JPS58197844A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58197844A
JPS58197844A JP8000982A JP8000982A JPS58197844A JP S58197844 A JPS58197844 A JP S58197844A JP 8000982 A JP8000982 A JP 8000982A JP 8000982 A JP8000982 A JP 8000982A JP S58197844 A JPS58197844 A JP S58197844A
Authority
JP
Japan
Prior art keywords
film
insulating film
wiring
conductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8000982A
Other languages
Japanese (ja)
Inventor
Ryozo Nakayama
中山 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP8000982A priority Critical patent/JPS58197844A/en
Publication of JPS58197844A publication Critical patent/JPS58197844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce electrostatic capacitance accompanied by a parallel wiring layer isolated by the stepped difference section of a rugged surface section largely, and to inhibit the delay of signal propagation due to the miniaturization of wiring by forming the rugged surface section of a predetermined pattern having steep stepped difference to the surface of an insulating film and forming the wiring layer. CONSTITUTION:A SiO2 film 32 is formed onto a Si substrate 31 to which an element region is formed, and a concave section of approximately 1mum stepped difference is formed to the surface of the SiO2 film 32 through reactive ion etching while using a photo-resist as a mask. A phosphorus doped polycrystalline silicon film 33 is deposited on the whole surface, and a SiO2 film 34 is deposited on the film 33 by approximately 1.0mum as a mask material. The whole surface is etched by using NH4F, and the stepped difference section of the SiO2 film 34 is removed selectively through etching. Only the polysilicon film 33 of the stepped difference section is changed into oxide films 35 by selectively oxidizing the polysilicon film 33 through a combustion oxidation method while using the residual SiO2 film 34 as a mask. The recessed sections are buried completely with the polysilicon film 33 and the thermal oxide films 35 of the SiO2 film 34 because the volume of the thermal oxide films 35 is increased up to approximately twice as large as the polysilicon film 33 at that time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置およびその製造方法に係り、特に高
集積化、微細化が進んだ半導体装置の配線構造とその形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a wiring structure and a method for forming the same in a semiconductor device that is highly integrated and miniaturized.

〔発明の技術的背景およびその問題点〕最近、半導体装
置製造におけるリングラフイ技術、エツチング技術等が
進歩し、半導体装置の高集積化、微細化が一段と進んで
いる。半導体装置の微細化が進むと配線パターンも微細
化され、隣接する配線間隔も微細化されてくる。その結
果、隣接する配線間の浮遊容量が増大し、これが信号伝
播の遅延を大きくするという問題が生じる。
[Technical background of the invention and its problems] Recently, ring graphing technology, etching technology, etc. in semiconductor device manufacturing have progressed, and semiconductor devices are becoming more highly integrated and miniaturized. As semiconductor devices become increasingly finer, wiring patterns also become finer, and the spacing between adjacent wires also becomes finer. As a result, a problem arises in that stray capacitance between adjacent wirings increases, which increases signal propagation delay.

第1図は半導体基板1上に絶縁膜2を介して3本の平行
な配線層31〜33ヲ形成した例を示している。いま、
配線層31〜3sの幅Wと間隔Sを等しいとし、真中の
配線層33に注目すると、これに付随する単位長さ当り
の容1ttca、絶縁膜2の容量をCm、配線層間のギ
ャップによる容量f CsとしてC=C1+20雪で表
わされる。そして、w−8の値を変化させたときの容量
Cの変化管示すと第2図の実験のようになる。一点鎖線
は絶縁膜2による容量C,のみの場合である。図から明
らかなように、容量Cは、W=8が絶縁膜2の膜厚To
xとほぼ等しくなる点Aが極小at示し、これにより寸
法が微細になると増大する。これは、容量c1の減少割
合よりも容t Cmの増大−合が大きくなるためである
FIG. 1 shows an example in which three parallel wiring layers 31 to 33 are formed on a semiconductor substrate 1 with an insulating film 2 interposed therebetween. now,
Assuming that the width W and the spacing S of the wiring layers 31 to 3s are equal, and focusing on the middle wiring layer 33, the associated capacitance per unit length is 1ttca, the capacitance of the insulating film 2 is Cm, and the capacitance due to the gap between the wiring layers. f Cs is expressed as C=C1+20 snow. The experiment shown in FIG. 2 shows how the capacitance C changes when the value of w-8 is changed. The one-dot chain line represents the case where only the capacitance C due to the insulating film 2 is present. As is clear from the figure, the capacitance C is determined by the film thickness To of the insulating film 2 when W=8.
Point A, which is approximately equal to x, represents a minimum at, which increases as the dimensions become finer. This is because the rate of increase in the capacity t Cm is greater than the rate of decrease in the capacity c1.

