JPS5853857A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPS5853857A
JPS5853857A JP15171281A JP15171281A JPS5853857A JP S5853857 A JPS5853857 A JP S5853857A JP 15171281 A JP15171281 A JP 15171281A JP 15171281 A JP15171281 A JP 15171281A JP S5853857 A JPS5853857 A JP S5853857A
Authority
JP
Japan
Prior art keywords
substrate
film
region
oxide film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15171281A
Other languages
Japanese (ja)
Inventor
Tatsuo Fuji
藤 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15171281A priority Critical patent/JPS5853857A/en
Publication of JPS5853857A publication Critical patent/JPS5853857A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make easy formation of substrate electrode window and prevent breakage of wiring by providing projected semiconductor substrate in the area where there is no oxide thick film and by providing the electrical elements to such projected surface and the electrode leading layer which gives a fixed potential to the substrate. CONSTITUTION:An Si3N4 mask 22 is provided over the SiO2 thin film 21 of the p type Si 11, then the B ions are implanted thereto, the p<+> layer is formed. Thenm the Si3N4 mask 24 is coated again. Thereafter, it is heated in the oxide film 12 is selectively formed. The masks 24, 22 and SiO2 film 21 in the region 11 are selectively removed, and the surface is newly covered with the oxide thin film 26. Succeedingly, the poly-Si gata electrode 28 and gate oxide film 26 are provided and the N layer 16 is formed by diffusion of phosphorus P. Next, the mask 24 on the region 25 is removed and the surface is covered with the thermal oxide film 29. Thereafter, an aperture is opened like an existing device and the Al electrode 20 is provided thereto. Thickness of the SiO2 film is almost the same in the region 11 and 27, each electrode window can be opened by the same process and is 1/2 or less than the field oxide film. Therefore, breakage of wiring does not occur at the window part. In addition, the power supply voltage can be applied to the substrate on the substrate surface and thereby operation speed of IC can be raised.

Description

【発明の詳細な説明】 本発明はMI8集積回路の製造方法に関するものであ〕
、特に8iゲー)MO&集積回路の基板への電源電圧印
加のための領域、いわゆるコンタクト領域の形成方法に
関するものであるO第1図は、従来方法で形成され九N
チャンネル型8iゲー)MO8集積回路のトランジスタ
領域およびその周辺部lの断面図であるOP型8i基板
10の−1表面にトランジスタ領域11が台地状に形成
されておシ、ト2ンジスタ領域11の周辺は厚い(〜l
j1m)フィールド酸化膜12でとり凹まれているoト
ランジスタ領域11のPfi8i基板10fi面の一部
に紘薄い(〜1000λ)IIゲート酸化膜13が形成
され、ゲート酸化11113の表面はNW多結晶Siゲ
ート電極14(4さ〜0.5μm)で覆われている。ゲ
ート酸化膜13の下のSi表向はチャンネル領域15と
なっている。チャンネル領域15を除くトランジスタ領
域11 KaNI18i領域16が形成されてお)、ト
ランジスタのソースおよびドレインを構成する0またフ
ィールド酸化膜12の下のシリコン表面にはP型基板l
Oより高不純物濃度のP型Si層17が形成されている
。トランジスタ領域11ON屋8i領域16表面および
N型多結晶Siゲート電極14表面は比較的薄い(30
00〜5000^)/ 8 i偽膜18で覆われており
、かつ810、膜4Bの1部にはNW8i領域16表面
およびN型多結晶8iゲ一ト電極14表面まで貫通する
コンタクト穴19が明けられてあって、配線用M層20
(厚さ〜1.2μm)がこのコンタクト穴19を通して
N型8i領域16表面およびΔ型番結晶siゲート電極
14表面に接続している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing MI8 integrated circuits.
Figure 1 relates to a method for forming a so-called contact area, which is a region for applying a power supply voltage to a substrate of an MO & integrated circuit (particularly 8i game), which is formed using a conventional method.
This is a cross-sectional view of the transistor region and its surrounding area l of a channel type 8i (channel type 8i game) MO8 integrated circuit. The surrounding area is thick (~l
j1m) A thin (~1000λ) II gate oxide film 13 is formed on a part of the Pfi8i substrate 10fi surface of the o-transistor region 11 recessed by the field oxide film 12, and the surface of the gate oxide 11113 is made of NW polycrystalline Si. It is covered with a gate electrode 14 (4 to 0.5 μm). The Si surface under the gate oxide film 13 is a channel region 15 . Transistor region 11 (excluding channel region 15), KaNI18i region 16) forming the source and drain of the transistor, and a P-type substrate l on the silicon surface under field oxide film 12.
A P-type Si layer 17 having an impurity concentration higher than that of O is formed. The surface of the transistor region 11 ON layer 8i region 16 and the surface of the N-type polycrystalline Si gate electrode 14 are relatively thin (30
00 to 5000^)/8i It is covered with a pseudo film 18, and a contact hole 19 is formed in a part of the film 4B, which penetrates to the surface of the NW8i region 16 and the surface of the N-type polycrystalline 8i gate electrode 14. M layer 20 for wiring
(thickness ~1.2 μm) is connected to the surface of the N type 8i region 16 and the surface of the Δ type crystal Si gate electrode 14 through this contact hole 19.

