KR850000037B1 - The method of mos with self alignment metal electroid - Google Patents

The method of mos with self alignment metal electroid Download PDF

Info

Publication number
KR850000037B1
KR850000037B1 KR8204596A KR820004596A KR850000037B1 KR 850000037 B1 KR850000037 B1 KR 850000037B1 KR 8204596 A KR8204596 A KR 8204596A KR 820004596 A KR820004596 A KR 820004596A KR 850000037 B1 KR850000037 B1 KR 850000037B1
Authority
KR
South Korea
Prior art keywords
oxide film
silicon nitride
film
silicon
nitride film
Prior art date
Application number
KR8204596A
Other languages
Korean (ko)
Other versions
KR840002160A (en
Inventor
정칠희
Original Assignee
강진구
삼성전자공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강진구, 삼성전자공업 주식회사 filed Critical 강진구
Priority to KR8204596A priority Critical patent/KR850000037B1/en
Publication of KR840002160A publication Critical patent/KR840002160A/en
Application granted granted Critical
Publication of KR850000037B1 publication Critical patent/KR850000037B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS

Abstract

In manufg. method of metal electrode CMOS, oxide film is formed on the n-type Si substrate, p-type well (9) is diffused selectively, thin oxide film is formed again, silicon nitride film is formed on the oxide film, the field doping part (15, 17) of the silicon nitride film is etched, and boron ions and phosphor ions are implanted in order. Oxide film is formed in high temp. diffusion furnace. PSG layer and silicon oxide film are formed, p and n-type impurities are diffused at the same time. The silicon oxide film and the PSG layer are etchd, oxide film is formed, and electrodes (1,2) are formed.

Description

셀프얼라인 금속전극 복합 MOS의 제조방법Manufacturing method of self-aligned metal electrode composite MOS

제1도는 본 발명의 실시예인 반전회로 구조의 평면도.1 is a plan view of an inverting circuit structure which is an embodiment of the present invention.

제2로는 제1도의 전기적인 회로도.2 is the electrical circuit diagram of FIG.

제3도는 제1도의 A-A선 및 B-B선 단면도.3 is a cross-sectional view taken along line A-A and line B-B of FIG.

제4도는 본 발명의 제조방법을 예시하기 위한 제조공정도.4 is a manufacturing process diagram for illustrating the manufacturing method of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1, 2 : 금속선 3, 5 : P+확산영역1, 2: metal wire 3, 5: P + diffusion region

4, 6 : N+확산영역 7, 8 : 게이트영역4, 6: N + diffusion region 7, 8: gate region

10, 11 : 콘택트 부분 12 : P웰(Well)의 가이드밴드10, 11: contact portion 12: guide band of P-well

20 : 포토레지스트 15, 17 : 휠드로핑부20: photoresist 15, 17: wheel dropping portion

14. 16. 18. 22. 23 : 산화막 24 : 질소규소막14. 16. 18. 22. 23: oxide film 24: nitrogen silicon film

25, 26 : 포토레지스트층 27, 28 : PSG/CVD층.25, 26 photoresist layer 27, 28 PSG / CVD layer.

본 발명은 반도체소자 제조공정에 있어서, N형 단결정 규소기판에 이온 주입과 확산에 의해 P 우물을 형성시키고 P채널 및 N채널 MOS FET를 복합적으로 만드는 이른바 C MOS 제조공정에 관할 것이다.The present invention relates to a so-called C MOS fabrication process in which a P well is formed by ion implantation and diffusion into an N-type single crystal silicon substrate in a semiconductor device fabrication process, and a P-channel and an N-channel MOS FET are combined.

동일한 기능을 지니는 집적회로를 제작함에 있어서 생산수율을 높이고 생산성의 향상을 위해서는 칩 사이즈(chip-size)의 축소, 다시말해, 단위 면적당의 집적도 증대가 불가피한 것으로서, 칩 사이즈를 축소하고자 할 경우에 대두되는 가장 큰 문제점은 금속연결선의 형성시에 있어서 연결선의 신뢰도가 저하된다는 것인데, 일반적으로 금속연결선은 알루미늄으로 만들어지는데 이것은 진공증착 혹은 스퍼터링(sputtering)방법으로 알루미늄을 증착시키고 사진 식각에 의해 패턴(pattern)을 형성한다.In order to increase production yield and increase productivity in manufacturing integrated circuits having the same function, it is inevitable to reduce the chip size, that is, increase the density per unit area, and to raise the chip size. The main problem is that the reliability of the connection line is reduced when forming the metal connection line. In general, the metal connection line is made of aluminum, which is deposited by vacuum deposition or sputtering, and deposited by patterning. ).

