JPS60192348A - Method for forming multilayer wiring of semiconductor integrated circuit - Google Patents

Method for forming multilayer wiring of semiconductor integrated circuit

Info

Publication number
JPS60192348A
JPS60192348A JP4757884A JP4757884A JPS60192348A JP S60192348 A JPS60192348 A JP S60192348A JP 4757884 A JP4757884 A JP 4757884A JP 4757884 A JP4757884 A JP 4757884A JP S60192348 A JPS60192348 A JP S60192348A
Authority
JP
Japan
Prior art keywords
insulating film
wiring metal
wiring
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4757884A
Other languages
Japanese (ja)
Inventor
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP4757884A priority Critical patent/JPS60192348A/en
Publication of JPS60192348A publication Critical patent/JPS60192348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a multilayer wiring having no disconnection of wire by a method wherein, after an etching process has been performed in such a manner that the contact part of a lower wiring metal will be protruded, an insulating film is formed on the surface other than the contact part in such a manner that it will be positioned on the same plane surface. CONSTITUTION:A surface protective film 2 and the first layer wiring metal film 3 are provided on a semiconductor substrate 1, and a photoresist 9 is coated on a contact part only. Then, the wiring metal film 3 located on the area other than a protruded part 8 is removed by etching in the thickness of t1 using the photoresist 9 as a mask. Subsequently, a photoresist 10 is coated, a patterning is performed, and after an etching has been conducted, the resist 10 is removed. Then, an insulating film 11 of the thickness t1 is provided, a photoresist 12 is coated on the surface, excluding the protruded part. After an etching has been performed on the insulating film located on the section corresponding to the protruded part 8 using the resist 12 as a mask, the resist 12 is removed, and the second wiring metal film 5 is coated.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体集積回路の配線電極層が2層以上にわた
る多層配線の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a method for forming a multilayer wiring in which a semiconductor integrated circuit has two or more wiring electrode layers.

〔従来技術とその問題点〕[Prior art and its problems]

一つの半導体基板上に極めて微細に加工された多数の機
能素子が集積された大規模半導体集積回路などでは、上
部電極の配線が非常に複雑となり、ただ1層の金属膜だ
けでは必要とする接続個所の全てを満足することができ
ず、絶縁膜を介在させて第2層、第3層と配線金属膜を
配設する多層配線を行うことが一般に行われている。
In large-scale semiconductor integrated circuits where a large number of extremely finely processed functional elements are integrated on a single semiconductor substrate, the upper electrode wiring becomes extremely complex, and the required connections cannot be achieved with just one layer of metal film. Since it is not possible to satisfy all of the above requirements, it is common practice to perform multilayer wiring in which a second layer, a third layer, and a wiring metal film are disposed with an insulating film interposed therebetween.

このような多層配線を形成する際に最も重要なことは各
配線金属膜が絶縁膜に設けられたコンタクトホールを介
して良好な接続状態を保つことである。然るに一般に層
間絶縁膜に設けられたコンタクトホール壁の配線金属膜
との段差形状に急峻な部分が生じやすいために、段差部
でのステップカバレージ不良が発生し断線をひき起こす
ことがある。
The most important thing when forming such a multilayer wiring is to maintain a good connection between each wiring metal film through a contact hole provided in an insulating film. However, in general, a steep portion is likely to occur in the shape of a step between the contact hole wall provided in the interlayer insulating film and the wiring metal film, resulting in defective step coverage at the step portion, which may lead to wire breakage.

