JPS5863146A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5863146A
JPS5863146A JP16134781A JP16134781A JPS5863146A JP S5863146 A JPS5863146 A JP S5863146A JP 16134781 A JP16134781 A JP 16134781A JP 16134781 A JP16134781 A JP 16134781A JP S5863146 A JPS5863146 A JP S5863146A
Authority
JP
Japan
Prior art keywords
diffusion layer
contact hole
layers
semiconductor device
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16134781A
Other languages
Japanese (ja)
Inventor
Junichi Matsunaga
松永 準一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16134781A priority Critical patent/JPS5863146A/en
Publication of JPS5863146A publication Critical patent/JPS5863146A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

PURPOSE:To enable the high integration of a semiconductor device and to improve the reliability at the contact of the device by rediffusing to a diffused layer in a C-MOS structure without necessity of masking, thereby forming a deep diffused layer only in the vicinity of a contact hole. CONSTITUTION:Since diffused layers 5, 10 are partly formed deeply by the rediffusion utilizing the OED effect in an oxidative atmosphere, both N-type and P-type diffused layers 5, 10 can be simultaneously deeply formed, with excellent workability as compared with a conventional rediffusing method by separately injecting impurities of different conductive types by twice maskings. Since the layers 5, 10 are laterally expanded by deeply forming the layers 5, 10 in the vicinity of a contacting hole 7, a danger that a wiring material 8 and a semiconductor substrate 1 shortcircuit can be avoided. As a result, since large margin can be provided against the displacement of the hole 7 to the layers 5, 10, an overlapped amount can be reduced, and high integration can be performed.

Description

【発明の詳細な説明】 一般に高集積M OS型千尋体やバイポーラ型半導体装
置では、アルミニウムなどの配線と、半導体基板の表面
に形成した浅い拡散層との接触をとる構造が多いOこの
ような配線材料と浅い拡散−との接触は、これらの間に
絶縁膜として介在させたシリコン酸化膜に接触孔を開孔
し、ここを通して配線材料を設けて電気的な接触をとる
ことが行なわれている。
[Detailed Description of the Invention] In general, highly integrated MOS type chihiro-type or bipolar type semiconductor devices often have a structure in which wiring made of aluminum or the like contacts a shallow diffusion layer formed on the surface of the semiconductor substrate. To make contact between the wiring material and the shallow diffusion, a contact hole is formed in a silicon oxide film interposed as an insulating film between them, and the wiring material is provided through the contact hole to establish electrical contact. There is.

しかしながら、このような接触で1tLsIなど高密度
集積化した半導体装置を製造する場合法のような関賄が
ある。
However, when manufacturing a highly densely integrated semiconductor device such as 1tLsI using such contact, there are some problems.

■ 配線材料と拡散層との接触部では、配線材料と半導
体との合金が形成されるが、拡散層が極めて浅く形成さ
れている場合、配線材料が拡散層を突き抜けて半導体基
板に−まで達してしまい、接合状態が得られなくなる。
■ An alloy of the wiring material and the semiconductor is formed at the contact between the wiring material and the diffusion layer, but if the diffusion layer is formed extremely shallow, the wiring material may penetrate through the diffusion layer and reach the semiconductor substrate. As a result, a bonded state cannot be obtained.

■ 高m度LSIでは、配縁材料をパクニングする場合
、反応性イオンエツチング(RI E)を用いることが
多い。しかし、配線材料としてアルミニウムを用いてR
IEでエツチングすると、アルミニウムとシリフン基板
との選択比が非常に少ないため、接触孔が太きいと接触
孔の下方に位置するシリコン基板もエツチングされ、ア
ルミニウムが拡散層だけでなくシリコン基板にも接触し
てしまうことがある。このためアルミニウムと接触孔と
のオーバーラツプを大画くとる必要があり、これがLS
Iの集積密度向上の妨げとなっている。
■ In high-millimeter LSIs, reactive ion etching (RIE) is often used to puncture the interconnection material. However, if aluminum is used as the wiring material, R
When etching with IE, the selectivity between aluminum and the silicon substrate is very low, so if the contact hole is large, the silicon substrate located below the contact hole will also be etched, and the aluminum will come into contact not only with the diffusion layer but also with the silicon substrate. Sometimes I end up doing it. For this reason, it is necessary to have a large overlap between the aluminum and the contact hole, and this is the reason why the LS
This is an obstacle to improving the integration density of I.