이때의 두께차로 인해 생긴 스탭(step)으로 알루미늄의 두께가 불균일하게 되므로 패턴을 형성할 때 알루미늄선이 끊어지는 경우가 자주 발생하게 되는 것이다. 이를 고려하여 종래에는 이산화 규소(sro2)의 두께차를 줄이기 위해 공정의 최종단계에서 이산화규소막을 길러주고, 경사창 식각(taper etching)방법을 사용하였으나, 이러한 경우에는 패턴의 크기를 줄이기 어렵기 때문에 집적도를 높이는데 문제시 되는 한편, 제조공정에 있어서 소오스와 드레인을 확산시키고, 게이트 부분을 사진 식각(photoetching)법에 의해 형성하기 때문에 마스크 레이어(Masklayer) 간의 얼라이닝(aligning) 문제로 게이트와 드레인 혹은 게이트와 소오스간의 기생용량이 커지게 되어 동작속도가 느려지게 되었던 것으로, 이를 해결하고자 종래에는 게이트 부분의 금속선폭을 게이트길이 보다 좁게 형성하고 이온주입에 의해 드레인과 소오스 영역을 넓혁주는 방식을 취하고 있으나 이는 이온 주입 공정이 두번 더 추가되어야 할 뿐 아니라 그 신뢰도가 저하됐던 것이다.Since the thickness of the aluminum becomes uneven due to the step caused by the thickness difference at this time, the aluminum wire is often broken when the pattern is formed. In consideration of this, conventionally, in order to reduce the thickness difference of silicon dioxide (sro 2 ), a silicon dioxide film was grown at the final stage of the process and a taper etching method was used, but in this case, it is difficult to reduce the size of the pattern. Therefore, it is problematic to increase the density, while in the manufacturing process, the source and the drain are diffused, and the gate portion is formed by photoetching, so the alignment between the mask layer and the mask layer is problematic. As the parasitic capacitance between the drain or the gate and the source is increased, the operation speed is slowed. In order to solve this problem, the metal line width of the gate portion is narrower than the gate length, and the drain and source regions are widened by ion implantation. But the ion implantation process has to be added twice as well The credibility was deteriorated.

본 발명은 이와 같은 점을 감안하여 채널스토퍼를 이온주입에 의해 형성하고 질화규소(Si3N4)막을 이용하여 선택적으로 산화시켜서 알루미늄선의 스텝 커버리지(step coverage)를 향상시키고, 선택산화법에 의해 셀프 얼라인(self align)되도록 함으로써 단위 면적당 많은 수의 소자를 형성할 수 있게하고, 동작속도를 빠르게 함과 동시에 동작전압의 범위를 확대시킬 목적으로 발명한 것으로서, 이를 구체적으로 설명하면 다음과 같다.In view of the above, the present invention forms a channel stopper by ion implantation, selectively oxidizes using a silicon nitride (Si 3 N 4 ) film to improve step coverage of aluminum wire, and self-aligns by selective oxidation. It is invented to be able to form a large number of devices per unit area by being self-aligned, to increase the operating speed and to expand the range of the operating voltage, which will be described in detail as follows.

이온 주입에 의해 휠드(Field)반전 전압을 높이기위한 불순물을 주입하고 질화규소막을 이용한 선택 산화법에 의해 확산 영역 및 게이트 이외의 부분을 열화산화(thermal oxidation) 시킨후 게이트 영역만을 남기고 P+및 N+확산영역의 질화규소막을 식각(Etching)한 다음 HH 웨이퍼(Boron Nitride wafer) 및 PSG를 사용하여 P+와 N+를 동시 확산하고 다시 열화 산화시킨 것이다.Impurities are implanted to increase the field reversal voltage by ion implantation, and thermal oxidation of the diffusion region and the non-gate region is performed by selective oxidation using a silicon nitride film, and only P + and N + diffusions remain behind the gate region. The silicon nitride film was etched and then co-diffused with P + and N + using HH wafer (Boron Nitride wafer) and PSG, followed by deterioration oxidation.

