JPS61121347A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61121347A
JPS61121347A JP24236184A JP24236184A JPS61121347A JP S61121347 A JPS61121347 A JP S61121347A JP 24236184 A JP24236184 A JP 24236184A JP 24236184 A JP24236184 A JP 24236184A JP S61121347 A JPS61121347 A JP S61121347A
Authority
JP
Japan
Prior art keywords
layer
wiring
conductive material
inter
layer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24236184A
Other languages
Japanese (ja)
Inventor
Shinji Emori
江森 伸二
Yoshio Watabe
由夫 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24236184A priority Critical patent/JPS61121347A/en
Publication of JPS61121347A publication Critical patent/JPS61121347A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the yield and reliability and the like of a semiconductor device, and to increase density by forming a conductive material layer on a substrate, shaping an inter-layer connecting section, which is left as it has the thickness of the conductive material layer, and a first layer wiring having the intermediate thickness of the conductive material layer and forming a second layer wiring on an insulating layer as an inter-layer insulating film and the inter-layer connecting section. CONSTITUTION:A novel resist 14 is used, and an aluminum layer 12 is patterned, thus shaping a first layer wiring. A PSG layer 15 is deposited through CVD, and an application type insulating film constituting of PLOS (Poly Ladder Organ Silicate), etc. is applied onto the layer 15, and baked. An SiO2 film 16 and the PSG film 15 are etched is succession from a top surface through reactive ion etching employing a Freon group gas, and etching is stopped when the top surface of an inter-layer connecting section in the aluminum layer 12 is exposed completely. A second aluminum layer is deposited on the top surface of the inter-layer connecting section, and a second layer wiring 17 is obtained through patterning.

Description

【発明の詳細な説明】 〔童業上の利用分野〕 本発明は半導体装置の製造方法、特に高信頼性、高帯電
の多層配線を作成する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of industrial application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a technique for creating highly reliable and highly charged multilayer wiring.

〔従来の技術〕[Conventional technology]

従来の代表的な多層配線方法を第3図を参照して説明す
る。基板1上に例えばアルミニウム層2を厚さ1μm程
変堆積し、レジスト3を用いてバターニングし、第1層
アルミニウム配線2を得る(第3図A)。次いで、層間
絶#l膜として例えばPSG層4を厚さ1μms変堆積
し、レジスト5を用いてスルーホール(ピアホールとも
いう。)6を開孔する(第3図B)。それから、PSG
層4上およびスルーホール6内に第2のアルミニウム層
7を厚さ1μm程変堆積し、レジスト(図示せず)を用
いてバターニングして第2層アルミニウム配線7を得る
。この第2層アルミニウム配線7はスルーホール6を介
して第1層アルミニウム配線2と接続されている。
A typical conventional multilayer wiring method will be explained with reference to FIG. For example, an aluminum layer 2 with a thickness of about 1 μm is deposited on the substrate 1 and patterned using a resist 3 to obtain a first layer aluminum wiring 2 (FIG. 3A). Next, for example, a PSG layer 4 with a thickness of 1 μm is deposited as an interlayer #l film, and a through hole (also referred to as a pier hole) 6 is opened using a resist 5 (FIG. 3B). Then, P.S.G.
A second aluminum layer 7 is deposited to a thickness of about 1 μm on layer 4 and in through hole 6, and patterned using a resist (not shown) to obtain second layer aluminum wiring 7. This second layer aluminum wiring 7 is connected to the first layer aluminum wiring 2 via a through hole 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のようなスルーホールを介した多層配線方式では、
第2層配線を堆積するときにスルーホール部分に段差が
あるために、段差のめる部分で第2rf4配線が断線し
やすいという欠点がある。
In the multilayer wiring method using through holes as described above,
Since there is a step in the through-hole portion when depositing the second layer wiring, there is a drawback that the second RF4 wiring is likely to be disconnected at the portion where the step is filled.