例えば第1図は半導体集積回路の一部を模式的な断面図
で示したものであり、半導体基板1の主表面上に表面保
護膜2を介在させて第1層目の配線金属3を設け、さら
に絶縁膜4を被着し、その上に第2層目の配線金属5を
設けて2層配線とした場合であるが、配線金属3,5の
接続は絶縁膜4にあけられたコンタクトホール6により
行われる。しかし第1図に示すように絶縁膜4による段
差のために第2層目の配線金属5はコンタクトホール6
で鋭い角部が形成され断線してしまうことがある。
For example, FIG. 1 is a schematic cross-sectional view of a part of a semiconductor integrated circuit, in which a first layer of wiring metal 3 is provided on the main surface of a semiconductor substrate 1 with a surface protective film 2 interposed therebetween. In this case, an insulating film 4 is further deposited, and a second layer of wiring metal 5 is provided on top of it to form a two-layer wiring. It will be held in Hall 6. However, as shown in FIG. 1, due to the step difference caused by the insulating film 4, the second layer wiring metal 5 is
Sharp corners may be formed and wires may break.

これに対し、ステップカバレージ不良を回避する方法と
して、これまでいくつかの方法が行われてきた。第2図
は第1図と共通部分を同一符号で表わした半導体集積回
路の部分的断面図であるが例えば第2図のように絶縁膜
40表面にこの絶縁膜よりもエツチング速度の速い膜7
を設けておき、コンタクトホール6を形成するフォトエ
ツチング工程で横方向のエツチングを縦方向より促進さ
せることにより、コンタクトホール6にテーパーをつけ
絶縁膜4に急峻な段差が生じないようにし、配線金属5
のステップカバレージの悪さを改善するベベル法も対策
の一つである。しかしこの方法は第1図の場合に比べて
処理自体は簡単であるとしてもコンタクトホール6にテ
ーパーをもたせた分だけ配線幅を広くしなければならな
いから、機能素子を微細化して集積度を高めるためには
好ましくない。その他に第2層目配線金属のステップカ
バレージ不良をな(丁ための方法として第1層配線金属
のAtのコンタクト部以外を陽極酸化してアルミナ(A
l2Og )の絶縁膜とし、コンタクト部を残す陽極酸
化法もあるが、横方向への酸化も同時に進行するので前
記ベベル法よりやや良好な程度であってやはりテーパ一
部が形成されるために微細な機能素子をもった集積回路
への適用には限界がある。その他所定の配線At膜厚と
同じ厚さの絶縁膜に形成された配線パターンの溝にAt
を埋め込んで見掛は上平坦な第1層目At配線のパター
ンを形成するリフトオフ法は真に平坦な層とするには、
フォトレジストの塗布、除去などの工程を加える必要が
あるので工数がかかり、一方第1層配線Atのパターン
をエツチングにより形成した後、その上からポリイミド
などの樹脂を塗布し平坦な層とする樹脂絶縁法はポリイ
ミドなどの微細加工が、その化学的性質から制約を受け
るなど、以上各方法ではそれぞれのもっている欠点を避
けることができない。
On the other hand, several methods have been used to avoid step coverage defects. FIG. 2 is a partial cross-sectional view of a semiconductor integrated circuit in which parts common to those in FIG. 1 are denoted by the same reference numerals. For example, as shown in FIG.
In the photo-etching process for forming the contact hole 6, etching in the lateral direction is promoted more than in the vertical direction, thereby tapering the contact hole 6 and preventing the formation of steep steps in the insulating film 4. 5
One of the countermeasures is the bevel method to improve poor step coverage. However, although this method is simpler in processing than the case shown in Figure 1, the wiring width must be widened by the taper of the contact hole 6, so the functional elements are miniaturized to increase the degree of integration. Not good for this purpose. In addition, to prevent step coverage defects in the second layer wiring metal, alumina (A
There is also an anodic oxidation method that creates an insulating film of l2Og) and leaves a contact part, but since oxidation in the lateral direction also proceeds at the same time, it is slightly better than the bevel method, but it is still fine because a tapered part is formed. There are limits to its application to integrated circuits with functional elements. In addition, At in the groove of the wiring pattern formed in the insulating film with the same thickness as the predetermined wiring At film thickness.
In order to make a truly flat layer, the lift-off method is used to form an apparently flat first layer At wiring pattern by embedding
It takes a lot of man-hours because it is necessary to add processes such as applying and removing photoresist, but on the other hand, after forming the pattern of the first layer wiring At by etching, a resin such as polyimide is applied over it to form a flat layer. Each of the above-mentioned methods cannot avoid its own drawbacks, such as the fact that microfabrication of materials such as polyimide is limited by the chemical properties of the insulation method.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述の欠点を除去し、微細化された多数
の半導体素子を備えた集積回路の多層配線を行うに際し
て、良好な配線金属間の接続を保つことが可能な多層配
線の形成方法を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to form a multilayer interconnection method capable of maintaining good interconnection between interconnect metals when performing multilayer interconnection of an integrated circuit equipped with a large number of miniaturized semiconductor elements. Our goal is to provide the following.