이와 같은 본 발명의 반전회로의 구조를 도면에서와 같은 실시예로서 살펴보면, 제1도는 본 발명에 의해 실시된 반전회로의 구조의고, 제2도는 제1도의 전기적 회로도로서 각 부분에 표시된 숫자는 제1도의 숫자와 대응되는 것이다. 즉, 제1도와 제2도의 반전회로는 일반적인 C-MOS 반전회로로서 P채널 FET(Q1)과 N채널 FET(Q2)로 구성되어 있으며, P채널 FET(Q1)은 N형 규소기판에 P+확산영역(3), (5) 및 게이트 영역(7)과 금속선(1)으로 구성되어 있고, N채널 FET(Q2)는 N형 규소기판에 이온 주입과 고온 확산에 의해 형성된 P웰 영역에 N+확산영역(4)(6) 및 게이트 영역(8)과 금속선(1)으로 구성되어 있는 것으로서 P채널 FET(Q1)와 N채널 FET(Q2)의 게이트가 연결되어 반전회로의 입력이 되고, 확산영역(5), (6)이 콘택트부분(10),(11)을 통해서 금속선(2)에 의해 연결되어 출력단이 된다.Looking at the structure of the inverting circuit of the present invention as an embodiment as shown in the drawings, Figure 1 is the structure of the inverting circuit implemented by the present invention, Figure 2 is the electrical circuit diagram of Figure 1 is the number shown in each part Corresponds to the number in FIG. That is, the inverting circuits of FIG. 1 and FIG. 2 are general C-MOS inverting circuits and are composed of P-channel FETs (Q 1 ) and N-channel FETs (Q 2 ), and P-channel FETs (Q 1 ) are N-type silicon substrates. Is composed of P + diffusion regions (3), (5), gate region (7), and metal lines (1), and the N-channel FET (Q 2 ) is formed by ion implantation and high temperature diffusion into an N-type silicon substrate. It is composed of N + diffusion region (4) (6), gate region (8) and metal line (1) in the well region, and the gates of P-channel FET (Q 1 ) and N-channel FET (Q 2 ) are connected and inverted. The circuit is input, and the diffusion regions 5 and 6 are connected by the metal wires 2 through the contact portions 10 and 11 to become output terminals.

제3(a)도, 제3(b)도는 각각 제1도의 A-A, B-B단면을 도시한 것으로서 "14"는 선택 산화법에 의해 형성된 산화막이고, "15", "17"은 각각 이온 주입에 의해 형성된 휠드도핑(field doping)을 나타내며, "16"은 게이트산화막, "12"는 P웰의 가아드 밴드(guard band)이다.3 (a) and 3 (b) show AA and BB cross-sections of FIG. 1, respectively, where “14” is an oxide film formed by a selective oxidation method, and “15” and “17” are respectively implanted by ion implantation. "16" is a gate oxide film and "12" is a guard band of a P well.

제4도는 본 발명의 실제 제조공정도로서 이를 도면에 의거 상세히 설명하고자 한다.4 is an actual manufacturing process diagram of the present invention will be described in detail based on the drawings.

출발물질은 N형 단결정 규소판으로 직경 3"-5" 두께 15-25mil, 방향성은 (1.0.0)이고, 비저항이 1-5Ω/cm이며 결정 결함이 없어야 한다는 것을 전제로 하고, 공정순서를 살펴보면, 제1공정 제4(a)도는 산화막 형성1단계로서 우선 기판을 잘 세척한 후에 1000℃ 정도의 고온로에서 H2/O2/HCl의 분위기로 산화를 시켜 두께가 1700Å정도의 산화막(18)을 형성한다.The starting material is an N-type single crystal silicon plate with a diameter of 3 "-5", 15-25 mils in thickness, directional (1.0.0), resistivity of 1-5 Ω / cm and no crystal defects. Referring to FIG. 4 (a), the first step of forming the oxide film, the substrate is first washed well and then oxidized in an atmosphere of H 2 / O 2 / HCl in a high temperature furnace at about 1000 ° C. to form an oxide film having a thickness of about 1700 μs ( 18).