また、第1層配線2とスルーホール6の間、およびスル
ーホール6と第2層配ls7の間の2回の位置合せ工程
があるため、位置すれと見込んで第1層配線2および第
2NI配ls7のスルーホール形成領域くおける寸法を
特定の値より大きくしておく必要がある。第4図を参照
すると、各配線2゜7の幅は重要でないが例えば3μm
とすると、スルーホール6は2μmX2μm程麿であり
、スルーホール6の位置にかける6配1FIJ2.7の
パターンは6μmX6μm程変の寸法を有する(この拡
がっ念部分を俗に「ピアパッド」と呼んでいる)。
In addition, since there are two alignment steps, one between the first layer wiring 2 and the through hole 6, and the other between the through hole 6 and the second layer wiring ls7, the first layer wiring 2 and the second layer wiring are It is necessary to make the dimension of the through-hole forming area of the wiring ls7 larger than a specific value. Referring to FIG. 4, the width of each wire 2°7 is not critical, but is, for example, 3 μm.
Then, the through hole 6 is about 2 μm x 2 μm wide, and the 6-way 1 FIJ2.7 pattern placed at the through hole 6 position has a different dimension of about 6 μm x 6 μm (this widened part is commonly called the "pier pad"). ).

ま虎、第2層のビアバッドは単なる位置合せ余裕のため
だけでなく、第2層配線の堆積方法によっては、スルー
ホールの段差によ、り、スルーホールの全周囲(渡り%
確実な接続を期待できないことがある(すなわち、スル
ーホールの4辺のうちいくつかの辺は1層、2層間で接
続されないことがある)ので、スルーホールのどとか1
辺で第1゜第2層配線が接続されてスルーホールの周辺
を通して確実に接続できるようにするために、ある程度
の大きさが必要である。このビアバッドは、半導体装置
が高密変化する場合、配線の密変を制約する要因になる
However, the via pads in the second layer are not only used to provide alignment margins, but depending on the method of depositing the second layer wiring, the height difference in the through holes may cause
Sometimes you cannot expect a reliable connection (i.e., some of the four sides of the through hole may not be connected between layers 1 and 2), so
A certain amount of size is required in order to ensure that the first and second layer wirings are connected at the sides and connected through the periphery of the through hole. These via pads become a factor that restricts changes in wiring density when semiconductor devices change in density.

〔発明の構成〕[Structure of the invention]

本発明は、上記の如き従来技術の問題点を解決する念め
に、(1)基板上に、形成すべき第1層配線および眉間
絶縁膜の厚さの合計の厚さに導電性材料層を形成し、(
2)該導電性材料層を平面的形状および厚さの両方に関
して選択的にエツチングして、第1層配線と第2層配線
を電気的く接続するための該導電性材料層の厚さのまま
の層間接続部と。
In order to solve the problems of the prior art as described above, the present invention provides (1) a conductive material layer with a total thickness of the first layer wiring to be formed and the glabella insulating film on the substrate; and (
2) Selectively etching the conductive material layer with respect to both its planar shape and thickness to increase the thickness of the conductive material layer for electrically connecting the first layer wiring and the second layer wiring. With the remaining interlayer connections.

該導電性材料層の中間の厚さの第1層配線を形成し、(
3)該第1層配線、該層間接続部および前記基板上に絶
縁層を堆積し次後、該絶縁層を途中までエツチングして
、該絶縁層および該層間接続部の表面を平坦化しかつ該
層間接続部の頂部を露出させ、そして(4)層間絶縁膜
を成す該絶縁層および前記層間接続部上に第2層配線を
形成する工程を含むことを特徴とする半導体装置の製造
方法を提供する。
A first layer wiring having a thickness intermediate to that of the conductive material layer is formed, and (
3) After depositing an insulating layer on the first layer wiring, the interlayer connection, and the substrate, etching the insulating layer halfway to planarize the surfaces of the insulating layer and the interlayer connection, and Provided is a method for manufacturing a semiconductor device, comprising the steps of: exposing the top of the interlayer connection; and (4) forming a second layer wiring on the insulating layer forming an interlayer insulating film and the interlayer connection. do.