〔発明の要点〕[Key points of the invention]

本発明は、下層配線金属のコンタクト部以外の表面を適
当な深さだけエツチング除去し、コンタクト部が突出す
るように加工した後、コンタクト部以外の表面に絶縁膜
を抜機し、絶縁膜表面とコンタクト部の表面とが同一平
面上にあるようにして、この面の上に上層配線金属を被
着することにより、段差に基因する断線の生じない良好
な接続をもった多層配線を形成するものである。
In the present invention, the surface of the lower wiring metal other than the contact portion is removed by etching to an appropriate depth, the contact portion is processed to protrude, and then the insulating film is cut out from the surface other than the contact portion. By making the surface of the contact part on the same plane and depositing the upper layer wiring metal on this surface, a multilayer wiring with good connections is formed without disconnections caused by steps. It is.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第3図は本発明の方法により形成された配線金属層を有
する半導体集積回路の部分的拡大断面図であり、第4図
は同じく本発明の方法を工程順に示した断面図であるが
、いずれも第1図、第2図と共通部分は同一符号で表わ
しである。
FIG. 3 is a partially enlarged cross-sectional view of a semiconductor integrated circuit having a wiring metal layer formed by the method of the present invention, and FIG. 4 is a cross-sectional view showing the method of the present invention in the order of steps. Also, parts common to those in FIGS. 1 and 2 are represented by the same reference numerals.

嬉3図において、半導体基板1上に表面保護膜(5) 2を介して設けられた第1層配線金属3に、第2層配線
金属5との接続部となる突出部8が形成され、第1層配
線金属3の突出部8が形成されていない表面領域は絶縁
膜4で覆われて突出部8と絶縁膜4のそれぞれ上端面が
同一平面上にあるように配置されており、この平坦な面
に第2層配線金属5が被着されるので配線金属は段差に
よる厚さの変動などが起こり得ない構造となっている。
In Figure 3, a protrusion 8 is formed on the first layer wiring metal 3 provided on the semiconductor substrate 1 via the surface protection film (5) 2, which becomes a connection part with the second layer wiring metal 5. The surface area of the first layer wiring metal 3 where the protrusion 8 is not formed is covered with an insulating film 4, and the protrusion 8 and the insulating film 4 are arranged so that their respective upper end surfaces are on the same plane. Since the second layer wiring metal 5 is deposited on a flat surface, the wiring metal has a structure in which variations in thickness due to steps cannot occur.

第4図ではこのような構造とするための製造工程をA−
Fまで工程順に配列して説明する。まず第4図Aに示す
ように半導体基板1に表面保護膜2とAtなどの第1層
配線金属膜3をこの順に設は配線金属同志のコンタクト
部にのみフォトレジスト9を塗布する。この際第1層配
線金属膜3の厚さを第3図に示した突出部8の厚さ、す
なわち、第3図の絶縁膜4の直下に位置する部分の厚さ
t。
In Figure 4, the manufacturing process for creating such a structure is shown in A-
The steps will be explained by arranging them in the order of steps up to F. First, as shown in FIG. 4A, a surface protective film 2 and a first-layer wiring metal film 3 such as At are formed on a semiconductor substrate 1 in this order, and a photoresist 9 is applied only to the contact portions between the wiring metals. At this time, the thickness of the first layer wiring metal film 3 is the thickness of the protruding portion 8 shown in FIG. 3, that is, the thickness t of the portion located directly below the insulating film 4 in FIG.