■ 接触孔と拡散層とのオーバーラツプ部分が少ないと
配線材料とシリコン基板とが接触する虞れがある九め、
十分なオーバーラツプをとる必要があり、上記■の場合
と同様にLSIの集積密度向上の妨げとなっていた。
■ If there is little overlap between the contact hole and the diffusion layer, there is a risk of contact between the wiring material and the silicon substrate.
It is necessary to provide sufficient overlap, which, like the case (2) above, is an obstacle to improving the LSI integration density.

上記の如き柚々の問題点を解決するためにトランジスタ
・チャネル近傍の拡散層を浅くしたまま、接触孔の近傍
のみ拡散層を深く形成する方法が従来開発されている。
In order to solve the above-mentioned problems, a method has been developed in which the diffusion layer in the vicinity of the transistor channel is kept shallow while the diffusion layer is formed deep only in the vicinity of the contact hole.

この方法を用いてMOS LSI を製造する場合につ
いて第1図を参照して説明する。
The case of manufacturing a MOS LSI using this method will be explained with reference to FIG.

第1図囚に示すように半導体基板Iとして、例えばP型
シリコン基板上に、周知の選択酸化技術により、厚いフ
ィールド酸化膜2を形成する。
As shown in FIG. 1, a thick field oxide film 2 is formed on a semiconductor substrate I, for example, a P-type silicon substrate, by a well-known selective oxidation technique.

次に同図田)に示すように半導体基板lの箕面にゲート
酸化膜3を形成した後、災にこの表面に多結晶シリコン
4を設け、次いでこの多結晶シリコン4に、例えはリン
を拡散してゲート電極とする。
Next, as shown in Figure 1), after forming a gate oxide film 3 on the surface of the semiconductor substrate 1, polycrystalline silicon 4 is provided on this surface, and then phosphorus is diffused into the polycrystalline silicon 4. and use it as a gate electrode.

この後、多結晶シリコン4およびゲート酸化゛ 膜3を
7オトリンクランイ技術によシ選択的にエツチング除去
した彼、酌記多結晶シリコン4をマスクとして不純物を
イオン注入し、ソース・ドレインとなる拡@、M5.s
を形成する。この場合、不純物として砒素原子を40 
KeV。
After this, he selectively etched away the polycrystalline silicon 4 and gate oxide film 3 using the 7-oto-clean technique, and then implanted impurity ions using the polycrystalline silicon 4 as a mask to form source and drain layers. Naruen@, M5. s
form. In this case, 40 arsenic atoms are added as impurities.
KeV.

2 X 101101l”  の東件でイオン注入する
ことにより浅い拡散M5,5が形成される。
Shallow diffusions M5,5 are formed by ion implantation with a depth of 2.times.101101l''.

次に全面に絶縁膜となる厚い酸化膜6を、例えばCV 
D (Chemical Vapour Deposi
tion )技術により設ける。
Next, a thick oxide film 6 that will become an insulating film is applied to the entire surface using, for example, CV
D (Chemical Vapor Deposit
tion) technology.

次いで同図(C)に示すように前記CVD酸化膜6に接
触孔7.7を開孔した後、この接触孔7.7を通して、
例、1;l’1000℃、POCI、の雰囲気で15分
間さらし、リンを拡散層5.5に拡散させると、接触孔
7の近傍のみ深くなった拡散層5.5が形成される。
Next, as shown in the same figure (C), after opening a contact hole 7.7 in the CVD oxide film 6, through this contact hole 7.7,
Example 1: When phosphorus is diffused into the diffusion layer 5.5 by exposing it to an atmosphere of 1000° C. and POCI for 15 minutes, the diffusion layer 5.5 is formed which is deep only in the vicinity of the contact hole 7.