〔作 用〕[For production]

本発明の方法によれば、第2層配線を堆積する際に下地
の眉間絶縁膜と層間接続部の表面が平坦である念めに第
2層配線が段差によって断線するおそれがない。式らに
、その結果、第1層配線、層間接続部および箒2層配線
の・くターニングにおける相互の位置合せ余裕が最小限
で足り、半導体装置の高密変化に寄与する。
According to the method of the present invention, when depositing the second layer wiring, there is no risk of disconnection of the second layer wiring due to a step difference since the surface of the underlying glabella insulating film and the interlayer connection portion are flat. As a result, the mutual alignment margin in turning of the first layer wiring, the interlayer connection portion, and the second layer wiring is kept to a minimum, which contributes to high density changes in semiconductor devices.

〔実施例〕〔Example〕

第1図を参照して本発明の詳細な説明する。 The present invention will be described in detail with reference to FIG.

本発明では、先ず、基8211上に例えばアルミニウム
1i912を厚く、例えば2μmの厚さに堆積する。そ
して、この厚いアルミニウム層12の上にレジスト15
を塗布し、層間接続部(従来のピアホールの部分に相当
する)だけレジスト13を残し、そのレジストパターン
13をマスクとしてアルミニウム層12を途中まで、例
えば1μmの厚さのアルミニウム層が残るように、好ま
しくけ異方性エツチング法で、選択的に工、テングする
(第1図A)。
In the present invention, first, for example, aluminum 1i912 is deposited on the base 8211 to a thickness of, for example, 2 μm. Then, a resist 15 is placed on this thick aluminum layer 12.
, leave the resist 13 only at the interlayer connection part (corresponding to the conventional pier hole part), and use the resist pattern 13 as a mask to cover the aluminum layer 12 halfway, leaving an aluminum layer with a thickness of, for example, 1 μm. Selective etching is preferably performed using an anisotropic etching method (FIG. 1A).

次いで、レジスト13は除去してもしたくてもよいが、
祈念なレジスト14を用りて、厚さ1μmになって贋る
アルミニウム層12をパターニングしてNX1層配線を
形成する。このとき、rf!1間接続間接厚部2μmの
tま残る(第1図B)4次ニ、91J 、t ハ、CV
DfPSG!15層gさ1.5μm穆変堆積してから(
第1図C)、ざらにその上に例えばP L O8(Po
1y ’Ladder OrganSillcate 
)などの塗布形絶縁膜を厚いところで2μm程妾塗布し
、焼成するaPLO8は焼成されると8102膜16に
なるが、その表面は塗布形のために平坦である(第1図
D)。
Next, the resist 13 may be removed or removed, but
Using a reliable resist 14, the aluminum layer 12, which has a thickness of 1 μm and is to be fabricated, is patterned to form an NX1 layer wiring. At this time, rf! 1 connection indirect thickness part 2μm remains (Fig. 1B) 4th order 2, 91J, t, CV
DfPSG! After depositing 15 layers with a thickness of 1.5 μm (
Figure 1 C), and roughly on top of it, for example, P L O8 (Po
1y 'Ladder OrganSillcate
) is coated with a coating type insulating film of about 2 μm in thickness and fired. When fired, the aPLO 8 becomes an 8102 film 16, but its surface is flat due to the coating type (FIG. 1D).

それから、5in2膜16とPSG膜1膜上5ましくは
更にアルミニウムre12のエツチング速度が等しくな
るようにコントロールした異方性エツチング、例えばフ
レオン系のガス(CF4+ 04F8)を用い六叉応性
イオンエツチングで、 5202膜16、更にPSG膜
1膜上5面から順にエッテングしてゆ市、アルミニウム
#12の層間接続部(厚さ2μmの部分)の頂面が完全
に露出した時点でエツチングを停止する。すると、第1
図Eに見られるように、アルミニウム層12を層間絶縁
膜15.16が覆い、かつとア部分だけアルミニウムr
eJz力Zg出した力Sら、しかも頂面が平坦なものが
得られる。
Then, anisotropic etching is performed in which the etching speed of the 5in2 film 16 and the PSG film 1 film 5 or the aluminum re 12 is controlled to be equal, for example, hexagonal reactive ion etching using Freon gas (CF4+04F8). , 5202 film 16, and then the top five surfaces of PSG film 1. Etching is then stopped when the top surface of the interlayer connection portion (2 μm thick portion) of aluminum #12 is completely exposed. Then, the first
As seen in Figure E, the aluminum layer 12 is covered with an interlayer insulating film 15.16, and only the aluminum layer 15 and
A force S produced by eJz force Zg and a flat top surface can be obtained.