このように、配線が微細化されると容量の増大による信
号伝播の遅れが重大な問題となってくる。
As described above, as wiring becomes finer, delays in signal propagation due to increased capacitance become a serious problem.

また従来法による配線の微細化は、電流容量の減少、配
線抵抗の増加、エレクトロマイグレーションによる切断
等をもたらし、半導体装置の信頼性低下につながる。
Further, miniaturization of wiring by conventional methods results in a decrease in current capacity, an increase in wiring resistance, disconnection due to electromigration, etc., which leads to a decrease in the reliability of semiconductor devices.

〔発明の目的〕[Purpose of the invention]

本発明は、配線層に付随する静電容量の大輪な低減を図
り、もって配線の微細化による信号伝播の遅延を抑え、
また従来のリングラフィ技術を用いて配線のより一層の
微細化を行うことなく容易に高集積化を可能とし、信頼
性向上を図つ死生導体装置の製造方法を提供するもので
ある。
The present invention aims to significantly reduce the capacitance associated with wiring layers, thereby suppressing delay in signal propagation due to miniaturization of wiring,
Furthermore, the present invention provides a method for manufacturing a life-death conductor device that uses conventional phosphorography technology to easily achieve high integration without further miniaturization of wiring, and that improves reliability.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上に絶縁at介して同一導電膜形
成工程で形成される互いに平行に隣接す中 る部分を有する配線層金膜けてなる半導体装置において
、前記絶縁膜の表面に急峻な段差をもつ所足のパターン
の凹凸を設けておき、前記配線層の互いに平行に隣接す
る部分の一方を凹部、他方管曲部上に水平方向の離間距
離が#′!!ff零となるように配設したこと、換言す
れば、凹凸の段差部で分離され九平行配線層を設は九こ
とを特徴とする。
The present invention provides a semiconductor device comprising a wiring layer gold film formed on a semiconductor substrate in the same conductive film formation process via an insulating layer, and having central portions adjacent to each other in parallel. A suitable pattern of unevenness with steps is provided, and one of the parallel adjacent portions of the wiring layer has a concave portion, and the other portion has a horizontal separation distance of #’! ! It is characterized in that it is arranged so that ff is zero, in other words, it is characterized in that it has nine parallel wiring layers separated by uneven step portions.