しかる後、全面にアルミニウムなどの配線材料8を蒸着
し、次いでフォトリングラフィ技術によルパタニングし
て同図(2)に示すように拡散層5.6と接触させる。
Thereafter, a wiring material 8 such as aluminum is deposited on the entire surface, and then patterned by photolithography to bring it into contact with the diffusion layer 5.6 as shown in FIG. 2(2).

しかしながら従来の方法では、接触孔7を通して拡散)
#5に、更にN型不純物でおるリンを拡散させて、接触
孔7の近傍のみ沫く形成するため、N型拡散層とP型拡
散層の両省を備えたCMO8栴造では、N型拡散層に対
しては有効であるか、P抛拡散層に対しては接触抵抗を
増加させることになるためCMO8半導体装置の製造に
は適用することができなかった0このためCMO8半導
体装置を製造する場合には異なる4を型の拡散層に接触
する接触孔を片側づつフォトレジストでカバーシ、異な
る不純物を別個に拡散しなけれはならず、2回のマスク
合わせが必要となって作業性が劣る欠点があつ九。
However, in the conventional method, diffusion through the contact hole 7)
In order to further diffuse phosphorus as an N-type impurity into #5 and form it only in the vicinity of the contact hole 7, CMO8 SEIZO, which has both an N-type diffusion layer and a P-type diffusion layer, has an N-type diffusion layer. However, it could not be applied to the production of CMO8 semiconductor devices because it would increase the contact resistance for P diffusion layers. In this case, it is necessary to cover the contact hole that contacts the diffusion layer of the different molds with photoresist on one side at a time, and to diffuse different impurities separately, which requires two mask alignments, resulting in poor workability. But nine.

本発明は上記欠点を除去し、CMO8栴造においてもマ
スク合わせを必要とせず拡散層への再拡散が行なえ作業
性を向上させると共に、高庇・度集積化を可能にし、し
かも接触部の信頼性に優れた半導体装置の製造方法を提
供するものである。
The present invention eliminates the above-mentioned drawbacks, improves workability by allowing re-diffusion into the diffusion layer without requiring mask alignment even in CMO8 SEIZO, and enables high eaves and density integration, as well as reliability of contact parts. The present invention provides a method for manufacturing a semiconductor device with excellent performance.

即ち、本発明方法は半導体基板の表面に形成された拡散
ノ曽の上面に絶縁膜を設ける工程と、この絶縁膜に接触
孔を開孔する工程と、この接触孔を辿して拡散層を酸化
させる工程と、前記拡散層の表面に形成場れた酸化物を
除去する工程と、全面に配線材料を設は接触孔を通して
拡散層と電気的接触を行なう工程とを備えたことを%徴
とするものである。
That is, the method of the present invention includes the steps of providing an insulating film on the upper surface of a diffusion layer formed on the surface of a semiconductor substrate, forming a contact hole in this insulating film, and forming a diffusion layer by following the contact hole. A process of oxidizing, a process of removing oxides formed on the surface of the diffusion layer, and a process of providing wiring material on the entire surface and making electrical contact with the diffusion layer through contact holes. That is.

本発明において、拡散層ViN型拡散層またはP型拡散
層の倒れか一方を形成する場合に限らず、両者を韮設し
たCMO8Th造でも良い。
In the present invention, the present invention is not limited to the case where only one of the ViN type diffusion layer and the P type diffusion layer is formed, and a CMO8Th structure in which both are provided in a diagonal manner may be used.

本発明において接触孔を通して拡散層を酸化させる方法
としては、ドライ酸素の雰囲気で熱処理する方法の他、
接触孔に多結晶シリコンを設け、これを低温ウェット酸
化させる方法など何れでも良い。
In the present invention, methods for oxidizing the diffusion layer through contact holes include heat treatment in a dry oxygen atmosphere;
Any method may be used, such as providing polycrystalline silicon in the contact hole and subjecting it to low-temperature wet oxidation.

