JPS5852881A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS5852881A
JPS5852881A JP15069481A JP15069481A JPS5852881A JP S5852881 A JPS5852881 A JP S5852881A JP 15069481 A JP15069481 A JP 15069481A JP 15069481 A JP15069481 A JP 15069481A JP S5852881 A JPS5852881 A JP S5852881A
Authority
JP
Japan
Prior art keywords
ion implantation
resist
source
pattern
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15069481A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sano
佐野 芳明
Masahiro Akiyama
秋山 正博
Toshio Nonaka
野中 敏夫
Toshimasa Ishida
俊正 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15069481A priority Critical patent/JPS5852881A/en
Publication of JPS5852881A publication Critical patent/JPS5852881A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To manufacture the MES FET having excellent electrical characteristics, such as a high-frequency characteristic, a high-speed characteristic, dielectric resistance, etc. and high reliability in sperior yield by utilizing oblique ion implantation from both directions while using a gate electrode as a mask. CONSTITUTION:An n type conductive layer 22 is formed onto the surface of a semi- insulating GaAs substrate 21 through epitaxial growth. The gate electrode 23 consisting of a high-melting point metal such as tungsten is shaped onto the surface of the semiconductor substrate through the formation of a resist-pattern by means of photolithography, the evaporation of a gate metal and the lift-off of the unnecessary section. The first ion implantation in the semiconductor substrate is conducted from one oblique direction while employing the resist-pattern 24 shaped through photolithography and the gate electrode 23 as masks, and a first ion implantation region 25 is formed. A second ion implatation is conducted from the opposite oblique direction, and the second ion implantation region 26 is formed. A source region 28 and a drain region 29 are shaped through heat treatment. The resist-pattern 24 is removed, the resist-pattern is molded through photolithography again, the ohmic metal is evaporated, the unncessary section is lifted off, and source-drain electrodes 30, 31 are formed onto the source-drain regions 28, 29.

Description

【発明の詳細な説明】 この発明は半導体素子の11造方法に関し、詳しくはM
ES FETの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device.
The present invention relates to a method for manufacturing an ES FET.

従来のMES FETの製造方法を第1図により説明す
る。まず、第1図囚に示すように、半絶縁性基板11上
にエピタキシャル法あるいはイオン注入法によってn型
導電層12i形成する。次に、ホトリンによってレノス
トマスクを形成してから、半導体基板(半絶縁性基板1
1とn型導電層12からなる)に高濃度イオン注入を行
い、さらに熱処理によってアニールすることによって同
図に示すようにソース・ドレイン領域13.14を半導
体基板に形成する。続いて、ホトリソによるレジストパ
ターンの形成、オーミック金属の蒸着、その不要部のリ
フトオフを行って1141図(2)に示すようにソース
・ドレイン114i15.16t″ソースΦドレイン領
域13.14上に形成し、最後に同様にホトリンによる
レジストパターンの形成、ダート金属の蒸着、その不要
部のリフトオフ全行って同図に示すようにゲート電極1
7を半導体基板上の所定位置に形成する。
A conventional method for manufacturing a MES FET will be explained with reference to FIG. First, as shown in FIG. 1, an n-type conductive layer 12i is formed on a semi-insulating substrate 11 by an epitaxial method or an ion implantation method. Next, a Renost mask is formed using photorin, and then a semiconductor substrate (semi-insulating substrate 1
1 and n-type conductive layer 12), and is further annealed by heat treatment to form source/drain regions 13 and 14 in the semiconductor substrate as shown in the figure. Subsequently, a resist pattern is formed by photolithography, ohmic metal is deposited, and unnecessary parts are lifted off to form the source/drain 114i15.16t'' source Φ drain region 13.14 as shown in FIG. 1141 (2). , Finally, the resist pattern is formed using photorin, the dirt metal is evaporated, and the unnecessary parts are lifted off to form the gate electrode 1 as shown in the figure.
7 is formed at a predetermined position on the semiconductor substrate.

ところで、 MES FETにおいては、ソース拳ゲー
トまたはゲート・ドレイン間距離が小さい程、またダー
ト長が小さい程、高周波特性が犬となる。
By the way, in a MES FET, the smaller the source-to-gate or gate-drain distance, or the shorter the dart length, the better the high frequency characteristics.

