JPS5889865A - Insulated gate type semiconductor device and manufacture thereof - Google Patents

Insulated gate type semiconductor device and manufacture thereof

Info

Publication number
JPS5889865A
JPS5889865A JP56187048A JP18704881A JPS5889865A JP S5889865 A JPS5889865 A JP S5889865A JP 56187048 A JP56187048 A JP 56187048A JP 18704881 A JP18704881 A JP 18704881A JP S5889865 A JPS5889865 A JP S5889865A
Authority
JP
Japan
Prior art keywords
layer
gate
drain
source
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56187048A
Other languages
Japanese (ja)
Inventor
Hideshi Ito
伊藤 秀史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56187048A priority Critical patent/JPS5889865A/en
Publication of JPS5889865A publication Critical patent/JPS5889865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region

Abstract

PURPOSE:To decrease input capacity and to improve breakdown resistance voltage by forming a low resistivity second conductive type region on the source side by a self-aligning method, and forming a gate electrode on the region through an insulating film with the surface of a first conductive type well region as a channel part. CONSTITUTION:A P<+>P<->N<-> type three layer Si substrate is prepared. A thick oxidized SiO2 film 23 is formed on the surface of an N<-> type layer 22. Then, a mask 24, which covers a part of and the drain side of the SiO2 film 23, is formed by photoresist and the like. B is introduced in order to form P type well in the surface of the N<-> layer on the source side. The mask is removed, and e.g. As is deposited and diffused. Thus an N<+> source 25, an N<+> drain 26, and a P well 27 are formed. The insulating film on a source drain contact part is removed. A conductor 30 such as Al is evaporated. The unnecessary part of the Al is removed by photoethcing. Thus a source electrode S, the gate electrode G, and a drain electrode D are formed.

Description

【発明の詳細な説明】 本宛’[ハハワー用M Ojl IF Ii ? (金
@酸化物半導体電界効米トランジスタ)に関する。
[Detailed Description of the Invention] To this book' [HAHAWA M Ojl IF Ii? (Relating to gold@oxide semiconductor field effect transistor).

高周波パワー用MO51PITでこれまで採用されてい
る構造として横形オフセットケート構造がある。これは
率1図に示すように低比抵抗P1型S1基iklの上に
高比抵抗P−型81層2を形成し、このP一層2の表面
の一部よりN型ウェル3゜4−1−形成しP一層2及び
Nfiウェル3の表面にC彼拡散層5,6を設けてソー
ス(8)、、ドレイン(D)とする。このソース・ドレ
イン間のP−fi2の表向上に薄い絶縁膜7を介してゲ
ート(G)となる導体層8を形成し、ゲート8Ytマス
クとしてN型不R物を導入することによりM  ’l)
工ん3゜4に接続する^耐圧オフセットゲートN一層9
’i自己姫会的に形成し、上記ゲートGへの電圧印加に
よってソース8・ドレインD間のP一層211diこの
ような横形オフセットゲートMO8IFICTにおいて
は、オフセットゲートの自己整合によりチャネル長を小
さくで1’、01gg(入方容量)、’17118(帰
還容量)を輯滅できる。しかし、エビ。
A horizontal offset gate structure has been adopted in the MO51PIT for high frequency power. As shown in Figure 1, a high resistivity P-type 81 layer 2 is formed on a low resistivity P1 type S1 base ikl, and an N-type well 3° 4- is formed from a part of the surface of this P layer 2. 1- is formed and C diffusion layers 5 and 6 are provided on the surfaces of the P layer 2 and the Nfi well 3 to serve as a source (8) and a drain (D). By forming a conductor layer 8 that will become a gate (G) through a thin insulating film 7 on the surface of P-fi2 between the source and drain, and introducing an N-type impurity as a mask for the gate 8, M'l )
Connect to 3゜4 ^ Voltage offset gate N single layer 9
In such a horizontal offset gate MO8IFICT, the channel length can be reduced by self-alignment of the offset gate. ', 01gg (incoming capacitance), and '17118 (feedback capacitance) can be destroyed. But the shrimp.