このように接触孔を通して拡散層を酸化させると、OE
D効果(Oxidation EnhancedDif
fusion )により、拡散層を形成するシリコン中
に過剰な空孔(Vacanc)’ )が導入されて増殖
拡散を生じ、表面が酸化された接触子の近傍にのみ深い
拡散層が形成され、他の部分は浅い拡散層のままに保持
される。
When the diffusion layer is oxidized through the contact hole in this way, the OE
D effect (Oxidation EnhancedDif
fusion), excessive vacancies (vacanc') are introduced into the silicon forming the diffusion layer, causing multiplication and diffusion, forming a deep diffusion layer only near the contact whose surface has been oxidized, and other The portion remains as a shallow diffusion layer.

以下本発明の実施例を図面をト照して詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明方法によりCMO8半導体装置を製造す
る場合の一実施例を示すものである。
FIG. 2 shows an embodiment in which a CMO8 semiconductor device is manufactured by the method of the present invention.

先ず第2図囚に示すように、半導体基板1としてN型シ
リコン基板を用い、この表面の一部にフォトリングラフ
ィ技術によυ、Pウェル9を設けた後、半導体基板1の
素子形成領域となる部分を残して選択酸化して厚いフィ
ールド酸化膜2を形成する。
First, as shown in FIG. 2, an N-type silicon substrate is used as the semiconductor substrate 1, and after forming a P well 9 on a part of its surface by photolithography technology, an element forming area of the semiconductor substrate 1 is formed. A thick field oxide film 2 is formed by selective oxidation, leaving a portion where .

次いで、同図■)に示すように、素子形成領域の表面に
ゲー)m化膜3を設け、更にこの表面にゲート電極とな
る多結晶シリコン4を設けた後、フォトリングラフィ技
術によシ、多結晶シリコン4を選択的に主ツチング除去
してパタニングする。
Next, as shown in (■) in the same figure, a nitride film 3 is provided on the surface of the element formation region, and polycrystalline silicon 4 that will become a gate electrode is further provided on this surface, and then silicon is deposited using photolithography technology. , the polycrystalline silicon 4 is selectively removed and patterned.

次に、ゲート酸化膜3を介して、Pウェル9内に砒素原
子をイオン注入してNチャネルトラ 7− ンジスタのソース・ドレインとなるNu拡散層5.5を
形成し、半導体基板1内には砿素原子をイオン注入して
Pチャネルトランジスタのソース・ドレインとなるP型
拡散廣10,10を形成する。
Next, arsenic atoms are ion-implanted into the P-well 9 through the gate oxide film 3 to form a Nu diffusion layer 5.5 which will become the source and drain of the N-channel transistor, and then into the semiconductor substrate 1. By ion-implanting hydrogen atoms, P-type diffusion regions 10, 10 which will become the source and drain of the P-channel transistor are formed.

この後、同図(C)に示すように全面に絶#IIT、膜
となる厚い酸化膜6をCVD法により設けた後、前記酸
化膜6と、この下方に設けられたゲート酸化膜3とをフ
ォトリソグラス技術によ如開孔して接触孔7を形成する
After that, as shown in FIG. 6(C), a thick oxide film 6 that will become an IIT film is provided on the entire surface by the CVD method, and then the oxide film 6 and the gate oxide film 3 provided below are formed. A contact hole 7 is formed by opening the contact hole 7 by photolithography.

次に1000℃ドライ酸素雰囲気中で15分間熱処理し
て、接触孔7を通してN型拡散層5とP散拡散層10の
表面を酸化させると、OED効果によシ過剰な空孔が導
入されて増殖拡散が起り、同図(2)に示すように厚い
酸化IIIt;で覆われた部分に比べて深場が約0.3
μmRくなった。
Next, heat treatment is performed for 15 minutes in a dry oxygen atmosphere at 1000°C to oxidize the surfaces of the N-type diffusion layer 5 and the P-diffusion layer 10 through the contact hole 7, and excessive vacancies are introduced due to the OED effect. As shown in Figure (2), the depth of the area is about 0.3% compared to the area covered with thick IIIt oxide.
It became μmR.