しかるに、上記のような従来のホトリソ、マスク合わせ
法による製造方法では、マスク合わせff度によってソ
ースーグート間あるいはゲート・ト・レイン間距離を小
さくすることに限界があシ、高周波特性を向上させるこ
とに限りがあった。また、上記従来の製造方法では、精
度tiするマスク合わせ全2度必要とし、特にゲート電
極17がソース・ドレづン領域13.14と接触すると
ダート耐圧劣化をもたらすため、マスクずれによって耐
圧の劣化や歩留シの低下が生じる欠点があった。
However, in the conventional manufacturing method using photolithography and mask alignment methods as described above, there is a limit to reducing the source-to-gate or gate-to-train distance depending on the degree of mask alignment, and it is difficult to improve high frequency characteristics. There was a limit. In addition, in the conventional manufacturing method described above, it is necessary to align the masks twice with precision ti, and in particular, when the gate electrode 17 comes into contact with the source/drain regions 13.14, dirt breakdown voltage deteriorates. However, there were drawbacks such as a decrease in yield and yield.

この発明は上記の点に鑑みなされたもので、高周波特性
の改善を図ることができるとともに、耐圧の劣化や歩留
シの低下を防止することができる半導体素子の製造方法
を提供すること全目的とする。
The present invention has been made in view of the above points, and its overall purpose is to provide a method for manufacturing a semiconductor device that can improve high frequency characteristics and prevent deterioration of breakdown voltage and decrease in yield. shall be.

以下この発明の実施例を第2図を参照して説明する。第
2図囚において、21は半絶縁性GaAs基板であシ、
まずその基板21の表面上にエピタキシャル成長を行っ
てn型の導電#22に形成する。
An embodiment of the present invention will be described below with reference to FIG. In Figure 2, 21 is a semi-insulating GaAs substrate;
First, epitaxial growth is performed on the surface of the substrate 21 to form n-type conductivity #22.

次に、ホトリソによるレジストパターンの形成、ゲート
金属の蒸着、その不要部のリフトオフを行って、タング
ステンのような高融点金属からなるダート電極23t−
半導体基板(半絶縁性GaAs基板21とn型導電層2
2からなる)の表面所定位置に同図に示すように形成す
る。
Next, a resist pattern is formed by photolithography, gate metal is vapor deposited, and unnecessary parts thereof are lifted off to form a dirt electrode 23t- made of a high melting point metal such as tungsten.
Semiconductor substrate (semi-insulating GaAs substrate 21 and n-type conductive layer 2
2) at a predetermined position on the surface as shown in the figure.

次に、ホトリソを行ってレジストパターン24を第2図
CB)に示すように半導体基板上の所定部分に形成する
。そして、このレジストノやターン24および前記ゲー
ト1i極23をマスクとして、半導体基板に対するたと
えばシリコンのような導電型不純物イオンの第1のイオ
ン注入を前記第2図ω)に矢印で示すように−斜め方向
から行い、第1のイオン注入領域25を半導体基板に形
成する。
Next, photolithography is performed to form a resist pattern 24 on a predetermined portion of the semiconductor substrate as shown in FIG. 2CB). Then, using the resist nozzle, the turn 24, and the gate 1i pole 23 as a mask, a first ion implantation of conductivity type impurity ions such as silicon into the semiconductor substrate is carried out diagonally as shown by the arrow in FIG. 2 ω). A first ion implantation region 25 is formed in the semiconductor substrate.

続いて、前記と同一不純物イオンの第2のイオン注入を
、同じくレジストパターン24およびダート電極23を
マスクとして行う。ただし、この場合は、第2図C)に
矢印で示すように、前記斜め方向と反対の斜め方向から
イオン注入を行うものである。これによシ、半導体基板
に薗2のイオン圧入領域26t−形成する。
Subsequently, a second ion implantation of the same impurity ions as described above is performed using the resist pattern 24 and the dirt electrode 23 as a mask. However, in this case, the ion implantation is performed from an oblique direction opposite to the above-mentioned oblique direction, as shown by the arrow in FIG. 2C). As a result, the ion press-in region 26t of the groove 2 is formed on the semiconductor substrate.

しかる後;熱処理によってイオン注入領域をアニールす
ることによシ、ソース領域28.ドレイン領域29を半
導体基板に形成する。
Thereafter, by annealing the ion implanted region by heat treatment, the source region 28. A drain region 29 is formed in the semiconductor substrate.

その後は、紬記レジスト・?ターフ24t−除去した後
、再度ホトリンによるレジストパターンの形成を行い、
さらにオーミック金属の蒸着、その不要部のリフトオフ
を打うことによシ、第2図0に示すようにソース・ドレ
イン電極30.31’!にソース・ドレイン領域28.
29上に形成する。
After that, Tsumugi resist? After removing the turf 24t, a resist pattern was formed again using photorin.
Furthermore, by depositing ohmic metal and lifting off the unnecessary parts, the source/drain electrodes 30 and 31' are formed as shown in FIG. source/drain regions 28.
29.