と突出部8の突出した部分のみの厚さtlとの和to+
を工としておく必要がある。次にフォトレジスト9をマ
スクとして突出部8以外の配線金属膜3を厚さtlだけ
エツチング除去すると第4図B(6) となる。次いで第4図Cのように第2層配線金属膜を形
成するためにフォトレジスト10を塗布してパターニン
グし工、チング後レジスト10を除去すると第4図りの
ようになる。次に厚さtlの絶縁膜11を設は突出部8
を除く表面にフォトレジスト12を被覆すると第4図E
のごとくなる。このレジスト12をマスクとして突出部
8に相当する個所の絶縁膜11を工、チング除去した後
、レジスト12を除去し、さらにktなどの第2層配線
金属膜5を被着することにより、第4図Fのような層間
絶縁を有し、接続が正確な形状をもって行われる集積回
路の2層配線が形成される。なおこの実施例では271
I配線の場合tこついて述べたが3層以上の多層配線を
必要とするときは、上述のA、Fの工程を繰返し行えば
よいことは勿論である。
and the thickness tl of only the protruding portion of the protrusion 8, to+
It is necessary to keep this in mind. Next, using the photoresist 9 as a mask, the wiring metal film 3 other than the protrusion 8 is etched away by a thickness tl, resulting in the result shown in FIG. 4B(6). Next, as shown in FIG. 4C, a photoresist 10 is applied and patterned to form a second layer wiring metal film, and after etching, the resist 10 is removed, resulting in the result as shown in the fourth diagram. Next, an insulating film 11 with a thickness tl is provided on the protrusion 8.
When the photoresist 12 is coated on the surface except for
It becomes like this. Using this resist 12 as a mask, the insulating film 11 at the portions corresponding to the protrusions 8 is etched and removed, and then the resist 12 is removed and a second layer wiring metal film 5 such as KT is deposited. A two-layer wiring of an integrated circuit is formed which has interlayer insulation as shown in FIG. 4F and whose connections are made in a precise shape. In this example, 271
In the case of I wiring As mentioned above, if multilayer wiring of three or more layers is required, it goes without saying that the above-mentioned steps A and F can be repeated.

fs5図は一部第4図とは異る多層配線の形成方法を示
したものであるがこの場合も第4図と共通部分は同一符
号をもって表わしである。
Although FIG.

第5図に示した方法は、第4図りの工程までは同一であ
るから省略し、第4図りの状態から出発するものとし、
第1層配線金属膜3上に例えばポリイミド、ミラノール
系樹脂などの有機性絶縁膜もしくは無機性の絶縁膜13
を回転塗布し表面を一様に平坦にすると突出部8におけ
るこの絶縁膜13の厚さは、突出部が形成されていない
個所の絶縁膜の厚さよりかなり薄くなるが第5図Aのご
とく半導体基板1と平行な平面が得られる。
The method shown in FIG. 5 is omitted because the steps up to the fourth drawing are the same, and starting from the state of the fourth drawing,
An organic insulating film or inorganic insulating film 13 made of, for example, polyimide or milanol resin is formed on the first layer wiring metal film 3.
When the surface of the insulating film 13 is uniformly flattened by spin coating, the thickness of the insulating film 13 at the protrusion 8 becomes considerably thinner than the thickness of the insulating film in the area where no protrusion is formed, but as shown in FIG. A plane parallel to the substrate 1 is obtained.