次に上記酸化工程でN型拡散層5とP散拡散層10の表
面に形成された酸化物11を除去した彼、同図(6)に
示すように全面に配線材料8としてアルミニウムを蒸着
し、しかる後フォトリ−8= ゼグラフイ技術によシパタニングして電気的接触を行な
ってCMO8半導体半導体装造する。
Next, after removing the oxide 11 formed on the surfaces of the N-type diffusion layer 5 and the P diffusion layer 10 in the oxidation process, aluminum was vapor-deposited as a wiring material 8 over the entire surface, as shown in Figure (6). After that, the CMO8 semiconductor device is fabricated by patterning using photolithography technology to make electrical contact.

従って上記方法によれば、酸化算囲気でのOED効朱を
yfll用した再拡散により、拡散層5゜10の一部を
深く形成するので、N型、P型の内拡散層5.10を同
時に深く形成することができ、従来の如く2回のマスク
合わせにより異なる導を型の不純物を別個に導入して、
杓拡散する方法に比べて作業性に優れている。
Therefore, according to the above method, a part of the diffusion layer 5.10 is formed deeply by re-diffusing the OED effect red in the oxidized surrounding atmosphere, so that the inner diffusion layer 5.10 of the N type and P type is formed deeply. It can be formed deeply at the same time, and impurities of different conductive types can be introduced separately by aligning the masks twice as in the past.
It is easier to work with than the method of spreading with a ladle.

甘た接触孔7の近傍の拡散Wi5*IOを深く形成する
ことにより、拡散層5,101d横方向にも広がるため
、配線材料8と半導体基板1とがショートする危険を回
避できる。この結果、接触孔7と拡散MS、tOとの位
置ずれに対し、大幅な争裕がとれることから、オーバー
ラツプ量を少なくでき、高密度集積化を図ることができ
る。
By forming the diffusion Wi5*IO deeply in the vicinity of the loose contact hole 7, it also spreads in the lateral direction of the diffusion layers 5 and 101d, thereby avoiding the risk of short-circuiting between the wiring material 8 and the semiconductor substrate 1. As a result, a large amount of compensation can be provided for the positional deviation between the contact hole 7 and the diffusion MS and tO, so that the amount of overlap can be reduced and high-density integration can be achieved.

更に接触孔2の近傍の拡散層5.10が深く形成されて
いることから、配線材料として用いられたアルミニウム
が、半導体基板1と十分共晶を形成してもショートする
ことがなく接触部の信頼性にも優れている。
Furthermore, since the diffusion layer 5.10 near the contact hole 2 is formed deeply, even if the aluminum used as the wiring material forms a sufficient eutectic with the semiconductor substrate 1, there will be no short-circuit, and the contact portion will not be short-circuited. It also has excellent reliability.

第3図は本発明の他の実施例を示すもので、厚い酸化膜
6に接触孔7を開孔するまでの工程は叱2図(4)から
同図C)までに示す工程と同一である。
FIG. 3 shows another embodiment of the present invention, and the steps up to opening the contact hole 7 in the thick oxide film 6 are the same as those shown in FIG. 2 (4) to C). be.

接ん:孔7を開孔した後、第3図囚に示すように不純物
を含まない多結晶シリコン層I2を、厚さ500Aで全
面に被着する。
Contact: After opening the hole 7, as shown in FIG. 3, a polycrystalline silicon layer I2 containing no impurities is deposited to a thickness of 500 Å over the entire surface.