タキシャル成長によるP一層2の濃度が規定畜れ、−万
ドレインIIMウェルの濃度が比較的大lいため’08
8(出力容量)が大きくなる欠点がある。
The concentration of P in the 2nd layer due to taxial growth is regulated, and the concentration in the drain IIM well is relatively large in 2008.
8 (output capacity) is large.

他のパワー用MO8FllTとして、slguneti
clにより提案された構造がある。これは第2図に示す
よう和、−P一層10の上にN一層j l 全形成し、
ソース細のM一層表向から犀、い酸化膜12tマス夛と
してP一層10に達するPウェル13を形成し、P−ウ
ェル13及びN一層11.の狭面にソース・ドレインと
なるM+層14.15t−形成する。
As other power MO8FllT, slguneti
There is a structure proposed by cl. As shown in FIG.
From the surface of the M layer of the source thin layer, a P well 13 is formed as a 12 t square oxide film reaching the P layer 10, and the P well 13 and the N layer 11. An M+ layer 14.15t-, which will become a source and drain, is formed on the narrow surface of the M+ layer 14.15t-.

この際ソース宵のN+層!4は前記Pウェル形我時のマ
スクを使用する。ソース・ドレイン間の半導体層上くう
すい絶縁w416を介してゲート17を設けた構造であ
る。この構造ではドレイン接合の°大−分がam皺に制
御しうるN−・P−接合でめるため、FI?動作−に接
合よりの空乏層の広がりが大きく、0゜1111(出力
容量)を小さくしうる。
At this time, the N+ layer of sauce evening! 4 uses the P-well type mask. This is a structure in which a gate 17 is provided on a semiconductor layer between a source and a drain via a thin insulation w416. In this structure, the large part of the drain junction is formed by an N-/P-junction that can be controlled to have am wrinkles, so FI? During operation, the depletion layer spreads widely from the junction, making it possible to reduce 0°1111 (output capacitance).

しかシ、コのMOBI!RTでは(11高抵抗のp−基
板lOを使うため出力コンダクタンスが大とな9出力の
損失が大きいこと、(2)チャンネル部とゲートとの間
には自己整合の関係がないために、 O□。
Only MOBI! In RT, (11) the high-resistance p-substrate IO is used, so the output conductance is large and the output loss is large; (2) there is no self-alignment relationship between the channel part and the gate, so O □.

の低減化が困−であること、(3)ゲート南部16ムが
博いゲート酸化膜であるためここで電界集中を起こしド
レイン耐圧に限界がある仁と及び(4)ソースをチップ
内で基板Kii!ilで1ないためソースワイア【多敷
設けるd111!があること等の欠点がある。
(3) The southern part of the gate is a wide gate oxide film, which causes electric field concentration there and limits the drain breakdown voltage; and (4) the source is connected to the substrate within the chip. Kii! Because it is not 1 in il, source wire [Multi-layer installation d111! There are disadvantages such as the fact that

本発明は上記した在米の技術の欠点t−購消するために
なされたものであり、その目的は、egg帝での超萬周
波パワーMOaFJItTi提供することに6る。
The present invention has been made to overcome the drawbacks of the above-mentioned American technology, and its purpose is to provide ultra-high frequency power MOaFJItTi.

以下本発明【実施内に七って評述する。The present invention will be described in detail below.

実施91を 第3図゛−)〜畦)は本発明によるiチャネルパワーM
O8’lWTの一実厖Ht−その製造フ゛ロセスの王な
る各工mKiEりで示すものである。
Embodiment 91 is shown in FIG. 3 (-) to 3).
The actual production of O8'lWT is shown in terms of each process, which is the king of its manufacturing process.

(a)  P”P  N−型3層81基板を用意する。(a) A P"P N-type three-layer 81 substrate is prepared.