以上のように、実施例では、ダート電極23をマスクと
してイオン注入を行うことにより、ダートを極23とソ
ース・ドレイン領域28.29にセルファライン化する
ことができ、ソース・ドレインとダート間距融を極限ま
で小さくできる。しかも、イオン注入を斜め方向から行
っているために、ケ°−ト電極23の下にまでイオン注
入領域を形成することができ、ゲート電極23より狭1
/1ゲート長とすることができる。し友がって、高周波
特性、さらには高速特性が向上し、製造歩留りもセルフ
ァライン化により向上する。
As described above, in the embodiment, by performing ion implantation using the dirt electrode 23 as a mask, the dirt can be self-aligned between the pole 23 and the source/drain regions 28 and 29, and the distance between the source/drain and the dirt can be melted. can be made as small as possible. Moreover, since the ion implantation is performed from an oblique direction, the ion implantation region can be formed even below the gate electrode 23, making it narrower than the gate electrode 23.
/1 gate length. As a result, high-frequency characteristics and even high-speed characteristics are improved, and manufacturing yields are also improved by using a self-aligned line.

また、ダートを極23 ’にマスクとする斜め方向から
のイオン圧入t、互いに反対方向から計2回行っている
ため、ダート電極23より少し離れた位置には、2回の
イオン注入の重なりに工って高濃度領域(第2図C)に
符号27で示す)が形成され、したがってソース・ドレ
イン領域28.29の直列抵抗の低減を図ることができ
るとともに、ソース・ドレイン電極30.31とのオー
ミック特性が改善される。また、同時に、ダート電極2
3に接する半導体基板の不純物濃度は、高濃度領域27
0半分にすることができるため、ソース・ゲート間ある
いはゲート・ドレイン間の耐圧を、垂直にイオン注入し
てソース0ドレイン領域を形成する場合に比較して大き
くすることができる。
In addition, since the ion injection from an oblique direction using the dirt as a mask at the pole 23' is carried out twice in total from opposite directions, there is an overlap between the two ion implantations at a position slightly away from the dirt electrode 23. As a result, a high concentration region (indicated by reference numeral 27 in FIG. 2C) is formed, which makes it possible to reduce the series resistance of the source/drain regions 28, 29 and to connect the source/drain electrodes 30, 31. ohmic characteristics are improved. At the same time, the dirt electrode 2
The impurity concentration of the semiconductor substrate in contact with 3 is the high concentration region 27
Since the voltage can be reduced to half of 0, the withstand voltage between the source and the gate or between the gate and the drain can be increased compared to the case where the source 0 drain region is formed by vertical ion implantation.

以上実施例で詳述したように、この発明の半導体素子の
製造方法によれば、ゲート電極をマスクとして両方向か
らの斜めイオン注入を利用することによシ、高周波特性
、高速特性、耐圧など電気的特性のすぐれた高信頼性の
MES FET k歩留りよく製造することができる。
As described in detail in the embodiments above, according to the method of manufacturing a semiconductor device of the present invention, by using diagonal ion implantation from both directions using the gate electrode as a mask, high frequency characteristics, high speed characteristics, breakdown voltage, etc. It is possible to manufacture highly reliable MES FETs with excellent physical characteristics at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMES FETの製造方法を説明するた
めの断面図、第2図はこの発明の半導体素子の製造方法
の実施例を説明する九めの断面図であ21・・・半絶縁
性GaAs基板、22・・・n型411層、23・・・
ゲート電極、25・・・第1のイオン注入領域、26・
・・第2のイオン注入領域、27.28・・・ソース・
ドレイン領域。 特許出願人 沖電気工業株式会社
FIG. 1 is a cross-sectional view for explaining a conventional method for manufacturing a MES FET, and FIG. 2 is a ninth cross-sectional view for explaining an embodiment of a method for manufacturing a semiconductor element according to the present invention. GaAs substrate, 22... n-type 411 layer, 23...
Gate electrode, 25...first ion implantation region, 26.
...Second ion implantation region, 27.28...Source.
drain area. Patent applicant Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面の所定の位置にゲート電極を形成する工
程と、このダート電極をマスクトシテー斜め方向から不
純物イオンのイオン注入を前記半導体基板に対して行う
工程と、前記斜め方向と反対の斜め方向から、同じくダ
ート電極をマスクとして不純物イオンのイオン注入を前
記半導体基板に対して行う工程と全具備してなる半導体
素子の製造方法。
forming a gate electrode at a predetermined position on the surface of a semiconductor substrate, masking the dirt electrode and implanting impurity ions into the semiconductor substrate from an oblique direction, and from an oblique direction opposite to the oblique direction, A method for manufacturing a semiconductor device, which also includes a step of implanting impurity ions into the semiconductor substrate using a dirt electrode as a mask.
JP15069481A 1981-09-25 1981-09-25 Manufacture of semiconductor element Pending JPS5852881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15069481A JPS5852881A (en) 1981-09-25 1981-09-25 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15069481A JPS5852881A (en) 1981-09-25 1981-09-25 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS5852881A true JPS5852881A (en) 1983-03-29