次いで突出部80表面が露出するまで絶縁膜13を一様
にエツチング除去して厚さを減少させれば基板1と平行
な平面をもったまま第5図Bのように移行することがで
きるので、この表面上に第2層配線金属膜5を被着し、
第5図Cの状態が得られる。
Next, if the insulating film 13 is uniformly etched away until the surface of the protrusion 80 is exposed and the thickness is reduced, the transition can be made as shown in FIG. 5B while keeping the plane parallel to the substrate 1. , a second layer wiring metal film 5 is deposited on this surface,
The state shown in FIG. 5C is obtained.

以上第4図と第5図の二つの実施例で示したように、い
ずれの場合も上下の配線金属層の接続部は下層配線金属
の突出部が受持つことになり、上下配線金属間の接続部
以外の個所は絶縁膜が充填密着されたようになるから、
鋭い角をもった配線個所の先する余地はない。なお第5
図の手順によれば第4図Eに相当するフォトレジストを
用いたバター2ングの工程が省略できるという点で有利
である。
As shown in the two embodiments shown in FIGS. 4 and 5 above, in both cases, the connection between the upper and lower wiring metal layers is handled by the protrusion of the lower wiring metal, and the connection between the upper and lower wiring metal layers is The parts other than the connection parts are filled with an insulating film, so
There is no room for wiring points with sharp edges. Furthermore, the fifth
The procedure shown in the figure is advantageous in that the step of buttering using a photoresist corresponding to FIG. 4E can be omitted.

〔発明の効果〕〔Effect of the invention〕

以上実施例で示したように、本発明による多層配線の形
成方法は、半導体基板に絶縁膜を介して設けられる1層
目の配線金属膜が2層目の配線金属膜と接続し導通する
個所のみを凸状に残して、非接続部には凸状接続部と同
じ高さとなるようlこ絶縁膜を被覆して上面を平坦とす
るか、もしくは凸状接続部を完全に覆う厚さの絶縁膜を
設は接続部表面が露出するまでこの絶縁膜の厚さを減じ
て接続部と絶縁膜が同一平面上にあるようにし、これら
の面に2層目の配線金属を被着することにより行われ、
以後この方法を繰り返して任意の数の多層配線を得るこ
とができるから、2層目の配線金属膜を設けるときに、
1層目配線金属膜と絶縁層の段差を全く考慮することな
く行うことができ、したがってステ、プカバレージ不良
は皆無となり、しかも両配線金属間の接続部はなんらの
欠陥を生ずることなく、所期の形状が正確に得られると
い(9) う効果をもたらすものである。
As shown in the embodiments above, the method for forming a multilayer interconnection according to the present invention is applicable to the locations where the first layer interconnect metal film provided on the semiconductor substrate through the insulating film connects to the second layer interconnect metal film and conducts. Either leave the only convex part in a convex shape, and cover the non-connected part with an insulating film so that it is at the same height as the convex connected part to make the top surface flat, or cover it with a thickness that completely covers the convex connected part. When installing an insulating film, reduce the thickness of this insulating film until the surface of the connection part is exposed so that the connection part and the insulating film are on the same plane, and then deposit a second layer of wiring metal on these surfaces. carried out by
After that, this method can be repeated to obtain any number of multilayer wirings, so when providing the second layer of wiring metal film,
This can be done without considering the level difference between the first-layer wiring metal film and the insulating layer, so there will be no step or coverage defects, and the connection between both wiring metals will not have any defects and will be completely fixed in places. This has the effect of accurately obtaining the shape of the phase (9).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はいずれも半導体集積回路の部分的断面
図を示してあり、第1図はステ、プカバレージ不良の説
明図、第2図はベベル法の説明図。 第3図は本発明の配線方法により得られた素子構成図、
第4図は同じく製造工程図、第5図は第4図と一部異な
る本発明の方法の製造工程図である。 1・・・半導体基板、2・・・表面保護膜、3.5・・
・配線金属膜、 4.7.11.13・・・絶縁膜、6
・・・コンタクトホール、8・・・突出!、9.10.
12・・・フオI・レジスト。 (10) 第1図 第2図
1 to 5 each show a partial cross-sectional view of a semiconductor integrated circuit, FIG. 1 is an explanatory diagram of steps and poor coverage, and FIG. 2 is an explanatory diagram of a bevel method. FIG. 3 is an element configuration diagram obtained by the wiring method of the present invention,
FIG. 4 is a manufacturing process diagram, and FIG. 5 is a manufacturing process diagram of the method of the present invention, which is partially different from FIG. 4. 1... Semiconductor substrate, 2... Surface protective film, 3.5...
・Wiring metal film, 4.7.11.13...Insulating film, 6
...Contact hole, 8...protrudes! , 9.10.
12...Fuo I resist. (10) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板表面に被着される下層配線に突出部を形
成し、次いで該襟下層配線の前記突出部以外を覆い表面
が前記突出部上面と同一平面をなす絶縁膜を設け、前記
平面上に上層配線を被着することを特徴とする半導体集
積回路の多層配線の形成方法。
1) A protrusion is formed on the lower layer wiring to be adhered to the surface of the semiconductor substrate, and then an insulating film is provided that covers the lower layer wiring other than the protrusion and whose surface is flush with the upper surface of the protrusion, and 1. A method for forming multilayer wiring for a semiconductor integrated circuit, the method comprising depositing upper layer wiring on a semiconductor integrated circuit.
JP4757884A 1984-03-13 1984-03-13 Method for forming multilayer wiring of semiconductor integrated circuit Pending JPS60192348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4757884A JPS60192348A (en) 1984-03-13 1984-03-13 Method for forming multilayer wiring of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4757884A JPS60192348A (en) 1984-03-13 1984-03-13 Method for forming multilayer wiring of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS60192348A true JPS60192348A (en) 1985-09-30