M1図から明らかなように、従来方法で形成したNチャ
ンネル型8iゲー)MO8集積回路においてはPfiS
i基板10を一定電位に保つための電源印加は、トラン
ジスタ領域11が形成されている表面からは行なわれず
、裏面−から行なうようになっている。これは、P型8
i基板10茨面の高不純物濃度P i8i $ 17は
〜l−μmという厚いフィールド酸化膜12の下にある
ため、へ型8i領域16表面およびN型多結晶8iゲ一
ト電極14表面のSin1m1gにコンタクト穴19を
明ける工程で同時にフィールド酸化膜12に基板用コン
タクト穴を明けることが極めて困難であり、tた明いた
としても、配線用Aj層20をコンタクト大端で断線さ
せることなく高不純物機度P型81領域16表面に接続
させる仁とが#1とんど不可能であるからである。
As is clear from Fig. M1, in the N-channel type 8i MO8 integrated circuit formed by the conventional method,
Power is applied to keep the i-substrate 10 at a constant potential not from the front surface where the transistor region 11 is formed, but from the back surface. This is P type 8
Since the high impurity concentration P i8i $ 17 on the thorny surface of the i-substrate 10 is under the thick field oxide film 12 of ~l-μm, the Sin1m1g on the surface of the hemiform 8i region 16 and the surface of the N-type polycrystalline 8i gate electrode 14 is It is extremely difficult to simultaneously make contact holes for the substrate in the field oxide film 12 during the process of making the contact holes 19 in the field oxide film 12. This is because #1 is almost impossible to connect to the surface of the P-type 81 region 16.

即ち、従来方法においては、P型8i基板1 ON面を
薄い(〜500A)8i0.膜で覆った後、さらに1 
 ・ 〜100OA厚の窒化硅素膜で覆り、後にトランジスタ
領域11となる部分を覆う窒化硅素膜のみが残るように
ホトレジスト技術により窒化硅素膜を選択的に除去し、
窒化硅素膜が除去されているP型8i基板lO表面にP
型不純物(例えば−g)を導入した後、熱酸化によシ厚
い(〜IAm)フィールド酸化膜12を形成しているた
めに、基板用コンタクト穴を明けることが困難になって
いる。したがって、基板電源印加点から能動領域までの
距離は基板の厚さく〜400μm)だけあることに1L
直列抵抗分が大きくなるので動作速贋は低くなる。
That is, in the conventional method, the ON surface of the P-type 8i substrate 1 is made of a thin (~500A) 8i0. After covering with membrane, add 1 more
- Cover with a silicon nitride film with a thickness of ~100 OA, and selectively remove the silicon nitride film using photoresist technology so that only the silicon nitride film that covers the portion that will later become the transistor region 11 remains;
P is added to the surface of the P-type 8i substrate lO from which the silicon nitride film has been removed.
Since a thick field oxide film 12 (~IAm) is formed by thermal oxidation after introducing a type impurity (for example, -g), it is difficult to form a contact hole for the substrate. Therefore, the distance from the substrate power supply point to the active region is 1L, which is the thickness of the substrate ~400μm).
Since the series resistance increases, the operating speed decreases.

また集積回路ペレットの支持体への自着も、オ一本性接
触が可能な材質の固着材を用いて行なわなければならな
い。
Further, the self-attachment of the integrated circuit pellet to the support must be carried out using a fixing material that allows for one-sided contact.

