JPS6178170A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6178170A
JPS6178170A JP19957184A JP19957184A JPS6178170A JP S6178170 A JPS6178170 A JP S6178170A JP 19957184 A JP19957184 A JP 19957184A JP 19957184 A JP19957184 A JP 19957184A JP S6178170 A JPS6178170 A JP S6178170A
Authority
JP
Japan
Prior art keywords
insulating film
recess
semiconductor layer
concentration semiconductor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19957184A
Other languages
Japanese (ja)
Inventor
Katsushi Oshika
大鹿 克志
Hiromitsu Mishimagi
三島木 宏光
Yasushi Hatta
八田 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19957184A priority Critical patent/JPS6178170A/en
Publication of JPS6178170A publication Critical patent/JPS6178170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8128Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with recessed gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the parasitic resistance of a gate electrode, and to increase the withstanding voltage of a Schottky gate by a method wherein a high-concentration semiconductor layer is formed to a semi-insulating substrate, a first insulating film is shaped onto the whole surface, a recessed section is formed at the central section of the high-concentration semiconductor layer through etching, ions are implanted to the high-concentration semiconductor layer in the lower section of the recessed section, a second insulating layer is shaped onto the whole surface and changed into a gate insulating film through activation and etching, and the gate electrode is formed in the recessed section. CONSTITUTION:The ions of an impurity are implanted while a semi-insulating GaAs substrate 1 is formed in a (100) face and a photo-resist 2 is used as a mask to shape an N<+> type high-concentration semiconductor layer 3. A first insulating film 4 is formed onto the whole surface, the first insulating film 4 is bored, and a recessed section 6 is processed to the N<+> type high-concentration semiconductor layer 3 through etching. Impurity ions are implanted through the recessed section to shape an N type channel layer 7, a second insulating film 8 is formed onto the whole surface and activated and annealed, a gate insulating film 9 is shaped to the recessed section 6 and the side wall section of the first insulating film 4 through etching, and a metal is evaporated and a gate electrode 11 is shaped through photoetching.

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は半導体製造装置に関し、さらに詳しくは、半絶
縁性基板に形成する化合物半導体のMESFETに関す
るものである。 [背景技術] 基板が半絶縁性であること、また、その高速性に肩口し
てGaΔsMESFETは種々の開発がなされている。 ところで、寄生抵抗の減少を目的として、自己整合的に
ゲート金属をマスクとしてイオン注入するQaAsシJ
ットキFETにおいては、N“型高濃度半導体層の横方
向への広がりが問題となっていた。N4″型高濃度半導
体層の横方向への広がりによりゲート電極の下方にもイ
オンの一部が注入されるため、ソース・ドレインのN1
型高濃度半導体領域とゲート電極が短絡したり、あるい
は耐圧が悪いという欠点を有していた。 また、ゲート金運を形成した後にアニールを行っている
ため、ゲート金属に耐熱性のあるものを使用する必要が
あった。さらに、従来のGaAsMESFETのチャネ
ル層はドレイン・ソース領域の高濃度プロファイル部に
位置し安定な特性を得るには製造上の制御性を良くする
必要があった。 なお、MESFETの製造方法は、たとえば、電子材料
、1983年1月号、p43〜50に示されている。 [発明の目的] 本発明の目的は、自己整合的にゲート電極を形成してそ
の寄生抵抗を減少し、ショットキゲートの耐圧を向上さ
せ、かつ、安定な特性を得ることのできる半導体装置の
製造方法を提供するものである。 本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。 [発明の概要] 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。 すなわち、半絶縁性の基板にN++高濃度半導体層をイ
オン打込みによって形成し、第1の絶縁膜を全面に形成
した後、前記N1型高濃度半導体層の中央部に凹部をエ
ツチング形成する。つぎに。 この凹部の下方に残っている前記N++高濃度半導体層
に対して、さらに、E/Dタイプの調整用のイオン打込
みを行いN型チャネル層を形成している。このようなN
++高濃度半導体層およびN型チャネル層は、さらに別
な工程を用いて形成することもできる。すなわち、まず
半絶縁性の基板にソースおよびドレイン領域を形成する
ためのN4″型高濃度半導体層をイオン打込みし、第1
の絶縁膜を全面に形成した後、前記両N1型高濃度半導
体層の間に凹部をエツチング形成する。つぎに、この凹
部の下方の基板に対してイオン打込みを行いN型チャネ
ル層を形成している。 このように形成した。凹部、ソース・ドレインのN4″
型高濃度半導体層、N型チャネル層の全面にさらに第2
の絶縁層を形成して活性化アニールを行っている。そし
て第2の絶縁層をエツチングしてゲート絶縁膜とする。 このゲート絶縁膜は。 凹部および第1の絶縁膜の側壁に形成されることとなる