本発明はま友、上記の如く配線構造を形成するに当って
、まず素子領緘が形成された半導体基板上の絶縁膜表面
に配線パターンに対応した凹凸を形成し、・その上に全
面に導体膜を被着し、更にその表面全面に段差部でエツ
チング速度の速いマスク材を堆積して全面エツチングを
行って前記凹凸の段差でこのマスク材を選択的に除去し
、残されたマスク材を用いて前記導体膜を選択に絶縁膜
にして凹凸の段差部で分離され九互いに平行に隣接する
配線層を形成することを4111にとする。
In forming the wiring structure as described above, the present invention first forms irregularities corresponding to the wiring pattern on the surface of the insulating film on the semiconductor substrate on which the element area is formed, and then overlays the entire surface. A conductive film is deposited, and then a masking material with a high etching rate is deposited on the entire surface of the conductive film at the stepped portions, the entire surface is etched, and this masking material is selectively removed at the uneven steps, and the remaining masking material is removed. In step 4111, the conductor film is selectively made into an insulating film using the method to form nine wiring layers adjacent to each other in parallel and separated by uneven step portions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、凹凸パターンに自己整合された状態で
同一導電膜からなる配線層の互いに平行して隣接する部
分の一方が凹部に1他方が凸部に配設される。従って隣
接する配線層同志が直接対向することがないか、対向し
たとしてもその対向面積管極めて小さいものとすること
かで゛きるから、配線間の静電容量が小さくなり、配線
での信号伝播の遅れが小さくなる。ま九隣接する配線層
間は水平方向の離間距離がほぼ零であり、従って配線幅
をそれ程微細にしなくても配線密度を高くして素子のよ
り一層の高集積化が図られる。また配線幅をそれ程倣細
にしなくてもよいため、従来のリングラフィ技術を用い
て容易に半導体装置の高集積化を達成できる。同様の理
由で、配線の電流容1の減少、エレクトロマイグレーシ
ョンによる断線、高抵抗化などを防止して、半導体装置
の信頼性向上を図ることができる。
According to the present invention, one of parallel and adjacent portions of wiring layers made of the same conductive film is disposed in the concave portion and the other portion is disposed in the convex portion in a self-aligned state with the concavo-convex pattern. Therefore, adjacent wiring layers do not directly oppose each other, or even if they do, the opposing area can be made extremely small, which reduces the capacitance between wirings and improves signal propagation in the wiring. delay becomes smaller. Furthermore, the distance between adjacent wiring layers in the horizontal direction is almost zero, so even if the wiring width is not made very fine, the wiring density can be increased to achieve even higher integration of the device. Further, since the wiring width does not have to be made so narrow, it is possible to easily achieve high integration of semiconductor devices using conventional phosphorography technology. For the same reason, the reliability of the semiconductor device can be improved by preventing reduction in the current capacity 1 of the wiring, disconnection due to electromigration, and increase in resistance.

また、配線パターンに応じて絶縁膜に形成した凹凸部の
段差部に変質した絶縁膜を埋め込んで、段差部管平坦化
させる事が出来るこの上にさらに半導体材料を積層する
時の段切れを防止出来る。
In addition, by embedding the deteriorated insulating film into the stepped portion of the uneven portion formed on the insulating film according to the wiring pattern, the stepped portion can be flattened, and step breakage can be prevented when further semiconductor material is laminated on top of this. I can do it.

またこの平坦化により、この後の半導体基板表面の写真
蝕刻がやり易くなり、微細加工が容易に行なえるように
なる。
Further, this planarization makes it easier to perform photoetching on the surface of the semiconductor substrate afterward, making it easier to carry out microfabrication.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例の要部断面を示している。1
1は素子領域が形成されたS1基板であり、この上にS
in、膜12を介して互いに平行に隣接する3本の配線
層131〜13鵞を形成したものである。Slへ膜12
は例えば1.5声調の厚さとしてその表面に約IP溝の
急峻な段差をもつ凹凸パターンが配線パターンに対応さ
せて形成されており、3本の配線層131〜13sは凹
凸の段差より薄い同一導体膜によって、真中の配線層1
3嘗が凹部に、両側の配線層13r、13mが凸部に配
設されている。配線層13s −1hの水平方向離間距
離はほぼ零である。
FIG. 3 shows a cross section of a main part of an embodiment of the present invention. 1
1 is an S1 substrate on which an element region is formed;
In this example, three wiring layers 131 to 13 are formed parallel to each other and adjacent to each other with the film 12 in between. Membrane 12 to Sl
For example, the thickness is 1.5 tones, and a concavo-convex pattern with a steep step of about the IP groove is formed on its surface corresponding to the wiring pattern, and the three wiring layers 131 to 13s are thinner than the concave-convex step. With the same conductor film, the middle wiring layer 1
The wiring layers 13r and 13m on both sides are arranged in the convex part and the three layers are disposed in the concave part. The horizontal distance between wiring layers 13s-1h is approximately zero.

このような配線構造とすれば、第1図と比較して明らか
なように1配線層に付随する静電容量は非常に小さく、
1九離間距離がほぼ零であるため配線密度の向上により
大幅な高集積化が図られることがわかる。
With such a wiring structure, the capacitance associated with one wiring layer is extremely small, as is clear from the comparison with Figure 1.
It can be seen that since the separation distance is approximately zero, a significant increase in integration can be achieved by increasing the wiring density.