これは例え、ばP−型s1基ζ20の一生面上に戸型拡
散によるP+層21を形成する一方、他主面上にN−型
エピタキシャル層(不純物一度N:l□目−” ato
ms /aj )  22 k成長1J−17t4(F
)である。あるいは厚く形成したP−型81基板に)の
他生面にN”−fi拡散層によりN−型層22t−形成
してもよい。
For example, a P+ layer 21 is formed by door-type diffusion on one main surface of a P-type s1 group ζ20, while an N-type epitaxial layer (impurity once N:l□th-"ato) is formed on the other main surface.
ms/aj) 22k growth 1J-17t4(F
). Alternatively, the N-type layer 22t- may be formed by an N''-fi diffusion layer on the other surface of a thickly formed P-type 81 substrate.

N−型層220表面に酸化炉よる厚いStO自膜23を
形成し、ソース・ドレイン領域を露出するホトエッチ上
行なう。次いでElloslltgの一部及びドレイン
11に覆うホトレジスト等−によるマスク24を形成し
、ソース側のN 層YR面にP型つニ^形成のためのB
(ボロン)を導入する。−(t))  613紀マスク
を除去し、向えば^8(ヒ素)をデポジットし、次いで
拡散するCとKよりN型ソース25.N+ ドレイン2
6(N:10”atoms / mA、 )t−形成す
る。このとき前工程導入されたBは大きい拡散速&をも
ってN一層内に拡散され、A&P一層20に接続し、か
つ横方向へ延びるPウニA(M : 10” atom
s /cd)272形゛成する。
A thick StO self-film 23 is formed on the surface of the N-type layer 220 using an oxidation furnace, and photoetching is performed to expose the source/drain regions. Next, a mask 24 made of photoresist or the like is formed to cover a part of the Elloslltg and the drain 11, and a B layer is formed on the YR surface of the N layer on the source side to form a P type layer.
(Boron) is introduced. -(t)) Remove the 613rd mask, deposit ^8 (arsenic), then diffuse C and K to N-type source 25. N+ drain 2
6 (N: 10"atoms/mA, )t- is formed. At this time, B introduced in the previous process is diffused into the N layer with a high diffusion rate, connects to the A & P layer 20, and P which extends in the lateral direction. Sea urchin A (M: 10” atom
s/cd) form 272.

(0)  !明の鹸化II23t−そのままか又はいっ
たん除去して厚%AaI化膜28とし、ホトエツチング
VC呵ってゲー′ト部及びソース・ドレインコンタクト
部の酸化J11!を除去し、ゲート酸化を行なってうす
いゲート絶縁膜29f:形成する。
(0)! The saponified II 23t of the photo-etching process is either left as it is or once removed to form a thick AaI film 28, and then photoetched to form an oxidized J11 on the gate and source/drain contact areas. is removed and gate oxidation is performed to form a thin gate insulating film 29f.

(司 ソース嗜ドレインコンタクト部上の絶縁膜を除去
し、ムl(アル2ニウム)等の導体30を蒸着し、ホト
エツチング処11によりムl不lI部を彎− 除去して、ソース8.ゲー、トG、ドレイ/D各電I/
ht−形収する。
(Success) The insulating film on the source drain contact part is removed, a conductor 30 such as aluminum (aluminum) is evaporated, the aluminum part is removed by a photoetching process 11, and the source 8. , ToG, Dray/D each electric I/
ht-form.

以上述べたプロ4スにより微速され九yチャネルuos
ylTK$Phては、基板としてP一層27の下に低抵
抗のP+層211有するから出力コンダクタンスが約1
0分の1に低減される。すなわち、出力コンダクタンj
Cgosは、gos=(ooo、)tRDの関係からド
レイン抵抗RDt−小さくすることで低減でlる・ 実JllIfil12 第4図(&)〜(d)は本発明によるNチャネルパワー
MO8PITの他の実施的をその製造プロセスの各1穆
に従って示すものでるる。
Due to the above-mentioned pro 4s, the speed is slowed down and the 9y channel uos
ylTK$Ph has a low resistance P+ layer 211 under the P layer 27 as a substrate, so the output conductance is about 1
reduced to 1/0. That is, the output conductance j
Cgos can be reduced by reducing the drain resistance RDt- from the relationship gos=(ooo,)tRD. The targets are shown according to each step of the manufacturing process.