。この後、ゲート電極を凹部に形成し、さらに、ソース
・ドレイン電極を形成して半導体装置を完成している。 本発明によれば、自己整合的にゲート電極を形成し、ゲ
ートとソース・ドレインの間隔はゲート絶縁膜の膜厚で
制御できるので寄生抵抗を減少させることができる。ま
た、ゲート絶縁膜の介在によって、ショットキゲートの
耐圧を向上させることができる。さらに、N4″型高濃
度半導体層のプロファイルピーク部がN型チャネル層上
部にあり、半導体装置の内部層に電流を流すこととなり
安定な特性を達成するものである。 [実施例] 以下本発明の半導体装置の製造方法をGaAsMESF
ETに適用した実施例を第1図から第11図を用いて説
明する。第1図から第7I2Iに示す発明の実施例をま
ず説明する。 第1図において、符号1は半絶縁性のGaAs基板を示
す、この基板の一主面である主として(100)面にホ
トレジスト2をマスクにしてGaAsにSi等の不純物
イオンを注入してN1型高濃度半導体磨3を形成する。 つぎに第2図において、S i02 、 S i3 N
4等の第1の絶縁膜4を全面に形成する。そのあと、ホ
トレジスト5をマスクとしてN1型高濃度半導体層3の
中央部の第1の絶RW4を図のように開口した後、第1
の絶縁膜4をマスクとしてN+型嵩高濃度半導体層3凹
部6をエツチング加工する。 この状態で凹部6を介
[Technical Field] The present invention relates to semiconductor manufacturing equipment, and more particularly to a compound semiconductor MESFET formed on a semi-insulating substrate. [Background Art] A variety of GaΔs MESFETs have been developed, taking advantage of the fact that the substrate is semi-insulating and the high speed performance thereof. By the way, for the purpose of reducing parasitic resistance, QaAs technology is used in which ions are implanted in a self-aligned manner using the gate metal as a mask.
In the FET, the lateral spread of the N" type high concentration semiconductor layer has been a problem. Due to the lateral spread of the N4" type high concentration semiconductor layer, some of the ions are also below the gate electrode. Because of the injection, N1 of the source and drain
This method has drawbacks such as short-circuiting between the high-concentration semiconductor region and the gate electrode, or poor breakdown voltage. Furthermore, since annealing was performed after forming the gate metal, it was necessary to use a heat-resistant gate metal. Furthermore, the channel layer of the conventional GaAs MESFET is located in the high concentration profile portion of the drain/source region, and in order to obtain stable characteristics, it is necessary to improve manufacturing controllability. In addition, the manufacturing method of MESFET is shown, for example in Electronic Materials, January 1983 issue, pages 43-50. [Object of the Invention] An object of the present invention is to manufacture a semiconductor device that can form a gate electrode in a self-aligned manner to reduce its parasitic resistance, improve the breakdown voltage of a Schottky gate, and obtain stable characteristics. The present invention provides a method. The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings. [Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows. That is, an N++ high concentration semiconductor layer is formed on a semi-insulating substrate by ion implantation, a first insulating film is formed on the entire surface, and then a recess is formed in the center of the N1 type high concentration semiconductor layer by etching. next. The N++ high concentration semiconductor layer remaining below this recess is further subjected to E/D type adjustment ion implantation to form an N type channel layer. N like this
++ The high concentration semiconductor layer and the N-type channel layer can also be formed using still another process. That is, first, an N4'' type high concentration semiconductor layer for forming source and drain regions is ion-implanted into a semi-insulating substrate.
After forming an insulating film over the entire surface, a recess is formed between the two N1 type high concentration semiconductor layers by etching. Next, ions are implanted into the substrate below this recess to form an N-type channel layer. It was formed like this. Recess, source/drain N4''
A second layer is further formed on the entire surface of the type high concentration semiconductor layer and the N type channel layer.