次に本発明の方法の一実施例、を1.第4図(a)〜(
d) t−用いて説明する。まず素子領域が形成され九
81基板31上に810.膜32を約3.0μ輌の厚さ
に形成し、ホトレジストをマスクにして反応性イオンエ
ッチソゲにより5toIl! 320表面に段差が約l
pmの凹部を形成する。いまの場合、凹部はこの810
38132上に形成される3本の平行な配線層のうち真
中の配線パターンに対応する。その後、全面にCVD法
によりリンドープ多結晶シリコン膜33を約500OA
堆積し、更にその上にマスク材としてプラズマ已■法に
より510mm[34t 1.0μ解程度堆積する(&
)。この後、NH4所用いて全面エツチングを行ない、
8IQl膜34の段差部を選択的にエツチング除去する
山)1.プラズマCVD法による810.膜34はNH
4PK対して段差部でのエツチング速度が平坦部でのそ
れの約20倍あるため、全面エツチングによってこのよ
うに段差部のみ除去することができる。そして残された
StO,膜34をiスフとして例えば、水素ガスと酸素
ガスの燃焼(900℃、100分)酸化法によって前記
ポリシリコン膜33を選択酸化する事により、段差部の
前記ポリシリコン霞1−1 1133f)4tilイ□。□イ、。61゜1. 1化
膜(至)の体積はポリシリコン膜(至)の約2倍に増加
する。このためポリシリコン膜の膜厚の4倍以下の寸法
の凹部は、凹部の底のポリシリコン1133とsio、
膜34の熱酸化膜35とで完全に埋め込まれる。′tた
ポリシリコン膜の膜厚の4倍以上の寸法の凹部では、凹
部の角度が熱酸化膜35とsio。
Next, an example of the method of the present invention will be described in 1. Figure 4(a)-(
d) Explain using t-. First, an element region is formed on the 981 substrate 31 810. The film 32 is formed to a thickness of approximately 3.0 μm, and 5 to Il! There is a step difference on the 320 surface of about 1
Form a pm recess. In this case, the recess is this 810
This corresponds to the middle wiring pattern among the three parallel wiring layers formed on 38132. After that, a phosphorus-doped polycrystalline silicon film 33 with a thickness of about 500 OA is applied to the entire surface by CVD.
Then, on top of that, as a mask material, about 510mm [34t 1.0μ solution] is deposited by the plasma method.
). After this, the entire surface was etched using NH4,
8) Mountains for selectively etching away the stepped portions of the IQl film 34) 1. 810. by plasma CVD method. The membrane 34 is NH
For 4PK, since the etching speed at the stepped portion is about 20 times that at the flat portion, only the stepped portion can be removed by etching the entire surface. Then, the polysilicon film 33 is selectively oxidized by the combustion (900° C., 100 minutes) oxidation method of hydrogen gas and oxygen gas using the remaining StO film 34 as an i-splash, so that the polysilicon haze at the stepped portion is removed. 1-1 1133f) 4til □. □I,. 61°1. The volume of the silicide film increases to about twice that of the polysilicon film. For this reason, a recess with a dimension that is four times or less the thickness of the polysilicon film is formed between the polysilicon 1133 and sio at the bottom of the recess.
It is completely buried with the thermal oxide film 35 of the film 34. In the case of a recess having a dimension more than four times the thickness of the polysilicon film, the angle of the recess is equal to that of the thermal oxide film 35.

膜34によって、垂直よりゆるやかな角度金もつように
なる。
The membrane 34 allows the angle to be more gradual than vertical.

さらに平坦化するために例えば、低粘度(8cp程度)
フオトレジス) 36 t 6000rpmのスピンナ
ーを用いて半導体表面全面に塗布して、半導体表面をな
だらかにする。
For further flattening, for example, low viscosity (about 8 cp)
Photoresist) 36 t Apply to the entire surface of the semiconductor using a spinner at 6000 rpm to smooth the surface of the semiconductor.