제2공정 제4(b)도는 포로레지스트(photo resist) 패턴 형성단계로서, 전면에 포로레지스트(20)를 7000-8000A°의 두께로 도포한 후 마스크(Mask)를 통해 U.V광선에 노출시켜 P웰 포로레지스트패턴을 형성하고 가속전압 100kev로 8*1013cm-2정도의 붕소이온을 "21" 부분에 이온 주입기로 주입한다. 이에 "21"을 제외한 다른 부분은 포토레지스트(20)와 산화막(18)에 의해 이온 주입이 안된다.FIG. 4 (b) shows a process of forming a photoresist pattern. The photoresist 20 is applied to the entire surface with a thickness of 7000-8000 A °, and then exposed to UV light through a mask. A well pores resist pattern is formed, and boron ions of about 8 * 10 13 cm -2 are implanted into the "21" portion with an ion implanter at an acceleration voltage of 100 kev. Therefore, other portions except for "21" cannot be ion implanted by the photoresist 20 and the oxide film 18.

제3공정 제4(c)도는 산화막형성 2단계로서, 이온주입을 한 후 NH4F 혹은 BHF로 산화막을 식각해내고, H2SO4혹은 O2를 플라즈마(plasma) 장치를 써서 포토레지스트를 벗겨내고 다시 웨이퍼를 세척한 후 1160℃의 고온로에서 N2/O2분위기로 장시간 확산을 시켜 접합깊이(junction depth)가 8-10㎛, N형 기판 위의 산화막(22)이 3000A 정도 되게한다.Step 3 (c) of FIG. 3 shows a step of forming an oxide film. After ion implantation, the oxide film is etched with NH 4 F or BHF, and H 2 SO 4 or O 2 is converted into a photoresist using a plasma apparatus. After peeling off, the wafer is washed again and then diffused for a long time in an N 2 / O 2 atmosphere in a high temperature furnace at 1160 ° C. so that the junction depth is 8-10 μm and the oxide film 22 on the N-type substrate is about 3000 A. do.

제4공정 제4(a)도는 질화규소(si3N4)막 형성단계로서, 웨이퍼를 BHF에 3분 가량 담가 전면 산화막을 제거하고 잘 세척하여 950℃의 고온로에서 H2/O2/HCl 분위기로 하여 900-1000Å 정도의 산화막(23)을 기른 후에 CVD 혹은 LPCVD 방법으로 2000-3000Å의 질화규소막(24)를 형성한다.Step 4 (a) is a step of forming a silicon nitride (si 3 N 4 ) film, and the wafer is immersed in BHF for about 3 minutes to remove the entire surface oxide film and washed well in a H 2 / O 2 / HCl furnace at 950 ° C. An oxide film 23 of about 900-1000 kV is grown in an atmosphere, and then a silicon nitride film 24 of 2000-3000 kV is formed by CVD or LPCVD.

제5공정 제4(e)도는 산화막 패턴 형성단계로서, P웰 패턴 형성과 동일한 사진술에 의해 P+, N+확산될 부분과 게이트 영역을 제외한 피드(Field) 영역을 플라즈마 에칭 혹은 160℃ 정로의 인산(H3PO4) 용액으로 식각해낸다. 인산으로 식각할 경우는 포로레지스트를 도포하기 전에 고온로에서 질화 규소막을 산화시키거나 CVD 산화막을 1000Å 정도 입힌후에 사진식각술에 의해 산화막의 패턴을 형성하고 포토레지스트를 벗겨낸 후 질화 규소막을 식각해야 한다.The fourth step (e) of the fifth step is an oxide film pattern forming step, in which the P + , N + areas to be diffused by the same photography as the P well pattern formation and the feed (Field) area except the gate area are plasma-etched or 160 ° C. Etch with a solution of phosphoric acid (H 3 PO 4 ). In case of etching with phosphoric acid, the silicon nitride film should be oxidized in a high temperature furnace or coated with CVD oxide film at 1000Å before forming the photoresist. Then, the pattern of the oxide film is formed by photolithography, the photoresist is peeled off, and the silicon nitride film is etched. do.