6L)P”P−N−型3層81基板(冥施列1の場合と
同じ)21−20−221用意する。この上層N一層2
2の上に厚vh@化膜31管形成した後、ホトエッチ忙
より、ゲート部とソースドレイン部となる部分の酸化膜
管除去し、ゲート酸化を行なって薄いゲート絶縁膜32
を形成する。このと婁11−gれ九厚い酸化71131
の一端ムはチャネAIIとなるPウェル拡散、及dM+
拡散のマスク位置で規定し、他QBはゲート位置管規定
するものである。
6L) P" P-N- type 3-layer 81 substrate (same as in the case of maiden row 1) 21-20-221 is prepared. This upper layer N layer 2
After forming a thick VH@ oxide film 31 on 2, the oxide film 31 is removed from the portions that will become the gate and source/drain parts during photoetching, and gate oxidation is performed to form a thin gate insulating film 32.
form. 71131 thick oxidation 71131
One end is the P-well diffusion, which becomes channel AII, and dM+
It is defined by the diffusion mask position, and the other QBs are defined by the gate position.

伽) ゲート絶縁膜32及びドレインllN一層22の
上t415ように多結晶81層33を形成し、仁れをマ
スクとしてソース@KB(ボロン)tイオン打込みによ
り導入し、アニー九処瑠によpP−層20&Cl11続
し、かつゲート艶縁膜下にのひる深いPウェル領域34
を形成する。
佽) A polycrystalline 81 layer 33 is formed as shown in t415 on the gate insulating film 32 and the drain 1N layer 22, and a source @ KB (boron) is introduced by ion implantation using the groove as a mask. - Layer 20 & Cl11 continuous and deep P-well region 34 under the gate glazing film
form.

(0)  ドレイン簡の多結晶Bi膚嶋3を選択的に除
去し、的えばム8(ε票)をデポジット・拡散すること
によりソース・ドレインとなる浅いN+領域35.36
1−形成する。このとき、多結晶81層33iCN  
不純物がドープされ低抵抗化され元ゲート電4ikGt
得る。
(0) By selectively removing the polycrystalline Bi layer 3 of the drain layer and depositing and diffusing Mu8 (epsilon), a shallow N+ region 35.36 is formed to become the source/drain.
1- form. At this time, 81 polycrystalline layers 33iCN
Impurities are doped to lower the resistance and the original gate voltage is 4ikGt.
obtain.

(ホ) ソース・ドレイ/となるH 半導体領域表面3
5.36にム137を選択的に慕情してソース電極B、
ドレイン電極りを形成する。
(e) H semiconductor region surface 3 that becomes source/drain
5.36, selectively attach the source electrode B to the mu 137,
Form a drain electrode.

以上述べたプロセスによp#!造されたyチャネルmo
sFItにおiては、同図(aて示すように11!縁ゲ
ート32とチャネル部との富なりlが工1(IL)の厚
い酸化膜31のムーB位fllKより自己整合的に規定
される微小のチャンネル長か得られ、入力容量Ot s
。の大輪な低減(向えは約」/2)が!I]111@と
なる。
By the process described above, p#! built y channel mo
In sFIt, as shown in FIG. The input capacitance Ot s
. A large reduction (approx./2)! I] becomes 111@.

実施−j3 g5図は実施M2で貌明したHチャネルパワーMO8F
ICTICおいて、ゲート型物の1層目を低比抵抗多結
晶81層37により形成するとともK・2、鳩目を低比
抵抗の金属膜、向えばMQ(モリプデ7)1113Bを
重ねて形成した場合の飼である。
Implementation-j3 g5 Figure shows H channel power MO8F revealed in implementation M2
At ICTIC, the first layer of the gate type was formed with a low resistivity polycrystalline 81 layer 37, and the eyelet was formed by overlapping a low resistivity metal film, MQ (Molypude 7) 1113B. This is a case in point.