その後、CF”at含む反応性イオンエツチングRIE
でフォトレジスト36と熱酸化膜35と5IQl膜34
をエツチングレートが同じになるエツチング条件CF4
50ccAnin、圧力30mTorrでエツチングす
る。
After that, reactive ion etching RIE containing CF”at
photoresist 36, thermal oxide film 35 and 5IQl film 34.
Etching conditions CF4 where the etching rate becomes the same
Etching is performed using 50 cc Anin and a pressure of 30 mTorr.

凸部のポリシリコン膜33が表面に露出したときにRI
Eを終了し、その後残ったフォトレジスト361)sν
ツシャーにて全て除去する。(d)この実施例によれば
、従来のリングラフィ技衝をその11利用して、例ら難
しい微細加工を行うことなく、配線層間容量を小さくし
て高密度配線を実現することができる。特にCPUのよ
うに配線面積の大きい大規模集積回路に適用した場合に
、チップ面積の減少、高集積化、高信頼性化郷の効果が
得られる。
When the polysilicon film 33 of the convex portion is exposed to the surface, RI
After finishing E, the remaining photoresist 361) sν
Remove everything with a tweezers. (d) According to this embodiment, by utilizing the conventional phosphorography technique No. 11, it is possible to reduce the capacitance between wiring layers and realize high-density wiring without performing difficult microfabrication. Particularly when applied to a large-scale integrated circuit with a large wiring area, such as a CPU, the effects of reduced chip area, higher integration, and higher reliability can be obtained.

さらに半導体表面が平坦になっているため、さらに絶縁
膜等や断切れを起こしやすい金属配線郷の早道体材料を
積層する時に、断切れを防止出来るので、多層配線が容
易に行なえる1、また断差が無くなるためフォトレジス
トパターンが形成しやす(、RIEもオーバーetg 
f少なく出来る等の微細加工が簡単に出来る。
In addition, since the semiconductor surface is flat, it is possible to prevent disconnections when layering insulating films and other materials that tend to cause disconnections, making it easier to create multilayer interconnects. Since there is no difference, it is easier to form a photoresist pattern.
Fine processing such as reducing f can be easily performed.

なお、この実施例では導体膜として多結晶シリコンを用
いたが、At、ムz−st、wなどの金属や各種金属ノ
リサイドを用いることができる。また、マスク材として
プラス−t CVD法による8 10m膜を用いたが、
段差部でのエツチング速度が平坦部でのそれより大きい
ものであれば同様のマスク材として用いることができる
。具体的には、スノシツタ法による8i0鵞膜が好適す
る。
Although polycrystalline silicon is used as the conductor film in this embodiment, metals such as At, Muz-st, and W, and various metal norides may also be used. In addition, an 8-10m film made by the plus-t CVD method was used as a mask material.
If the etching rate at the stepped portion is higher than that at the flat portion, it can be used as a similar mask material. Specifically, 8i0 porphyrin obtained by the Sunoshitsuta method is suitable.

AA等の金属を用いた時の選択的に#化する方法には、
陽極酸化法等がある。
The method of selectively converting # when using metals such as AA is as follows:
There are methods such as anodic oxidation.

第5図に本発明の一実施例として二層配線の場合を示す
。45,48は層間絶縁膜であり、47は平坦化用の絶
縁膜である。第一層目の導体膜43と第2層目の導体8
46は8101膜44によって平坦化されたために、互
いに自由な配線パターンおよび形状が形成される。し九
がって、一層目と二層目の導体膜が直交するようなパタ
ーン形成の時は特に有効な方法である。
FIG. 5 shows a case of two-layer wiring as an embodiment of the present invention. 45 and 48 are interlayer insulating films, and 47 is an insulating film for planarization. First layer conductor film 43 and second layer conductor 8
46 is flattened by the 8101 film 44, so that mutually free wiring patterns and shapes are formed. Therefore, this method is particularly effective when forming a pattern in which the first and second conductor films are perpendicular to each other.