Family

ID=15502394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15069481A Pending JPS5852881A (en) 1981-09-25 1981-09-25 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS5852881A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592225A1 (en) * 1985-12-20 1987-06-26 Thomson Csf POWER HYPERFREQUENCY TRANSISTOR
EP0412701A2 (en) * 1989-07-31 1991-02-13 Canon Kabushiki Kaisha Thin film transistor and preparation thereof
JPH0513444A (en) * 1991-10-23 1993-01-22 Hitachi Ltd Field-effect transistor
FR2709378A1 (en) * 1993-01-29 1995-03-03 Mitsubishi Electric Corp Field-effect transistor and method for manufacturing such a transistor
US5471073A (en) * 1993-01-29 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Field effect transistor and method for producing the field effect transistor
GB2282262B (en) * 1993-01-29 1997-04-23 Mitsubishi Electric Corp Field effect transistor and method for producing the field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979183A (en) * 1972-12-01 1974-07-31
JPS535581A (en) * 1976-07-06 1978-01-19 Toshiba Corp Schottky gate type field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979183A (en) * 1972-12-01 1974-07-31
JPS535581A (en) * 1976-07-06 1978-01-19 Toshiba Corp Schottky gate type field effect transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592225A1 (en) * 1985-12-20 1987-06-26 Thomson Csf POWER HYPERFREQUENCY TRANSISTOR
EP0412701A2 (en) * 1989-07-31 1991-02-13 Canon Kabushiki Kaisha Thin film transistor and preparation thereof
US5410172A (en) * 1989-07-31 1995-04-25 Canon Kabushiki Kaisha Thin film transistor and preparation thereof
JPH0513444A (en) * 1991-10-23 1993-01-22 Hitachi Ltd Field-effect transistor
FR2709378A1 (en) * 1993-01-29 1995-03-03 Mitsubishi Electric Corp Field-effect transistor and method for manufacturing such a transistor
US5471073A (en) * 1993-01-29 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Field effect transistor and method for producing the field effect transistor
GB2282262B (en) * 1993-01-29 1997-04-23 Mitsubishi Electric Corp Field effect transistor and method for producing the field effect transistor

Similar Documents

Publication Publication Date Title
US5344788A (en) Method of making field effect transistor
US4868617A (en) Gate controllable lightly doped drain mosfet devices
KR920002090B1 (en) Method of manufacturing field effect transistor
JPH02148738A (en) Manufacture of field effect transistor
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
US4904613A (en) Method of manufacturing a DMOS device
JPS5852881A (en) Manufacture of semiconductor element
JPH07118484B2 (en) Method for manufacturing Schottky gate field effect transistor
KR0161201B1 (en) Production method for ion-implanted mosfet comprising self-aligned lightly doped drain structure and t-gat
JPH0156534B2 (en)
JPS61187277A (en) Manufacture of field-effect transistor
JPS60136263A (en) Manufacture of semiconductor device
JP3034546B2 (en) Method for manufacturing field effect transistor
JP3062421B2 (en) Semiconductor device and manufacturing method thereof
KR940006705B1 (en) Mosfet and manufacturing method thereof
JPH0644605B2 (en) Method of manufacturing high breakdown voltage MOS field effect semiconductor device
JP2003115585A (en) Method for manufacturing semiconductor device
JPS6262071B2 (en)
JP3035969B2 (en) Method for manufacturing compound semiconductor device
JPH06260510A (en) Field effect transistor and its manufacturing method
JPS6178170A (en) Manufacture of semiconductor device
JPS6329420B2 (en)
JPH0793430B2 (en) Method for manufacturing MOS semiconductor device
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPH02181440A (en) Manufacture of field-effect transistor