本発明の目的は、MO8集積回路を従来方法で形成し九
場合に生じる前記基板コンタクト穴明けに関する難点を
排し、ソース/ドレイン領域およびゲート電極へのコン
タクト穴明けと同一工程にお込て基板コンタクト穴明け
を容易に行なうことが可能であ夛、かつAノ配線がコン
タクト大端で断線を生じることのない構造を提供するも
のであるO 第2図は、本発明によるMO8集積囲路の製造方法を説
明する図であるOP型84基板lO表面の主表面に熱酸
化により5001@度の薄い8 i 0.膜21を形成
し、さらにCVD法にょシ10−00 A程度の厚さの
第1の窒化硅素膜22を被着した後。
It is an object of the present invention to eliminate the above-mentioned difficulties associated with substrate contact drilling that occur when MO8 integrated circuits are formed using conventional methods, and to provide a substrate contact hole that can be formed in the same step as contact holes for source/drain regions and gate electrodes. This provides a structure in which contact holes can be easily drilled, and the A wiring does not break at the large end of the contact. This is a diagram explaining the manufacturing method.The main surface of the OP type 84 substrate IO surface is thermally oxidized to form a thin 8 i 0. After forming the film 21, a first silicon nitride film 22 having a thickness of about 10-00 Å is deposited by CVD.

ホトリソグラフィ技術によりトランジスタ領域ll上以
外の第1の窒化硅素膜を除去する(図Jl)。
The first silicon nitride film except on the transistor region ll is removed by photolithography (FIG. Jl).

次いで、ホトレジスト層23および第1(Dwl化硅累
膜22をiスフとして、第1offl化硅素膜が除去さ
れている領域に選択的に硼素を導入し%P聾8i基板l
Oの表面に選択的に基板10よりも高い不純物濃度を有
するP型8i領域16を形成する(図b)。仁こまで紘
従来方法と同様である0次いで、ホトレジスト層23を
除去し、10001程度の厚さの第2の窒化硅素膜24
を被着した後、ホトリソグラフィ技術によりトランジス
タ領域11上の第1の窒化硅素膜22上および基板コン
タクト領域25上以外の第2の窒化硅素膜24を選択的
に除去する(図C)0次いで、酸化雰囲気中で加熱する
ことによpstalom化膜22および第2の窒化膜2
4で覆われていない部分を選択的に酸化し171m8度
の厚いフィールド酸化1i1[12を形成する(図d)
0次にホトリソグラフィ技術によフトランジスタ領域l
l上の第2の窒化硅素膜24、第1の窒化硅素膜22.
および8i0鵞膜21を除去し、熱酸化により700〜
1000λの厚さのゲー)8i偽j[26をトランジス
タ領域11上に形成する(図e)0次に、CVD法によ
5600OA根度の厚さの多結1flISi膜を被層し
、ホトレジスト技術によりゲート電極部28のみを残し
て多結晶8i膜を除去し、さらに、露出したS五偽膜2
6を除去した後に、イオン注入法または熱拡散法によ)
多結晶シリコンゲート電極28および露出したトランジ
スタ領域11にリンを導入して。
Next, using the photoresist layer 23 and the first silicon oxide film 22 as an i layer, boron is selectively introduced into the region where the first silicon oxide film has been removed.
A P-type 8i region 16 having an impurity concentration higher than that of the substrate 10 is selectively formed on the surface of the substrate 10 (FIG. b). The photoresist layer 23 is removed in the same manner as the conventional method up to the depth, and a second silicon nitride film 24 with a thickness of about 10,001 mm is formed.
After depositing, the second silicon nitride film 24 except on the first silicon nitride film 22 on the transistor region 11 and on the substrate contact region 25 is selectively removed using photolithography technology (Figure C). , the pstalomide film 22 and the second nitride film 2 are heated in an oxidizing atmosphere.
Selectively oxidize the parts not covered by 4 to form a thick field oxide 1i1[12 of 171 m 8 degrees (Figure d)
Free transistor region l is created using zero-order photolithography technology.
second silicon nitride film 24, first silicon nitride film 22.
and 8i0 stroma 21 was removed, and thermal oxidation
8i false j[26 with a thickness of 1000λ is formed on the transistor region 11 (Fig. The polycrystalline 8i film is removed leaving only the gate electrode part 28, and the exposed S5 pseudo film 2 is removed by
After removing 6, by ion implantation method or thermal diffusion method)
Phosphorus is introduced into the polycrystalline silicon gate electrode 28 and the exposed transistor region 11.