なお(ソース及びドレイン知コンタクトする電極39は
MO又はムlを使用す、る。このようにゲート電ll1
i2層とす◆ことくよりゲート及びゲートに接続する配
−の抵抗を低減できる。
(The electrode 39 that makes contact with the source and drain is made of MO or mul.) In this way, the gate voltage ll1
With the i2 layer, the resistance of the gate and the wiring connected to the gate can be reduced.

実施ガ 番 116図−)〜(0)は実施IP12 、 :(で脱明
し九証チャ$A/<’7−M0B’1lR1VC>いて
、ゲート絶縁膜を階段状にしてドレイン−が厚くなるよ
うく形成する場合のプロセスの一部を示す。(IL)ゲ
ート絶縁1[32を形成後、そのソース−の−ii管エ
ツf除去する。
Implementation number 116-) to (0) were implemented in IP12, :(, and the gate insulating film was made into a step-like shape to make the drain thicker. (IL) After forming the gate insulator 1[32, the source -ii tube etching f is removed.

(1))・ゲート酸化を行ない、新たな薄い絶縁膜32
を得るとともに、初めの絶縁[132’は厚1’に少し
増すことになる。
(1)) Perform gate oxidation and create a new thin insulating film 32
, and the initial insulation [132' will be slightly increased in thickness to 1'.

(0)  完成シタ状@f)MOgPITl示す゛。こ
のようにゲート絶縁膜321ドレインーー【厚(するこ
とにより、MOaF1丁動作時ffcの部分ての電界集
中か緩和逼れ、耐圧を向上するCとがてlる・実施N5 第7図は前記した嚢施IF13.一番でし明したパワー
MO8Plテにおいて、Pウェル層34表面よりP+基
板21に達するP 拡散層401に設け、これをN+ン
ソーの電極41とii*したnt−示す。
(0) Completed image @f) MOgPITl is shown. In this way, by increasing the thickness of the gate insulating film 321 drain, the electric field is concentrated or relaxed in the ffc portion during MOaF1 operation, and the breakdown voltage is improved. In the power MO8P1 described above, it is provided in the P diffusion layer 401 that reaches the P+ substrate 21 from the surface of the P well layer 34, and is shown as the electrode 41 of the N+ source.

又、第8図はP+拡散層を形成する代りに表面よりP+
基板に達する深さく10〜20μm・)の凹陥部番21
に形成し、P 基板上N ソース電極とtAノ配−43
により接続する列を示す。これらの構造によれば電Rは
ノースからP+基板21に直接に通るよう複数のソース
ワイヤは不擬ト°なり、ワイヤ自体のインダクタンスが
なくなり、又ワイーヤボンデイング工数がガえに273
に減少しコス′ト節振に寄与て哀る。
In addition, FIG. 8 shows that instead of forming a P+ diffusion layer, P+
Concave part number 21 with a depth of 10 to 20 μm reaching the substrate
formed on the P substrate, the N source electrode and the tA electrode 43
indicates the columns to be connected. According to these structures, the electric current R passes directly from the north to the P+ substrate 21, making the plurality of source wires pseudo-wires, eliminating the inductance of the wires themselves, and reducing the number of man-hours for wire bonding by 273.
It is a pity that the cost has been reduced, contributing to cost savings.