次に850°Cの低温ウェット酸化すると、前記多結晶
シリコン層12が酸化され、更に接触孔7内に埋込まれ
た多結晶シリコン層12と接触するN型、P俄拡散層5
.10も酸化されて0ED9jJ来によ多接触孔7の近
傍のみ増殖拡散てれて深く形成され同図03>の状態と
なる。
Next, by low-temperature wet oxidation at 850°C, the polycrystalline silicon layer 12 is oxidized, and the N-type and P-type diffusion layers 5 are further formed in contact with the polycrystalline silicon layer 12 embedded in the contact hole 7.
.. 10 is also oxidized, and from 0ED9jJ onward, it proliferates and diffuses only in the vicinity of the multi-contact hole 7 and is formed deeply, resulting in the state shown in FIG.

次に酸化された多結晶シリコン層12と、拡散層5+I
Oの表面に形成声、りた酸化物11を除去した後、配線
材料8を蒸着し、更にこれをパタニングしてCMO8半
導体装置を製造する。
Next, the oxidized polycrystalline silicon layer 12 and the diffusion layer 5+I
After removing the oxide 11 formed on the surface of the oxide, a wiring material 8 is deposited and further patterned to manufacture a CMO8 semiconductor device.

この方法は多結晶7リコン層I2の酸化により拡散r@
5゜10を酸化させるので、拡散層5.10の酸化され
る部分が少なくて済み、より信頼性の高い電気的接触を
得ることができる。
This method uses the oxidation of the polycrystalline silicon layer I2 to diffuse r@
Since 5.10 is oxidized, less portion of the diffusion layer 5.10 is oxidized, and a more reliable electrical contact can be obtained.

以上説明した如く、本発明に係わる半導体装置の製造方
法によれば0MO8構造においてもマスク合わせをする
必要なしに拡散層への再拡散を行なって接触孔の近傍の
み深く拡散層を形成でき作業性に優れていると共に、高
密度集積化を可能にし、しかも接触部での信頼性にも優
れているなど顕著な効果を有するものである。
As explained above, according to the method for manufacturing a semiconductor device according to the present invention, even in the 0MO8 structure, re-diffusion into the diffusion layer is performed without the need for mask alignment, and a deep diffusion layer can be formed only in the vicinity of the contact hole, thereby improving workability. It has remarkable effects such as being excellent in terms of performance, enabling high-density integration, and having excellent reliability in contact areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(4)乃至同図(D)は従来方法によ、りMOS
半導体装置を製造する工程を順次示す断面図、第2図(
5)乃至同図(6)は本発明の一実施例によりCMO8
半導体装置を製造する工程を順次示す断面図、第3図(
ト)および03)は本発明の他の実施例によりCMO8
±纒体装置金体装置る工程を順次示す断面図である。 1・・・半導体基板、2・・・フィールド酸化膜、3・
・・ゲート酸化膜、4・・・多結晶シリコン、5・・・
拡散層、6・・・酸化膜、7・・・接触孔、8・・・配
線材料、9・・・Pウェル、10・・・拡散層、1ノ・
・・電化物、12・・・多結晶シリコン層。
Figures 1(4) to 1(D) show MOS
FIG. 2 is a cross-sectional view sequentially showing the steps of manufacturing a semiconductor device.
5) to (6) of the same figure show CMO8 according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view sequentially showing the steps of manufacturing a semiconductor device.
G) and 03) are CMO8 according to other embodiments of the present invention.
FIG. 3 is a cross-sectional view sequentially illustrating the process of installing a wire body device and a metal body device. 1... Semiconductor substrate, 2... Field oxide film, 3...
...Gate oxide film, 4...Polycrystalline silicon, 5...
Diffusion layer, 6... Oxide film, 7... Contact hole, 8... Wiring material, 9... P well, 10... Diffusion layer, 1...
...Electric material, 12... Polycrystalline silicon layer.