へ型Si領域16を形成する(図f)。この時、基板コ
ンタクト領域25上は第2の窒化硅素膜24で覆われて
いるから、リンが導入されることはない。次Ks基板コ
ンタクト領域25上の窒化硅素膜24を除去し、熱酸化
を行なうことにより、トランジスタ成域11.多結晶シ
リコンゲート電極28および基板コンタクト領域25上
に3000〜50001程度の8i0.膜29を形成す
る(図9)。
A hexagonal Si region 16 is formed (FIG. f). At this time, since the substrate contact region 25 is covered with the second silicon nitride film 24, phosphorus is not introduced. Next, by removing the silicon nitride film 24 on the Ks substrate contact region 25 and performing thermal oxidation, the transistor region 11. On the polycrystalline silicon gate electrode 28 and substrate contact region 25, 8i0. A film 29 is formed (FIG. 9).

以下従来方法と同様の方法によシコンタクト穴明け、配
線用AI膜被着等を行なうことkよシ第3図に示す構造
のへチャンネル@8iゲー) NO8トランジスタを得
る。
Thereafter, a contact hole is formed, an AI film for wiring is deposited, etc. in the same manner as in the conventional method, thereby obtaining a channel @8i transistor having the structure shown in FIG.

以上の説明より明らかなように2本発明にしたがえば、
基板コンタクト領域25上を覆う8i0を膜はトランジ
スタ領域11および多結晶シリコンゲート電極28を覆
う8i0.膜とtlぼ等しい厚さを有しているから、ソ
ース/ドレイン領域およびゲート電極へのコンタクト穴
明けと同一工程において基板コンタクト穴明けを容易に
行なうことが可能と&り、かつ、Siθ!膜の厚さがフ
ィールド酸化膜に比較してに〜にとなっているから、コ
ンタクト大端でのAI配線の断線を生じることがないO 以上説明したように1本発明を用いれば、Nチャンネル
型SiゲートMθ8トランジスタ群によ゛シ構成される
集積回路において、基板への電源電位印加をSiゲー)
NO8)7ンジスタ群が形成されている面において行う
ことが可能となり、集積回路の動作速度を向上させるこ
とができ、さらに、集積回路ペレットの支持体への固着
法への自由度が増加することが明らかである。
As is clear from the above explanation, according to the two inventions,
A film 8i0 covering the substrate contact region 25 and a film 8i0 covering the transistor region 11 and the polysilicon gate electrode 28. Since it has a thickness approximately equal to that of the Siθ film, it is possible to easily form contact holes in the substrate in the same process as forming contact holes for the source/drain regions and gate electrodes. Since the thickness of the film is about 100% compared to the field oxide film, disconnection of the AI wiring at the large end of the contact will not occur. In an integrated circuit composed of a group of Si-gate Mθ8 transistors, the power supply potential is applied to the substrate using a Si-gate Mθ8 transistor group.
NO8) 7 It becomes possible to perform the process on the surface where the transistor group is formed, improving the operating speed of the integrated circuit, and further increasing the degree of freedom in the method of fixing the integrated circuit pellet to the support. is clear.

なお1以上の説明においてはNチャンネル型Siゲー)
NO8)ランジスタを用いたが、チャンネル型がP型で
あってもhまたゲート電極材料が。
In addition, in the explanation above, N-channel type Si game)
NO8) A transistor was used, but even if the channel type is P type, the gate electrode material is also different.

W、鳩等の高一点金属あるいは、WSム、、Mo8i。High point metal such as W, dove, or WS, Mo8i.