An insulating layer is formed and activation annealing is performed. The second insulating layer is then etched to form a gate insulating film. This gate insulating film. It will be formed in the recess and the sidewall of the first insulating film. Thereafter, a gate electrode is formed in the recess, and source and drain electrodes are further formed to complete the semiconductor device. According to the present invention, the gate electrode is formed in a self-aligned manner, and the distance between the gate and the source/drain can be controlled by the thickness of the gate insulating film, so that parasitic resistance can be reduced. Further, by interposing the gate insulating film, the breakdown voltage of the Schottky gate can be improved. Furthermore, the profile peak portion of the N4'' type high concentration semiconductor layer is located above the N type channel layer, allowing current to flow through the internal layers of the semiconductor device, thereby achieving stable characteristics. [Example] The present invention will be described below. GaAsMESF semiconductor device manufacturing method
An example applied to ET will be described using FIGS. 1 to 11. First, embodiments of the invention shown in FIGS. 1 to 7I2I will be described. In FIG. 1, reference numeral 1 indicates a semi-insulating GaAs substrate. Using photoresist 2 as a mask, impurity ions such as Si are implanted into the GaAs on one main surface of this substrate, mainly the (100) plane, to form an N1 type. A high concentration semiconductor polishing layer 3 is formed. Next, in FIG. 2, S i02 , S i3 N
A first insulating film 4 such as No. 4 is formed on the entire surface. Then, using the photoresist 5 as a mask, the first RW4 in the center of the N1 type high concentration semiconductor layer 3 is opened as shown in the figure, and then the first
Using the insulating film 4 as a mask, the concave portion 6 of the N+ type bulky semiconductor layer 3 is etched. In this state, the

【7てSi等の不純物イオンを注
入してE/Dの濃度プロファイルに調整する。従って、
凹部6の底面と基板1との領域は。 N型チャネル層7となる。このようにして、凹部6と、
凹部6の下方のN型チャネル層7、およびその両側のN
1型高濃度半導体層3,3を形成している。すなわち、
この実施例においては、N+型嵩高濃度半導体層3低濃
度プロファイルの部分にE/D調整用のイオン再打込み
を行ってN型チャネル層7を形成している。 つぎに、第3図において、全面にたとえばSi]N4等
の第2の絶縁I!;48を形成する。このあと、イオン
打込みの活性化アニールを行う、後述するように、ゲー
ト電極はアニール後に形成するので、自己整合によるゲ
ート形成にもかかわらず高融点金属を用いる必要はなく
、ショットキ接合を形成する種々の金属を用いることが
できる。 第3図において形成した第2の絶縁11j8を表面から
異方的にエツチングすると、この第2の絶縁膜8は、凹
部6および第1の絶縁膜4の側壁部に接したゲート絶縁
11i9として残る(第4図)、この工程によってゲー
ト長をゲート絶縁@9の膜厚で制御できることがわかる
。 さらに、第5図において、GaAsとショットキ接合を
形成する金属10を蒸着し、ホトエツチングにより第6
図に示すようにゲート電極11を形成する。なお、この
ゲート電極の加工工程においてはりフトオフ法によるこ
とも当然可能である。 つぎに第6図において、全面に5i02等の絶縁膜12
を堆積した後、ソース・ドレインのコンタクト孔を開口
しリフトオフ法によってソース・ドレイン電極13.1
4を形成して完成する。 つぎに第8図から第11図に示す本発明の実施例につき
説明する。第8図において、符号100は第1図と同様
にGaAs基板である。ここで形成されるN++高濃度
半導体層103,103はホトレジスト102をマスク
として、各々ソースおよびドレイン領域となるものであ
る。すなわち。 N型チャネル層を形成する領域には、ホトレジスト10
2によってSi等のイオン注入が行なわれない。 つぎに第9図において、5i02.Si3N*等の第1
の絶縁膜104を全面に形成する。そのあと、ホトレジ
スト105をマスクとして、N“型高濃度半導体N10
3,103に挟まれた領域の第1の絶縁膜104を図の
ように開口する。そして第1の絶縁膜104をマスクと
して基板101に凹部106をエツチング加工して形成
する。 この状態で凹部106を介してSi等の不純物イオンを
基板101に打込んでN型チャネル層107を形成する
。この場合のイオン打込みは基板101−に直接打込む
ためE/Dの制御性がよい。 また、N″″型高濃度半導体層103,103を形成す
るイオン打込みは、Nゝ型のイオンを深く打込んでいる