제6, 7공정 제4(f)도, 제4(g)도는 휠드도핑을 위한 이온 주입단계로서, 사진 공정에 의해 P+휠드도핑 패턴(25)를 형성하고 가속전압 40kev 으로 8×1012cm-2의 붕소이온을 주입기로 "15" 부분에 주입한 후, 포토레지스트층(25)를 제거하고 다시 사진공정으로 N+칩드도핑 패턴을 형성하여 가속전압 130kev으로 3×1012cm-2의 인(P) 이온을 "17"영역에 주입한 후 포토레지스트층(26)을 제거하고 BHF로 "15", "17"영역의 산화막을 식각해 낸다.The sixth, seventh step of claim 4 (f) also, the 4 (g) turning as an ion implantation step for Wheeled doped, with P + Wheeled doped pattern formation and the acceleration voltage 40kev to 25 by the photolithography process 8 × 10 12 After implanting the cm -2 boron ion into the "15" part with an injector, the photoresist layer 25 was removed and again, an N + chipped doping pattern was formed by a photographic process to obtain an acceleration voltage of 130 kev 3 x 10 12 cm -2. After implanting phosphorus (P) ions into the "17" region, the photoresist layer 26 is removed and the oxide films in the "15" and "17" regions are etched with BHF.

이온 주입을 할때 P+, N+확산영역 및 게이트 영역에는 이온 주입이 안되도록 질화규소막(24)이 충분히 두꺼워야 하는데 너무 두꺼우면 산화시 규소기판에 결정결함을 많이 생기게 하므로 2000-3000Å이 적당하다.During ion implantation, the silicon nitride film 24 should be thick enough to prevent ion implantation in the P + , N + diffusion and gate regions. If too thick, the silicon substrate will have many crystal defects during oxidation. Do.

제8공정 제4(h)도는 산화막형성 3단계로서, 1000℃의 고온로에서 H2/O2/HCl 분위기로 산화시켜 소자와 소자를 분리시키는 휠드(Field) 산화막을 8000-10,000Å 두께로 기른다. 이때 질소규소막은 산화율이 규소기판에 비해 대단히 작으므로 선택적으로 산화가 되고 산화막 두께의 0.46배 정도가 규소기판 표면 밑으로 들어가게 된다. 이때 질화규소막과 규소기판의 열팽창계수가 다르기 때문에 스트레스(stress)에 의한 결정결함이 생길 수 있는데 이것을 줄이기 위해서 900-1000Å 정도의 산화막(23)을 길러준 것이다.Step 8 (h) of the eighth step is a three-step formation of an oxide film, in which a field oxide film which separates an element from an element by oxidizing in an H 2 / O 2 / HCl atmosphere in a high temperature furnace at 1000 ° C. has a thickness of 8000-10,000Å. Nourish At this time, since the silicon oxide film has a very small oxidation rate compared to that of the silicon substrate, it is selectively oxidized and about 0.46 times the thickness of the oxide film enters the surface of the silicon substrate. At this time, since the thermal expansion coefficients of the silicon nitride film and the silicon substrate are different, crystal defects may occur due to stress. To reduce this, an oxide film 23 of about 900-1000 kPa is raised.

제9공정 제4(i)도는 붕소확산단계로서, 사진 식각공정에 의해 게이트영역을 제외한 P+,N+확산 영역의 질화규소막(24)과 얇은 산화막(23)을 제거한 후 N+불순물원으로 사용할 PSG(phosphosilica glass)를 3000Å 정도입히고 순수한 CVD 실리콘 산화막(28)을 2000-3000Å 정도 입힌 다음 N+확산 영역만 남기고 그의 P+확산 영역을 사진 식각술에 의해 식각해낸 다음 970℃의 고온로에서 BN 웨이퍼를 사용하여 질소가스(N2) 분위기로 "3", "5", "12" 영역에 붕소를 확산시켜 쉬이트 레지스턴스(sheetresistance)(Rs)가 40Ω/되게 한다. 이때 "4", "6"의 영역에도 PSG로 부터 인이 확산되어 쉬이트레지스턴스(Rs)가 20Ω/정도된다.The fourth step (i) of the ninth process is a boron diffusion step, in which the silicon nitride film 24 and the thin oxide film 23 in the P + , N + diffusion region excluding the gate region are removed by a photolithography process, and then the N + impurity source is removed. Apply about 3000Å of PSG (phosphosilica glass) to be used, 2000-3000 of pure CVD silicon oxide (28), and then etch its P + diffusion by photolithography, leaving only the N + diffusion area, and then in a high temperature furnace at 970 ° C. using BN wafer causes nitrogen gas (N 2) is diffused to "3", "5", the boron in the "12" sheet-bit region in the atmosphere resistance (sheetresistance) (Rs) is 40Ω / e. At this time, the phosphorus diffuses from the PSG even in the areas "4" and "6", so that the shear resistance (Rs) is about 20 mW / kW .