等の高融点金属の硅化吻であっても本発明の効果を得ら
れることは明らかである。また、半導体素子としてはN
08電界効来トランジスタの外にバイポーラトランジス
タも利用できることは明らかである。
It is clear that the effects of the present invention can be obtained even with silicides made of high melting point metals such as. In addition, as a semiconductor element, N
It is clear that in addition to 08 field effect transistors, bipolar transistors can also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来方法で形成したhチャンネル屋8iゲー
)NO8集積回路の部分的断面図である。 第2図は1本発明の一実施例によるNチャンネル型8i
ゲー)NO8集積回路の形成過程を示す部分的断面図で
、同図(am)〜(至)は各工程に於ける部分的断面図
である0第3図は本発明の一実施例によるNチャンネル
型NO8集積回路の部分的断面図である。 10・−・−・P型8i基板、12−・−・フィールド
酸化膜、13.26・−・・・・ゲート酸化膜& 14
.28−・・・・多結晶8iゲート電極%16・−−N
型8i領域。 17・−・・・・高一度P型8i領域、 20−−−−
−A j k!、ff8層、25・・・・・・基板コン
タクト領域0渠 1 図 /l 羊2図 (α) 第2口 (ト) (C) 1/ 第4図 5 Ce) <f>
FIG. 1 is a partial cross-sectional view of an h-channel NO8 integrated circuit formed by a conventional method. FIG. 2 shows an N-channel type 8i according to an embodiment of the present invention.
Figure 3 is a partial cross-sectional view showing the process of forming an NO8 integrated circuit, and Figures (am) to (to) are partial cross-sectional views at each step. 1 is a partial cross-sectional view of a channel-type NO8 integrated circuit; FIG. 10...P-type 8i substrate, 12--field oxide film, 13.26--gate oxide film & 14
.. 28-...Polycrystalline 8i gate electrode%16--N
Type 8i region. 17... High degree P type 8i region, 20---
-A j k! , ff8 layer, 25...Substrate contact area 0 channels 1 Figure/l Sheep 2 figure (α) 2nd opening (g) (C) 1/ Figure 4 5 Ce) <f>

Claims (1)

【特許請求の範囲】 半導体基板表面に選択的に厚い酸化膜を有し。 該厚い酸化膜を有しない部分の半導体基板表面は前記厚
い酸化膜を有する部分の下の半導体基板表面よりも突出
してお)、この突出し死生導体基板表EiliK電気的
素子と前記半導体基板に固定電位を与える電極増)出し
部とが形成されていることを特徴とする集積回路装置。
[Claims] A semiconductor substrate having a selectively thick oxide film on its surface. The surface of the semiconductor substrate in the portion not having the thick oxide film protrudes from the surface of the semiconductor substrate below the portion having the thick oxide film), and a fixed potential is applied to the surface of the protruding conductor substrate between the EiliK electric element and the semiconductor substrate. What is claimed is: 1. An integrated circuit device characterized in that an electrode extension portion is formed to provide an electrode expansion portion.
JP15171281A 1981-09-25 1981-09-25 Integrated circuit device Pending JPS5853857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15171281A JPS5853857A (en) 1981-09-25 1981-09-25 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15171281A JPS5853857A (en) 1981-09-25 1981-09-25 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5853857A true JPS5853857A (en) 1983-03-30

Family

ID=15524619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15171281A Pending JPS5853857A (en) 1981-09-25 1981-09-25 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5853857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189921A (en) * 1990-06-05 1993-03-02 Mitsuba Electric Mfg. Co., Ltd. Starter system for an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189921A (en) * 1990-06-05 1993-03-02 Mitsuba Electric Mfg. Co., Ltd. Starter system for an internal combustion engine

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
JPS5853857A (en) Integrated circuit device
JPH1032330A (en) Manufacture of lateral mos transistor
JPS6251216A (en) Manufacture of semiconductor device
JPH0831539B2 (en) Non-volatile memory manufacturing method
JPH08181218A (en) Semiconductor device and manufacture thereof
JPS63181378A (en) Manufacture of semiconductor device
JPH0612826B2 (en) Method of manufacturing thin film transistor
JPH10135348A (en) Field effect semiconductor device
JPH03109739A (en) Manufacture of thin-film semiconductor device
JPS63128626A (en) Method of forming contact of semiconductor integrated circuit device
JP3043791B2 (en) Method for manufacturing semiconductor device
JPH04257267A (en) Manufacture of soi-structured semiconductor device
JPS59138363A (en) Semiconductor device and manufacture thereof
JPS6074478A (en) Manufacture of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS61251163A (en) Manufacture of bi-mis integrated circuit
KR850000037B1 (en) The method of mos with self alignment metal electroid
JP2945069B2 (en) Connection structure of different polarity conductive layers
JPS6059749B2 (en) Manufacturing method of MOS type semiconductor device
JPS59210659A (en) Manufacture of metal oxide semiconductor device
JPH08111511A (en) Fabrication of semiconductor device
JPH05235290A (en) Semiconductor device and its manufacture
JPH03175676A (en) Semiconductor device
JPS60107856A (en) Manufacture of cmosic (complementary metal oxide semiconductor integrated circuit)