本発明に骨KGHg帯の超高蜘波で使用するパワーMO
8νl’l’Kj用して有効である。
Power MO used in the present invention at ultra-high spider waves in the bone KGHg band
8νl'l'Kj is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−及び第2図はこれまでのパワーM0811Tの例
を示す#面図、第3図(a)〜(勾は本発明の一4Jf
lt例1のMo2)嶌テのプロセスを示す工程I#It
h図、W4 +’#;l’本IAk14(D実y@ n
2 )M Oa y yaTのプロセスを示す工種11
h面図、第5図鉱本発明の実施的3のMOBFl?の断
面図、第6図(a)〜(C)は本発明の実施P14のM
O1ilFlテの一部プロセスを示す工種断面図、第7
図及び第8図は本発明の実施−同50M08FIi?を
示す#面図である。 1・・・P 基板、2・・・P一層(基板)、3.4・
;・H−ウェル゛、5,6・・・1゛ソース、ドレイン
、7・・・ゲート絶縁膜、8・・・ゲート、9・・1−
オフセットゲート、11・・・N−エピタキシャル層、
12・・・4vs酸化換、13・・・Pウェル、14.
.15・・・N+ソース、ドレイン、16・・・ゲート
絶縁膜、17・・・−ゲート、21・・・P+基板、2
2・・・P一層(基板)、22・・・N−エビタ中ビャ
ル層、23・・・厚い酸化膜、2ト・マス夛、25.2
−6・・・1ソース、ドレイン、27・・・Pウェル、
2゛8・・・厚い酸化膜、29・・・ゲート酸化膜、3
0・・・導体層、31・・・厚i酸化膜、32・・・ゲ
ート絶縁膜、33・・・多結轟81層、34・・・Pウ
ェル、35.36・・・N ソース・ドレイン37・・
・低比抵抗半導体層、3−8・・・低比抵抗金属層、4
0・・・P 拡散層、41・・・ム1tji!麿、62
・・・凹陥部、43・・・AI配鍔。 第  1  図 第  2  図。 /J 第  3  図 第  5 図 第  6  図 第  7 図 第  8  図 2/
Figures 1- and 2 are # side views showing an example of the conventional power M0811T, and Figures 3 (a) to (the slopes are 4Jf of the present invention).
ltExample 1Mo2) Step I#It showing the process of Shimate
h figure, W4 +'#;l' book IAk14 (D actual y @ n
2) Work type 11 showing the process of M Oa y yaT
H side view, Figure 5 MOBF1 of Embodiment 3 of the present invention? 6(a) to (C) are the cross-sectional views of FIGS.
Work type cross-sectional diagram showing a part of O1ilFlte process, No. 7
The figure and FIG. 8 show the implementation of the present invention - 50M08FIi? FIG. 1...P substrate, 2...P single layer (substrate), 3.4.
;・H-well゛, 5, 6...1゛source, drain, 7...gate insulating film, 8...gate, 9...1-
Offset gate, 11...N-epitaxial layer,
12...4 vs oxidative conversion, 13...P well, 14.
.. 15...N+ source, drain, 16...gate insulating film, 17...-gate, 21...P+ substrate, 2
2...P single layer (substrate), 22...N-Evita medium vial layer, 23...thick oxide film, 2 layers, 25.2
-6...1 source, drain, 27...P well,
2゛8... Thick oxide film, 29... Gate oxide film, 3
0...Conductor layer, 31...I thick oxide film, 32...Gate insulating film, 33...Multi-layer 81 layer, 34...P well, 35.36...N source. Drain 37...
-Low resistivity semiconductor layer, 3-8...Low resistivity metal layer, 4
0...P diffusion layer, 41...mu1tji! Maro, 62
...Concave part, 43...AI tsuba. Figure 1 Figure 2. /J Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 2/

Claims (1)