次に本発明の方法の一実施例を第6図(a)〜(e)を
用いて説明する。まず素子領域が形成されりSl基板5
1上にSi偽層膜52約2Pwsの厚さに形成し、ホト
レジストをマスクにして反応性イオンエツチングにより
5iOFNI52の一面に段差が約1−N4の凹部を形
成する。いまめ場合、凹部はこの5iOslE52上に
形成される3本の平行な配線層のうち真中の配線パター
ンに対応する。その後、全面にCVD法によりリンドー
プ多結晶シリコン膜33を約4000A堆積し、その上
にSiN膜(54) ’に約50 OA堆積する。
Next, an embodiment of the method of the present invention will be described using FIGS. 6(a) to 6(e). First, an element region is formed on the Sl substrate 5.
A Si false layer film 52 is formed on the 5iOFNI 52 to a thickness of about 2Pws, and a recess with a step height of about 1-N4 is formed on one surface of the 5iOFNI 52 by reactive ion etching using a photoresist as a mask. In this case, the recess corresponds to the middle wiring pattern among the three parallel wiring layers formed on the 5iOslE52. Thereafter, a phosphorus-doped polycrystalline silicon film 33 with a thickness of about 4000 Å is deposited on the entire surface by CVD, and a SiN film (54)' with a thickness of about 50 OA is deposited thereon.

2にその上にマスク材としてプラズマCVD法により5
iOJJ(55’k 5000A &I[Mtlllt
T ル、、 ?−O後、NH/ i用いて全面エツチン
グを行ない、Sio!膜54膜設4部′fr選択的にエ
ツチング除去する。プラズマCVD法によるSin、膜
55はNH4Fに対して段差部でのエツチング速度が平
坦部でのそれの約20倍あ/)ため、全面エツチングに
よってこのように段差部のみ除去することができる。そ
して残されたSi(hg 55 kマスクとしてケミカ
ル・ドライ・エツチング法により段差部のSiN膜5膜
管4ツチング除去する。この後SiN膜54をマスクに
段差部の多結晶シリコン膜33をスチーム酸化によって
熱酸化11[56に変化させる。(&図)つぎにsto
w膜+115.56.SiN膜54t−除去して多結晶
シリコン膜33を無出させる。その後、写真蝕刻法を用
いて)S択的に多結晶シリコン膜53&金パターニング
する、(b図)続己で、例、t Jd cvo −s 
lo1膜57’t−1,5’μm1マオトレジストt 
1.0μm程度積層して半導体表面を平坦し、RIKを
用いてCCVD−8lo膜57を平坦化させる1、(0
図)この方法管用いると平坦化する前に、導体膜53t
−自由にパターニング出来るために、配線パターンの多
様化が可能となる。
2 and 5 as a mask material by plasma CVD method.
iOJJ(55'k 5000A &I[Mtlllt
T le...? After -O, the entire surface was etched using NH/i, and Sio! The film 54 is selectively removed by etching. The etching rate of the Si film 55 formed by the plasma CVD method at the stepped portion is about 20 times that of the flat portion compared to NH4F, so that only the stepped portion can be removed by etching the entire surface. Then, using the remaining Si (hg 55k mask), the SiN film 5 film tube 4 at the stepped portion is removed by chemical dry etching. After that, using the SiN film 54 as a mask, the polycrystalline silicon film 33 at the stepped portion is steam oxidized. Thermal oxidation is changed to 11 [56] by (& figure) Next, sto
w membrane +115.56. The SiN film 54t is removed so that the polycrystalline silicon film 33 is not exposed. After that, the polycrystalline silicon film 53 and gold are selectively patterned using photolithography (photolithography), (Figure b), for example, t Jd cvo -s
lo1 film 57't-1, 5'μm1 maotoresist t
The semiconductor surface is planarized by stacking layers of about 1.0 μm, and the CCVD-8lo film 57 is planarized using RIK.
Figure) When using this method, the conductor film 53t is removed before flattening.
- Since patterning can be performed freely, it is possible to diversify wiring patterns.