ためオーミックmlを形成するソース・ドレイン領域の
表面の不純物濃度が小さいことがある。この場合は、オ
ーミック電極のΔu G e/Ni/ΔU等の合金を比
較的深くしたり、あるいは、N型チャネルNJ107の
イオン打込み時に整合をはかり濃度プロファイルを適正
化することが可能である。 さらに、第9図に示す工程において、マスク合せ余裕の
関係上 h++高濃度半導体層103゜103の一部が
凹106の下部にもぐり込むことがある。しかし、第1
0図にて説明するゲート絶縁膜の膜厚でゲート電極との
短絡を防止している。 第10図において、全面にたとえばSi3N4等の第2
の絶縁膜108を形成する。このあと。 イオン打込みの活性化アニールを行う、このあと第2の
絶縁膜108をエツチングしてゲート絶縁膜を形成する
工程およびその後の工程は、第4図から第7図において
説明したのと同じでありその説明を省略する。 第11図は完成した状態を示す断面図であり、符号10
9はゲート絶縁膜、符号111はゲートi!!極、符号
112は5i02等の絶aWA、符号113はソース電
極、そして符号】−14はドレイン電極である。 〔効果] (1)自己整合的にゲート電極を形成し、ゲート電極と
ソース・ドレイン間の距離をゲート絶縁膜の膜厚で制御
できる。したがって、ゲート・ソース間の寄生抵抗およ
びショットキバリアの耐圧の向上が達成できるという効
果が得られる。 また、N1型高濃度半導体層のピークがN型チャネル層
の上部にありgmが大きく特性の安定化が得られるとい
う効果を有する。 (2)ゲート電極をアニール後に形成しているので、耐
熱性の低いゲート金属を用いることもできるという効果
が得られる。 以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが1本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。 [利用分野] 本発明は半絶縁性基板に形成される化合物半導体のME
SFETに適用でき、特にGaAsを用いたMESFE
Tによる論理回路、SRAM等のLSIに適用して好適
である。
[7] Impurity ions such as Si are implanted to adjust the concentration profile to E/D. Therefore,
The area between the bottom surface of the recess 6 and the substrate 1 is as follows. This becomes an N-type channel layer 7. In this way, the recess 6 and
N-type channel layer 7 below recess 6 and N-type channel layer 7 on both sides thereof.
Type 1 high concentration semiconductor layers 3, 3 are formed. That is,
In this embodiment, the N type channel layer 7 is formed by re-implanting ions for E/D adjustment into the low concentration profile portion of the N+ type bulky doped semiconductor layer 3. Next, in FIG. 3, a second insulator I! of, for example, Si]N4 is applied to the entire surface. ;48 is formed. After this, activation annealing for ion implantation is performed.As will be described later, since the gate electrode is formed after the annealing, there is no need to use a high melting point metal even though the gate is formed by self-alignment, and various methods are used to form a Schottky junction. metals can be used. When the second insulating film 11j8 formed in FIG. (FIG. 4), it can be seen that the gate length can be controlled by the thickness of the gate insulation@9 through this process. Furthermore, in FIG. 5, a metal 10 forming a Schottky junction with GaAs is deposited, and a sixth layer is formed by photo-etching.
A gate electrode 11 is formed as shown in the figure. Incidentally, it is of course possible to use a beam lift-off method in this gate electrode processing step. Next, in FIG. 6, an insulating film 12 of 5i02 etc.
After depositing the source/drain electrodes 13.1, source/drain contact holes are opened and the source/drain electrodes 13.1 are formed using a lift-off method.
Form 4 and complete. Next, embodiments of the present invention shown in FIGS. 8 to 11 will be described. In FIG. 8, reference numeral 100 is a GaAs substrate as in FIG. The N++ high concentration semiconductor layers 103, 103 formed here will become source and drain regions, respectively, using the photoresist 102 as a mask. Namely. A photoresist 10 is applied to the region where the N-type channel layer is to be formed.
2, ion implantation of Si or the like is not performed. Next, in FIG. 9, 5i02. The first of Si3N* etc.