この上に、第2のアルミニウム層を厚さ1μm程変堆積
してパターニングすれば、第2層配線17が得られるC
群1図F)a との等2層配線17は平坦な下地の上に堆積されるので
段差が形成されず、断線のおそれから解放されている。
If a second aluminum layer is deposited on this layer with a thickness of about 1 μm and patterned, a second layer wiring 17 can be obtained.
Since the two-layer wiring 17 with group 1 (FIG. 1F) a is deposited on a flat base, no step is formed and there is no fear of disconnection.

その結果、第1のアルミニウム層12と等2のアルミニ
ウム$17のパターニングの位置合せ余裕も従来方法に
°較べて大幅に小さくて済む。例えば、槙2図に示すよ
うに、第2層配線17も第2層配線17も同じ幅、例え
ば3μmでよい。箸1層配l;s12と第2層配線17
ばたとえ位置ずれがあっても、どこか一部分で接触して
いれば、相互の接触箇所は平坦な接触の仕方であるから
、電気的なコンタクトとしては充分なものだからである
As a result, the alignment margin for patterning the first aluminum layer 12 and the second aluminum layer 17 can be significantly smaller than in the conventional method. For example, as shown in Fig. 2, the second layer wiring 17 and the second layer wiring 17 may have the same width, for example, 3 μm. Chopsticks 1st layer wiring; s12 and 2nd layer wiring 17
For example, even if there is a misalignment, as long as they are in contact with each other at some point, the mutual contact points are flat and are sufficient for electrical contact.