また、薄いSiN膜54t−マスクに選択酸化を行なう
ために、微細な凹部での選択酸化が出来ると共に、寸法
制御も行々いやすく、歩留り向上につながる。
Further, since selective oxidation is performed on the thin SiN film 54t-mask, selective oxidation can be performed in minute recesses, and dimensional control can be easily performed, leading to improved yield.

上記実施例で、StO,膜55t−除去してから選択酸
化を行なってもよいし、熱酸化膜56を残置させたまま
多結晶シリコン膜53&のパターニングをしてもよいし
、さらに平坦化の時は、残置させた方が平坦化がしやす
い。
In the above embodiment, the selective oxidation may be performed after removing the StO film 55t, the polycrystalline silicon film 53& may be patterned while the thermal oxide film 56 remains, or the polycrystalline silicon film 53& may be further patterned. In some cases, it is easier to flatten the area if it is left in place.

また配線パターンを凹凸の段差部で分離した後、平坦部
に残る導体膜をそのiま例えばシールド膜として残すよ
うな場合にも、同様にその後のPEP工程を省略するこ
とができる。
Further, even in the case where the conductor film remaining on the flat part is left as a shield film after the wiring pattern is separated by uneven step portions, the subsequent PEP step can be similarly omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の配線構造の例を示す図、第
2図はその配線幅と静電容量の関係を示す図、第3図(
4#疵は本発明の一実施例の配線構造を示す図、第4図
は本発明の一実施例の製造工程を丞す図、第5図及び第
6図(a)〜(e)は本発明の方法の一実施例の製造工
程を説明する九めの図である。 図において、 1.11,31,41.51・・半導体基板(St)2
.12,32,42,45,48.52・・・層間絶i
#!、膜(S103)3.13,33,43,46.5
3  ・・・導電膜(多結晶シリコン膜)34.55・
・・プラズマ5iO1(マスク材)54  ・・・Si
N       (z   )35.56・・・熱酸化
膜 47.57・・・平坦化用絶縁膜 (7317)  41人弁理士則近憲佑 (他1名)第
1図 第2図 バ ーW(=S) 第3図 第4図 覧 4 図 第5図 第6図
Figure 1 is a diagram showing an example of the wiring structure of a conventional semiconductor device, Figure 2 is a diagram showing the relationship between the wiring width and capacitance, and Figure 3 (
4# flaw is a diagram showing the wiring structure of one embodiment of the present invention, FIG. 4 is a diagram showing the manufacturing process of one embodiment of the present invention, and FIGS. 5 and 6 (a) to (e) are It is the ninth figure explaining the manufacturing process of one Example of the method of this invention. In the figure, 1.11, 31, 41.51...Semiconductor substrate (St) 2
.. 12, 32, 42, 45, 48.52... interlayer separation i
#! , membrane (S103) 3.13, 33, 43, 46.5
3... Conductive film (polycrystalline silicon film) 34.55.
...Plasma 5iO1 (mask material) 54 ...Si
N (z) 35.56...Thermal oxide film 47.57...Insulating film for planarization (7317) 41 patent attorneys Norichika Kensuke (and 1 other person) Figure 1 Figure 2 Bar W (= S) Figure 3, Figure 4, Figure 4, Figure 5, Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)  素子領域が形成された半導体基板上に絶縁膜
を介して同−導電膜形成工種で形成された互いに平行に
隣接する部分を有する配線層を設けてなる半導体装置に
おいて、半導体基板上に絶縁膜を形成しその表面に配線
パターンに対応した凹凸を形成する工程と、前記絶縁膜
上全面に導体膜を被着する工程と、前記導体膜上全面に
段差部でエツチング速度の速いマスク材を堆積し全面エ
ツチングを行って前記凹凸の段差部でこのマスク材を選
択的に除去する工程と、残されたマスク材を用いて段差
部の前記導体膜を絶縁膜に変質させて前記凹凸の段差部
で分離され九互いに平行に隣接する配線層を形成する工
程とを備えたことを%像とする半導体装置の製造方法。
(1) In a semiconductor device in which a wiring layer is provided on a semiconductor substrate on which an element region is formed, with an insulating film interposed therebetween, the wiring layer is formed using the same conductive film forming process and has portions adjacent to each other in parallel. a step of forming an insulating film and forming irregularities corresponding to a wiring pattern on its surface; a step of depositing a conductive film over the entire surface of the insulating film; and a step of etching a mask material with a high etching rate at stepped portions over the entire surface of the conductor film. A step of selectively removing the mask material at the step portions of the unevenness by depositing and etching the entire surface, and using the remaining mask material to transform the conductive film at the step portions into an insulating film and removing the mask material from the step portions of the unevenness. 1. A method of manufacturing a semiconductor device comprising: forming interconnection layers adjacent to each other in parallel and separated by a step portion.
(2)前記導体膜を絶縁膜に変質させる方法として、前
記導電体を酸化させる事により、酸化膜に変質させる事
t−特徴とする前記特許請求の範囲第1項記載の半導体
装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, characterized in that the method for transforming the conductor film into an insulating film is to transform the conductor into an oxide film by oxidizing the conductor. .
(3)前記導体膜を絶縁膜に変質させる時、変質し友前
記絶縁膜の体積が、変質する前の前記導電体の体積より
増加する様に形成し、前記凹凸部の一部を埋め込んで、
前記凹凸部の断差部金エツチングした時よりも平坦にな
る↓うにする工程を備えた事を特徴とする特許 載の半導体装置の製造方法
(3) When the conductor film is transformed into an insulating film, the volume of the insulating film is formed to be larger than the volume of the conductor before the transformation, and some of the irregularities are buried. ,
A method for manufacturing a semiconductor device according to a patent, characterized in that it includes a step of making the uneven portions flatter than when etched with gold.
(4)前記変質した絶縁膜形成後、前記凹凸部の凹部を
1層以上の絶縁膜で埋め込み平坦化する工程を具備した
前記特許請求の範囲第3項記載の半導体装置の製造方法
(4) The method for manufacturing a semiconductor device according to claim 3, further comprising the step of, after forming the altered insulating film, filling the concave portion of the uneven portion with one or more layers of insulating film and planarizing it.
JP8000982A 1982-05-14 1982-05-14 Manufacture of semiconductor device Pending JPS58197844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8000982A JPS58197844A (en) 1982-05-14 1982-05-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000982A JPS58197844A (en) 1982-05-14 1982-05-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58197844A true JPS58197844A (en) 1983-11-17