An insulating film 104 is formed over the entire surface. After that, using the photoresist 105 as a mask, the N" type high concentration semiconductor N10 is
An opening is made in the first insulating film 104 in a region sandwiched between 3 and 103 as shown in the figure. Then, using the first insulating film 104 as a mask, a recess 106 is formed in the substrate 101 by etching. In this state, impurity ions such as Si are implanted into the substrate 101 through the recess 106 to form an N-type channel layer 107. In this case, the ion implantation is directly implanted into the substrate 101-, so E/D controllability is good. In addition, in the ion implantation to form the N'''' type high concentration semiconductor layers 103, 103, since N type ions are deeply implanted, the impurity concentration on the surface of the source/drain region forming the ohmic ML is low. be. In this case, it is possible to make the alloy such as Δu Ge/Ni/ΔU of the ohmic electrode relatively deep, or to optimize the concentration profile by matching during ion implantation of the N-type channel NJ107. Further, in the step shown in FIG. 9, a part of the h++ high concentration semiconductor layer 103° 103 may sink into the lower part of the recess 106 due to the mask alignment margin. However, the first
The thickness of the gate insulating film explained in FIG. 0 prevents a short circuit with the gate electrode. In FIG. 10, the entire surface is covered with a second layer of Si3N4, etc.
An insulating film 108 is formed. after this. The steps of performing activation annealing for ion implantation, etching the second insulating film 108 to form a gate insulating film, and subsequent steps are the same as those described in FIGS. 4 to 7. The explanation will be omitted. FIG. 11 is a cross-sectional view showing the completed state, with reference numeral 10.
9 is a gate insulating film, and 111 is a gate i! ! The poles, reference numeral 112, are absolute aWA such as 5i02, reference numeral 113 is a source electrode, and reference numeral ]-14 is a drain electrode. [Effects] (1) The gate electrode is formed in a self-aligned manner, and the distance between the gate electrode and the source/drain can be controlled by controlling the thickness of the gate insulating film. Therefore, it is possible to improve the parasitic resistance between the gate and the source and the breakdown voltage of the Schottky barrier. In addition, the peak of the N1-type heavily doped semiconductor layer is above the N-type channel layer, resulting in a large gm and stable characteristics. (2) Since the gate electrode is formed after annealing, it is possible to use a gate metal with low heat resistance. Although the invention made by the present inventor has been specifically described above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof. Nor. [Field of Application] The present invention is an ME of a compound semiconductor formed on a semi-insulating substrate.
Applicable to SFET, especially MESFE using GaAs
It is suitable for application to logic circuits based on T, LSIs such as SRAMs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第7図は本発明の半導体装置の製造方法の一
実施例を示すプロセス断面図。 第8図から第11図は同じく本発明の半導体装置の製造
方法の一実施例を示すプロセス断面図である。 1.101・・・半絶縁性基板、2,102,5゜10
5・・・ホトレジスト、3,103・・・N+型嵩高濃
度半導体層4,104・・・第1の絶縁膜。 6.106・・・凹部、7.1.07・・・N型チャネ
ル層、8,108・・・第2の絶縁層、9,109・・
・ゲート絶縁膜、11,111・・・ゲート絶縁膜。 12.112・・・絶縁層、13,113・・・ソース
電極、14,114・・・ドレイン電極。
1 to 7 are process cross-sectional views showing one embodiment of the method for manufacturing a semiconductor device of the present invention. FIGS. 8 to 11 are process cross-sectional views showing an embodiment of the method for manufacturing a semiconductor device according to the present invention. 1.101...Semi-insulating substrate, 2,102,5°10
5... Photoresist, 3,103... N+ type bulky high concentration semiconductor layer 4,104... First insulating film. 6.106... Concave portion, 7.1.07... N-type channel layer, 8,108... Second insulating layer, 9,109...
- Gate insulating film, 11, 111... Gate insulating film. 12.112... Insulating layer, 13,113... Source electrode, 14,114... Drain electrode.

