacture of semiconductor device
KR0180116B1 (en) Forming method of metal wiring in semiconductor device
KR100226252B1 (en) Semiconductor device and method for manufacturing the same
JPS61271880A (en) Forming method for superconductive wire
JPH0374514B2 (en)
JPH0936222A (en) Semiconductor device and its manufacture
JPH02285659A (en) Semiconductor device
JPS6146973B2 (en)
JPS5893351A (en) Semiconductor device and its manufacture
JPH10209521A (en) Semiconductor device having magnetoresistance element
JPS60227440A (en) Manufacture of semiconductor device
JPH04330767A (en) Manufacture of semiconductor device
JPS6237945A (en) Manufacture of semiconductor device
JPH06224489A (en) Resistance device and manufacture thereof
JPH03203321A (en) Manufacture of semiconductor integrated circuit