Family

ID=13706324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000982A Pending JPS58197844A (en) 1982-05-14 1982-05-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58197844A (en)

Similar Documents

Publication Publication Date Title
JP4014891B2 (en) Manufacturing method of semiconductor device
KR900001834B1 (en) Method of manufacturing semiconductor device
US5427982A (en) Method for fabricating a semiconductor device
JPS58197844A (en) Manufacture of semiconductor device
JP6130284B2 (en) Optical waveguide fabrication method
JP2888213B2 (en) Method for manufacturing semiconductor device
JPS63271958A (en) Formation of multilayer interconnection
JPH06224161A (en) Manufacture of semiconductor device
KR100935251B1 (en) Method for manufacturing nano space of the semiconductor device
JP2002026020A (en) Method of manufacturing semiconductor device
JPH07221110A (en) Interconnection structure of semiconductor device and manufacture thereof
JPH098007A (en) Method for flattening insulation film
KR100275127B1 (en) Method of planarization multilayer metal line of semiconductor device
JPH0758204A (en) Manufacture of semiconductor device
JPS59175124A (en) Manufacture of semiconductor device
KR19990060819A (en) Metal wiring formation method of semiconductor device
JPS61258431A (en) Integrated circuit and manufacture thereof
JPS6149439A (en) Manufacture of semiconductor device
JPH0936222A (en) Semiconductor device and its manufacture
JP2006344784A (en) Method of manufacturing semiconductor apparatus and semiconductor apparatus
JPH04352455A (en) Manufacture of semiconductor device
JPS58155A (en) Manufacture of semiconductor device
JPS5893351A (en) Semiconductor device and its manufacture
JPH0458533A (en) Wiring structure of semiconductor device and its formation method
JPH10261711A (en) Method for forming etching mask of fine contact hole