제10공정 제4(j)도는 산화막형성 4단계로서, PSG/CVD층인 "27", "28"을 BHF로 식각해내고, 1000℃의 고온로에서 H2/O2/HCl 분위기로 산화시켜 5000-6000Å의 산화막을 형성한다. 이때에도 산화막 형성 3단계(제8공정 : 아)에서와 마찬가지로 선택산화가 이루어지며 게이트 영역이 자동적으로 형성되어 소오스, 드레인, 게이트가 셀프얼라인이 되는 것이다.Step 4 (j) of the tenth step is an oxide film formation step 4, in which the PSG / CVD layers " 27 " and " 28 " are etched with BHF and oxidized to H 2 / O 2 / HCl in a high temperature furnace at 1000 ° C. An oxide film of 5000-6000 Pa is formed. At this time, as in the third step (8th step: a) of oxide film formation, selective oxidation is performed and gate regions are automatically formed so that the source, drain, and gate are self-aligned.

제11공정 제4(k)도는 완성단계로서, 질화규소(Si3N4) 막(24)과 그 밑에 있는 얇은 산화막을 제거한후 1000℃의 고온로에서 O2/HCl 분위기를 산화시켜 900Å 정도의 게이트 산화막(16)을 거른 후 FET의 동작개시 전압을 조정하기 위해 붕소이온을 40kev, 2-3×1011cm-2정도 주입하고 1000℃의 고온로에서 N2분위기로 열처리(annealing) 공정을 거친 다음 사진식각에 의해 콘택트 부분(10), (11)의 산화막을 제거하고 전면에 1㎛ 정도의 알루미늄막을 입힌 후 사진식각에 의해 알루미늄 패턴을 형성한다.Step 4 (k) of the eleventh step is a completion step, and after removing the silicon nitride (Si 3 N 4 ) film 24 and the thin oxide film under it, the O 2 / HCl atmosphere is oxidized in a high temperature furnace at 1000 ° C. After filtering the gate oxide layer 16, boron ions are injected at about 40 kev, 2-3 × 10 11 cm -2 to adjust the FET's starting voltage, and annealing is performed in an N 2 atmosphere in a 1000 ° C. high temperature furnace. After the rough, the oxide films of the contact portions 10 and 11 are removed by photolithography, an aluminum film having a thickness of about 1 μm is coated on the entire surface, and an aluminum pattern is formed by photolithography.

알루미늄과 콘택트 부분의 실리콘 사이에 충분한 알로이(alloy)가 형성되어 콘택트저항이 작아지도록 450℃ N2분위기에서 30분가량의 열처리 공정을 마지막으로 하여 복합 MOS 집적회로가 완성되는 것이다.Sufficient alloys are formed between the aluminum and the silicon of the contact portion, and the composite MOS integrated circuit is completed by performing a heat treatment process for about 30 minutes in a 450 ° C. N 2 atmosphere so as to reduce contact resistance.

이러한 공정을 거쳐서 제작된 본 발명은 휠드 도핑과 질화규소(Si3N4) 막을 이용한 선택산화법으로서 산화막단차의 감소에 기인하는 금속선의 스텝커버리지를 향상시켜 금속 연결선의 신뢰도를 높임은 물론 게이트의 셀프얼라인이 이루어지게 되므로서 동작 속도가 빠르게 되어 동작전압의 범위를 확대시킬 수 있는 매우 유익한 특징이 있다.The present invention produced through such a process is a selective oxidation method using wheeled doping and silicon nitride (Si 3 N 4 ) film to improve the step coverage of the metal wire resulting from the reduction of the oxide film step to increase the reliability of the metal connecting line as well as the self-aligning of the gate Since phosphorus is made, the operation speed becomes high, and thus, there is a very advantageous feature that can extend the range of the operating voltage.