Family

ID=12779128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4757884A Pending JPS60192348A (en) 1984-03-13 1984-03-13 Method for forming multilayer wiring of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60192348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140634U (en) * 1987-03-05 1988-09-16
KR100647568B1 (en) * 1999-11-25 2006-11-17 삼성에스디아이 주식회사 Sealed battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140634U (en) * 1987-03-05 1988-09-16
KR100647568B1 (en) * 1999-11-25 2006-11-17 삼성에스디아이 주식회사 Sealed battery

Similar Documents

Publication Publication Date Title
JPS62279661A (en) Method of forming penetrating conductor in integrated circuit
JPS60192348A (en) Method for forming multilayer wiring of semiconductor integrated circuit
JPS5833854A (en) Manufacture of semiconductor device
JPS5867043A (en) Manufacture of semiconductor device
JPS62155537A (en) Manufacture of semiconductor device
JPH0587973B2 (en)
JPS6235537A (en) Semiconductor device and manufacture thereof
JPS62136857A (en) Manufacture of semiconductor device
JPH0621240A (en) Wiring connecting structure of semiconductor device and manufacture thereof
JPH0340449A (en) Semiconductor device provided with integrated circuit
JP2758765B2 (en) Method for manufacturing semiconductor device
JPS6148942A (en) Method of forming electrode of semiconductor device
JPH0542139B2 (en)
JPH01273333A (en) Manufacture of semiconductor device
JPS61172350A (en) Semiconductor device and manufacture thereof
JPH07106419A (en) Fabrication of semiconductor device
JPS62293644A (en) Manufacture of semiconductor device
JPS63312658A (en) Manufacture of semiconductor device
JPH06112209A (en) Production of semiconductor device
JPH0458185B2 (en)
JPS59148348A (en) Semiconductor device and manufacture thereof
JPH01128544A (en) Semiconductor device and manufacture thereof
JPS6022342A (en) Manufacture of semiconductor integrated circuit device
JPS60251645A (en) Formation of multilayer interconnection on semiconductor substrate
JPH04101447A (en) Manufacture of multilayer interconnection semiconductor integrated circuit