【特許請求の範囲】 1、低比抵抗第1導電製半曝体基−1板生向と中層の尚
比抵抗1g1導電製半導体層及び上層の高比抵抗g24
1半導体層との三層牛導体基板において上記第24電型
半導体層の表面の一部から上配高比抵抗第1導電型半導
体層に11!続する第1導電製半導体ウェル1111壊
會有し、この藤1尋電製半尋体つ工^領域表曲の一部及
び前記第24電整半導体層表面の他の一部に低比紙M第
2導電製半導体領域1に設けてンース及びドレインとし
、このうちンース絢の低比抵抗第2導電ff1−城は第
1導電型ウニA餉域と共通の拡散マスクを通して自己整
合的に形成したものであり、第2導電型愉域の及ばない
@l尋W型ウつル曽領域面をチャポル部としてCの上に
絶縁IIt−介してゲート電極を形成して収るle鰍ゲ
ート製半導体装置・ 2、上記絶Il換は拡散マスクの一部として共用するこ
と和よりチャネル部とゲートの位置を自己整合的に規定
しである特許請求の範囲第1項に記載の絶縁ゲート朧半
導体装置。 3、上記絶縁ゲートは不純物ドープ半導体層の上に導体
at影形成たものでめる脣1FFllI求の範囲第2項
に記載の絶縁ゲート型・半導体装置。 4、−上記絶tIRa11はチャネル部位置からドレイ
ン−Kかけて順久離くなる階段上に設けてるる特許請求
の範囲第2項又はIA3項に記載の絶縁ゲート蓋半導体
装置。 5、  P  E’  M  (父はM  M  P 
 )w三層81半4体基板において上層N−麺表圓上の
一部に辱い酸化膜とこの厚い酸化膜に隣接する博い歇化
換管形醜し、上記率い酸化膜tマδりとして上層M−(
P−)JIIK!’(M)皺不純物及びM + (v 
+ )童不純物t−M−(P−)層に導入し七の拡敏逮
直の差^t−利用して呻−(N−)層忙接綬する深いP
(M)ウェル石浅いM(P、)払歓領域を形成するとと
もに、横方向に延びたi’(M)層表向tチャネん廊と
し、この上に前記博−歇1ヒ線を介し低比抵抗牛導体層
文は、及び導、体層を設けてゲートとすることを°l#
黴とする絶縁ケート半導体装置の製造法。
[Claims] 1. Low resistivity first conductive half-layer substrate - 1 plate growth direction and intermediate layer resistivity 1g1 conductive semiconductor layer and upper layer high resistivity g24
In a three-layer conductor substrate with one semiconductor layer, a layer of 11! A first conductive semiconductor well 1111 is formed next to the first conductive semiconductor well 1111, and a low-ratio paper is applied to a part of the area surface curve and another part of the surface of the 24th electrically conductive semiconductor layer. M is provided in the second conductive semiconductor region 1 to serve as a source and a drain, of which the low resistivity second conductor ff1 is formed in a self-aligned manner through a common diffusion mask with the first conductive type A region. It is made by forming a gate electrode on C through an insulator using the W-type low region surface, which is outside the range of the second conductivity type, as a chapol part. Semiconductor device 2. The insulated gate hazy semiconductor according to claim 1, wherein the isolation gate is shared as a part of a diffusion mask, and the positions of the channel portion and the gate are defined in a self-aligned manner. Device. 3. The insulated gate type semiconductor device according to item 2, wherein the insulated gate is formed by forming a conductor at a shadow on an impurity-doped semiconductor layer. 4.- The insulated gate lid semiconductor device according to claim 2 or IA3, wherein the above-mentioned insulated gate lid semiconductor device is provided on a staircase that gradually increases in distance from the channel portion position to the drain −K. 5. P E' M (My father is M M P
) In the three-layer 81 semi-quad substrate, there is an oxide film on a part of the upper layer N-noodle surface and a wide oxidation tube shape adjacent to this thick oxide film, and the above-mentioned oxide film tma δ Upper layer M-(
P-) JIIK! '(M) Wrinkle impurity and M + (v
+) Child impurities are introduced into the t-M-(P-) layer and the deep P is created by utilizing the difference between the seven amplification and directness ^t- to connect the groan-(N-) layer.
(M) Well stone forms a shallow M (P,) clearing area, and a t-channel corridor on the surface of the i' (M) layer extending laterally, on which the A low resistivity conductor layer structure is used, and a conductor layer is provided to form a gate.
A method for manufacturing an insulating cat semiconductor device using mold.
JP56187048A 1981-11-24 1981-11-24 Insulated gate type semiconductor device and manufacture thereof Pending JPS5889865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187048A JPS5889865A (en) 1981-11-24 1981-11-24 Insulated gate type semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187048A JPS5889865A (en) 1981-11-24 1981-11-24 Insulated gate type semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5889865A true JPS5889865A (en) 1983-05-28