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板の表面に形成された拡散層の上面に絶
縁膜を設ける工程と、この絶縁膜に接触孔を開孔する工
程と、この接触孔を通して拡散層を酸化させる工程と、
前記拡散層の表面に形成された酸化物を除去する工程と
、全面に配線材料を設け、接触孔を通して拡散層との電
気癲触を行なう工程とを備えたことを特徴とする半導体
装置の製造方法。
(1) A step of providing an insulating film on the upper surface of a diffusion layer formed on the surface of a semiconductor substrate, a step of opening a contact hole in this insulating film, a step of oxidizing the diffusion layer through this contact hole,
Manufacturing a semiconductor device comprising the steps of removing oxide formed on the surface of the diffusion layer, and providing a wiring material on the entire surface and making electrical contact with the diffusion layer through a contact hole. Method.
(2)拡散層がN型拡散層とP型拡散層とを並設した0
MO8構造であることを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。
(2) The diffusion layer is 0 in which an N-type diffusion layer and a P-type diffusion layer are arranged side by side.
Claim 1 characterized in that it has an MO8 structure.
A method for manufacturing a semiconductor device according to section 1.
(3)拡散層がN型拡散層またはP型拡散層の何れか一
方の導を型で形成されていることを特徴とする特許請求
の範囲第1項記載の半導体装置の製造方法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the diffusion layer is formed by molding either an N-type diffusion layer or a P-type diffusion layer.
(4)  拡散層を酸化させる方法としてドライ酸素の
雰囲気中で熱処理することを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 1, wherein heat treatment is performed in a dry oxygen atmosphere as a method of oxidizing the diffusion layer.
(5)拡散層を酸化させる方法として、接触脚に多結晶
シリコンを設け、これを酸化させることにより行なうこ
とを特徴とする特許請求の範囲m1.!ja記載の半導
体装置の製造方法。
(5) The method of oxidizing the diffusion layer is performed by providing polycrystalline silicon on the contact leg and oxidizing it. ! A method for manufacturing a semiconductor device according to 1.
JP16134781A 1981-10-09 1981-10-09 Manufacture of semiconductor device Pending JPS5863146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16134781A JPS5863146A (en) 1981-10-09 1981-10-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16134781A JPS5863146A (en) 1981-10-09 1981-10-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5863146A true JPS5863146A (en) 1983-04-14

Family

ID=15733346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16134781A Pending JPS5863146A (en) 1981-10-09 1981-10-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5863146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007221A3 (en) * 1993-06-15 1995-04-25 Philips Electronics Nv Method for manufacturing a semi-conductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007221A3 (en) * 1993-06-15 1995-04-25 Philips Electronics Nv Method for manufacturing a semi-conductor device

Similar Documents

Publication Publication Date Title
US4273805A (en) Passivating composite for a semiconductor device comprising a silicon nitride (Si1 3N4) layer and phosphosilicate glass (PSG) layer
US4074304A (en) Semiconductor device having a miniature junction area and process for fabricating same
US4306915A (en) Method of making electrode wiring regions and impurity doped regions self-aligned therefrom
JPH0430189B2 (en)
JPS62174966A (en) Manufacture of semiconductor device
US4069067A (en) Method of making a semiconductor device
US4668973A (en) Semiconductor device passivated with phosphosilicate glass over silicon nitride
JPH02100326A (en) Manufacture of mos type semiconductor device high in breakdown strength
JPS6174342A (en) Formation of narrow thread groove
JPS61226942A (en) Isolating method between elements for semiconductor integrated circuit
JPH06333944A (en) Semiconductor device
JPS5863146A (en) Manufacture of semiconductor device
JPH08130309A (en) Semiconductor device and its manufacture
JPS5917865B2 (en) hand tai souchi no seizou houhou
USRE32351E (en) Method of manufacturing a passivating composite comprising a silicon nitride (SI1 3N4) layer and a phosphosilicate glass (PSG) layer for a semiconductor device layer
JPS60235473A (en) Manufacture of semiconductor device
JPS6237543B2 (en)
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPH05291573A (en) Semiconductor device and manufacture thereof
JPS62241379A (en) Manufacture of semiconductor device
JPH0917779A (en) Formation method of oxide film for element isolation of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JPS6059749B2 (en) Manufacturing method of MOS type semiconductor device
JPH06232394A (en) Manufacture of semiconductor device