Claims (1)

N형 실리콘 기판상에 산화막(18)을 형성하고 P형 웰(9)을 선택확산시켜 금속전극 CMOS를 제작하는 방법에 있어서, 상기 P형 웰(9) 확산 후 전면에 얇은 산화막(23)을 형성하고 그 상에 질화규소막(24)을 형성하여, 상기 질화규소막(24) 중 휠드 도핑부(15, 17)에 해당하는 질화규소막을 에칭해내며 상기 휠드도핑부(15, 17)에 각각 붕소이온과 인이온을 차례로 이온 주입하는 제1공정과, 제1공정 후 고온확산로에서 산화막을 형성하고 상기 질화규소막(24)중 게이트 영역을 제외한 질화규소막(24)과 얇은 산화막(23)을 에칭하여 N형 불순물 확산을할 부분에 PSG층(27)과 실리콘 산화막(28)을 형성하고 P형 불순물 분위기 속에서 P형 불순물과 N형 불순물을 동시에 확산시키는 제2공정과, 상기 실리콘 산화막(28) 및 PSG층(27)을 에칭해내며 확산로 속에서 산화막을 형성시켜 소오스, 드레인, 게이트를 셀프얼라인 되게 하고 남아있는 질화규소막(24)을 모두 에칭해내고 전극(1, 2)을 형성하는 제3공정을 구비함을 특징으로 하는 셀프얼라인 금속전극복합 MOS의 제조방법.In a method of forming a metal electrode CMOS by forming an oxide film 18 on an N-type silicon substrate and selectively diffusing the P-type well 9, a thin oxide film 23 is formed on the entire surface after the diffusion of the P-type well 9. And a silicon nitride film 24 formed thereon to etch the silicon nitride film corresponding to the wheeled doped portions 15 and 17 of the silicon nitride film 24 and to form boron ions in the wheeled doped portions 15 and 17, respectively. In the first step of sequentially implanting and phosphorus ions, an oxide film is formed in the high temperature diffusion furnace after the first step, and the silicon nitride film 24 and the thin oxide film 23 except the gate region of the silicon nitride film 24 are etched. Forming a PSG layer 27 and a silicon oxide film 28 at a portion where the N-type impurity is to be diffused and simultaneously diffusing the P-type impurity and the N-type impurity in a P-type impurity atmosphere, and the silicon oxide film 28 And etching the PSG layer 27 to form an oxide film in the diffusion path. And self-aligning the drain and gate, and etching the remaining silicon nitride film 24 to form the electrodes 1 and 2, wherein the self-aligned metal electrode composite MOS is fabricated. Way.
KR8204596A 1982-10-13 1982-10-13 The method of mos with self alignment metal electroid KR850000037B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR8204596A KR850000037B1 (en) 1982-10-13 1982-10-13 The method of mos with self alignment metal electroid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR8204596A KR850000037B1 (en) 1982-10-13 1982-10-13 The method of mos with self alignment metal electroid

Publications (2)

Publication Number Publication Date
KR840002160A KR840002160A (en) 1984-06-11
KR850000037B1 true KR850000037B1 (en) 1985-02-13

Family

ID=19225799

Family Applications (1)

Application Number Title Priority Date Filing Date
KR8204596A KR850000037B1 (en) 1982-10-13 1982-10-13 The method of mos with self alignment metal electroid

Country Status (1)

Country Link
KR (1) KR850000037B1 (en)

Also Published As

Publication number Publication date
KR840002160A (en) 1984-06-11

Similar Documents

Publication Publication Date Title
KR940008728B1 (en) Semiconductor device and manufacturing method thereof
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPH0343778B2 (en)
US4292156A (en) Method of manufacturing semiconductor devices
US3986896A (en) Method of manufacturing semiconductor devices
US3670403A (en) Three masking step process for fabricating insulated gate field effect transistors
US4621412A (en) Manufacturing a complementary MOSFET
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
KR850000037B1 (en) The method of mos with self alignment metal electroid
JPS60193371A (en) Manufacture of semiconductor device
US3825455A (en) Method of producing insulated-gate field-effect semiconductor device having a channel stopper region
KR840002055B1 (en) The method of mos with metalic electrode fabrication
JPH08162523A (en) Semiconductor device, and its manufacture
JP2817226B2 (en) Method for manufacturing semiconductor device
KR970006255B1 (en) Fabrication method of tft
JPH05102181A (en) Manufacture of high-breakdown-strength semiconductor device
JPH0554263B2 (en)
KR0161844B1 (en) Etching method for poly silicon with selective oxidation
JPH0621094A (en) Manufacture of semiconductor device
JPS61251165A (en) Manufacture of bi-mis integrated circuit
KR100186513B1 (en) Manufactrure of semiconductor device
KR960011639B1 (en) Formation of shallow-junction using titanium silicide
KR940000986B1 (en) Manufacturing method of stack type cmos
JP2609222B2 (en) Method for manufacturing semiconductor device
JPH01125976A (en) Semiconductor device