以上は、本発明f:1つの実施列に添って説明してきた
が、本発明はこの実施例の特定の事項に限定されるもの
ではない。例えば、第1のアルミニウム層をパターニン
グする際、まず層間接続部を含む配線パターンを作成し
てから層間接続部を除く配線部分だけを途中の高さまで
エツチングしてもよい、眉間絶縁膜の平坦化方法は上記
のものに限られない、さらに、配憩層、絶縁層の材質、
形状、寸法、処理方法等も上記のものに限定されない。
Although the present invention f has been described above with reference to one embodiment, the present invention is not limited to the specific matters of this embodiment. For example, when patterning the first aluminum layer, a wiring pattern including interlayer connections may be created first, and then only the wiring portion excluding the interlayer connections may be etched to an intermediate height. The method is not limited to the above, and the material of the distribution layer and the insulating layer,
The shape, dimensions, processing method, etc. are not limited to those described above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多層配線において上層配線が平坦な下
地の上に堆積てれる。ので断線のおそれがない。従りて
、半導体装置の部質り、信頼性等が向上する。断#(段
差)のおそれがないので各配線層と層間接続部(従来の
スルーホールに相当する)の位置合せ余裕が大幅に小さ
くでき、その結果半導体装置の高密開化に寄与する。
According to the present invention, in a multilayer wiring, the upper layer wiring is deposited on a flat base. Therefore, there is no risk of wire breakage. Therefore, the quality and reliability of the semiconductor device are improved. Since there is no fear of disconnection (steps), the alignment margin between each wiring layer and the interlayer connection portion (corresponding to a conventional through hole) can be significantly reduced, which contributes to higher density opening of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図&−Fは本発明の実施列における工程順の半導体
装置の要部断面図、第2図は本発明の実施例の多層配線
の平面図、瀉3図入〜Cは従来方法における半導体装置
の工程順の!部断面図、第4図は従来例の多層配線のス
ルーホール部の平面図を示す。 1・・・基板 2・・・第1層配線 4・・・層間絶縁膜 6・・・スルーホ“ル ア・・・1π2層配線 11・・・基板 12・・・第1層配線および層間接続部15.16・・
・絶i層 17・・・第2層配線 以下余白 第1図 第3図 第4図
1 & -F are cross-sectional views of main parts of a semiconductor device in the order of steps in the implementation row of the present invention, FIG. Semiconductor device process order! FIG. 4 shows a plan view of a through-hole portion of a conventional multilayer wiring. 1... Substrate 2... First layer wiring 4... Interlayer insulating film 6... Through hole... 1π2 layer wiring 11... Substrate 12... First layer wiring and interlayer connection part 15.16...
・I-layer 17... Margin below 2nd layer wiring Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、(1)基板上に、形成すべき第1層配線および層間
絶縁膜の厚さの合計の厚さに導電性材料層を形成し、(
2)該導電性材料層を平面的形状および厚さの両方に関
して選択的にエッチングして、第1層配線と第2層配線
を電気的に接続するための該導電性材料層の厚さのまま
の層間接続部と、該導電性材料層の中間の厚さの第1層
配線を形成し、(3)該第1層配線、該層間接続部およ
び前記基板上に絶縁層を堆積した後、該絶縁層を途中ま
でエッチングして、該絶縁層および該層間接続部の表面
を平坦化しかつ該層間接続部の頂部を露出させ、そして
(4)層間絶縁膜を成す該絶縁層および前記層間接続部
上に第2層配線を形成する工程を含むことを特徴とする
半導体装置の製造方法。
1. (1) Form a conductive material layer on the substrate to a total thickness of the first layer wiring and the interlayer insulating film to be formed, and (
2) Selectively etching the conductive material layer with respect to both its planar shape and thickness to increase the thickness of the conductive material layer for electrically connecting the first layer wiring and the second layer wiring. forming a first layer wiring having a thickness intermediate between the remaining interlayer connections and the conductive material layer, and (3) depositing an insulating layer on the first layer wiring, the interlayer connections, and the substrate; , etching the insulating layer halfway to planarize the surfaces of the insulating layer and the interlayer connection part and exposing the tops of the interlayer connection part, and (4) etching the insulating layer and the interlayer connection part forming an interlayer insulating film. A method for manufacturing a semiconductor device, comprising the step of forming a second layer wiring on a connection portion.
JP24236184A 1984-11-19 1984-11-19 Manufacture of semiconductor device Pending JPS61121347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24236184A JPS61121347A (en) 1984-11-19 1984-11-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24236184A JPS61121347A (en) 1984-11-19 1984-11-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61121347A true JPS61121347A (en) 1986-06-09

Family

ID=17088038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24236184A Pending JPS61121347A (en) 1984-11-19 1984-11-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61121347A (en)

Similar Documents

Publication Publication Date Title
JPS60119749A (en) Multiple layered wiring member
JPS63240045A (en) Semiconductor device
JPS61121347A (en) Manufacture of semiconductor device
JP2508831B2 (en) Semiconductor device
JPS5833854A (en) Manufacture of semiconductor device
JPS63260054A (en) Semiconductor integrated circuit device
JPH0570301B2 (en)
JPS6235537A (en) Semiconductor device and manufacture thereof
JPS5966150A (en) Semiconductor device and manufacture thereof
JPH0621240A (en) Wiring connecting structure of semiconductor device and manufacture thereof
JPH07161720A (en) Semiconductor device and its manufacture
JPS5858746A (en) Manufacture of semiconductor device
JPS6329549A (en) Multilayer interconnection structure
JPH01144656A (en) Multilayer interconnection structure and manufacture thereof
JPH03108359A (en) Wiring structure and formation method therefor
JPH0587973B2 (en)
JPS62271453A (en) Manufacture of semiconductor element
JPS59163838A (en) Manufacture of semiconductor device
JPS60192348A (en) Method for forming multilayer wiring of semiconductor integrated circuit
JPS61172350A (en) Semiconductor device and manufacture thereof
JPS60124950A (en) Semiconductor device having multilayer interconnection structure
JPS592351A (en) Manufacture of semiconductor device
JPS63207153A (en) Manufacture of semiconductor device
JPS6384140A (en) Semiconductor integrated circuit device
JPS62293644A (en) Manufacture of semiconductor device