Claims (1)

【特許請求の範囲】 1、半絶縁性基板の一主面に高濃度半導体層を形成した
後第1の絶縁膜を全面に形成し、この高濃度半導体層の
中央部を前記第1の絶縁膜をマスクとしてエッチングし
て凹部を形成し、この凹部を介してイオン打込みを行っ
て、凹部底面と前記基板との間に前記高濃度半導体層と
同じ導電型のチャネル層を形成し、さらに、第2の絶縁
膜を全面に形成してアニールを行い、前記凹部および第
1の絶縁膜の側壁に前記第2の絶縁膜をゲート絶縁膜と
して残すようエッチングし、その後ゲート電極を前記凹
部に形成することを特徴とする半導体装置の製造方法。 2、半絶縁性基板の一主面にソースおよびドレイン領域
を形成する高濃度半導体層を各々形成した後第1の絶縁
膜を全面に形成し、これら高濃度半導体層に挟まれた領
域を前記第1の絶縁膜をマスクとしてエッチングして凹
部を形成し、この凹部を介してイオン打込みを行って、
凹部底面に接する前記基板の一部に前記高濃度半導体層
と同じ導電型のチャネル層を形成し、さらに、第2の絶
縁膜を全面に形成してアニールを行い、前記凹部および
第1の絶縁膜の側壁に前記第2の絶縁膜をゲート絶縁膜
として残すようエッチングし、その後ゲート電極を前記
凹部に形成することを特徴とする半導体装置の製造方法
[Claims] 1. After forming a highly concentrated semiconductor layer on one main surface of a semi-insulating substrate, a first insulating film is formed on the entire surface, and the central part of this highly concentrated semiconductor layer is covered with the first insulating film. A recess is formed by etching the film as a mask, and ions are implanted through the recess to form a channel layer of the same conductivity type as the high concentration semiconductor layer between the bottom of the recess and the substrate, and further, A second insulating film is formed on the entire surface and annealed, and etched to leave the second insulating film as a gate insulating film in the recess and the sidewall of the first insulating film, and then a gate electrode is formed in the recess. A method for manufacturing a semiconductor device, characterized in that: 2. After forming high-concentration semiconductor layers forming source and drain regions on one main surface of a semi-insulating substrate, a first insulating film is formed on the entire surface, and the region sandwiched between these high-concentration semiconductor layers is Etching is performed using the first insulating film as a mask to form a recess, and ion implantation is performed through this recess.
A channel layer of the same conductivity type as the high-concentration semiconductor layer is formed on a part of the substrate in contact with the bottom surface of the recess, and a second insulating film is further formed on the entire surface and annealed, thereby forming the recess and the first insulating film. A method of manufacturing a semiconductor device, comprising: etching the second insulating film to leave it as a gate insulating film on a side wall of the film, and then forming a gate electrode in the recess.
JP19957184A 1984-09-26 1984-09-26 Manufacture of semiconductor device Pending JPS6178170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19957184A JPS6178170A (en) 1984-09-26 1984-09-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19957184A JPS6178170A (en) 1984-09-26 1984-09-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6178170A true JPS6178170A (en) 1986-04-21

Family

ID=16410042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19957184A Pending JPS6178170A (en) 1984-09-26 1984-09-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6178170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224369A (en) * 1987-03-13 1988-09-19 Sharp Corp Manufacture of field effect semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224369A (en) * 1987-03-13 1988-09-19 Sharp Corp Manufacture of field effect semiconductor device

Similar Documents

Publication Publication Date Title
US5153683A (en) Field effect transistor
JPH0328059B2 (en)
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
JP2901905B2 (en) Method of manufacturing field effect transistor having self-aligned LDD structure with T-type gate
JPS6178170A (en) Manufacture of semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPS6225457A (en) Manufacture of vertical semiconductor device
JPS61187277A (en) Manufacture of field-effect transistor
JPS5868979A (en) Semiconductor device
JPS6246570A (en) Vertical type semiconductor device and manufacture thereof
JPH0571191B2 (en)
JP2642769B2 (en) Compound semiconductor device
JP3425877B2 (en) Power MOSFET and method of manufacturing the same
JPH07120675B2 (en) Semiconductor device manufacturing method
JPS63211765A (en) Vertical semiconductor device and manufacture thereof
JPS61229369A (en) Manufacture of semiconductor device
JPS59175161A (en) Insulated gate semiconductor device and manufacture thereof
JPS6070772A (en) Manufacture of field-effect transistor
JPH0439772B2 (en)
JPH0439773B2 (en)
JPS6223175A (en) Manufacture of semiconductor device
JPS62260370A (en) Field-effect transistor
JPS61158180A (en) Manufacture of mis-type semiconductor device
JPH1098182A (en) Field effect transistor and its manufacture