Family

ID=16199256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187048A Pending JPS5889865A (en) 1981-11-24 1981-11-24 Insulated gate type semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5889865A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185415A2 (en) * 1984-12-21 1986-06-25 Koninklijke Philips Electronics N.V. Conductivity-enhanced combined lateral MOS/bipolar transistor
JPS61172371A (en) * 1985-01-28 1986-08-04 Matsushita Electric Ind Co Ltd Semiconductor device
JPH03261176A (en) * 1990-03-12 1991-11-21 Matsushita Electron Corp Double diffused mos transistor
US6083785A (en) * 1996-06-17 2000-07-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing semiconductor device having resistor film
JP2003060194A (en) * 2001-08-10 2003-02-28 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
JP2005228906A (en) * 2004-02-13 2005-08-25 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2009117670A (en) * 2007-11-07 2009-05-28 Oki Semiconductor Co Ltd Semiconductor apparatus and method of manufacturing the same
JP2009283784A (en) * 2008-05-23 2009-12-03 Nec Electronics Corp Semiconductor device, and method for manufacturing of semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185415A2 (en) * 1984-12-21 1986-06-25 Koninklijke Philips Electronics N.V. Conductivity-enhanced combined lateral MOS/bipolar transistor
JPS61172371A (en) * 1985-01-28 1986-08-04 Matsushita Electric Ind Co Ltd Semiconductor device
JPH03261176A (en) * 1990-03-12 1991-11-21 Matsushita Electron Corp Double diffused mos transistor
US6083785A (en) * 1996-06-17 2000-07-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing semiconductor device having resistor film
US6603172B1 (en) 1996-06-17 2003-08-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of manufacturing the same
JP2003060194A (en) * 2001-08-10 2003-02-28 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
JP2005228906A (en) * 2004-02-13 2005-08-25 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2009117670A (en) * 2007-11-07 2009-05-28 Oki Semiconductor Co Ltd Semiconductor apparatus and method of manufacturing the same
JP4700043B2 (en) * 2007-11-07 2011-06-15 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
JP2009283784A (en) * 2008-05-23 2009-12-03 Nec Electronics Corp Semiconductor device, and method for manufacturing of semiconductor device

Similar Documents

Publication Publication Date Title
US7186618B2 (en) Power transistor arrangement and method for fabricating it
US8796764B2 (en) Semiconductor device comprising trench gate and buried source electrodes
US4396930A (en) Compact MOSFET device with reduced plurality of wire contacts
JP3086906B1 (en) Field effect transistor and method of manufacturing the same
JPH06252359A (en) Manufacture of semiconductor device
US4975754A (en) Trench dual-gate MOSFET
JPH0586663B2 (en)
JP3949869B2 (en) Vertical MOS transistor and manufacturing method thereof
JPS5889865A (en) Insulated gate type semiconductor device and manufacture thereof
JPS5978576A (en) Semiconductor device and manufacture thereof
JPH10335660A (en) Semiconductor device and manufacture thereof
JPS6159543B2 (en)
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JP2655403B2 (en) Power MOS field effect transistor
JP3152290B2 (en) Method for manufacturing semiconductor device including capacitive element
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
JP2765142B2 (en) Method for manufacturing semiconductor device
JPH02268463A (en) Composite semiconductor element
JP2522250B2 (en) Charge transfer device
JPS5832508B2 (en) Transistor
JPH0212030B2 (en)
JPH0697437A (en) Semiconductor device and its manufacture
JPH02309679A (en) Insulated-gate fieid-effect transistor
JPS58141575A (en) Manufacture of metal insulator semiconduction type semiconductor device
JPS61187273A (en) Semiconductor device