JPS5842272A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS5842272A JPS5842272A JP14048881A JP14048881A JPS5842272A JP S5842272 A JPS5842272 A JP S5842272A JP 14048881 A JP14048881 A JP 14048881A JP 14048881 A JP14048881 A JP 14048881A JP S5842272 A JPS5842272 A JP S5842272A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- layer
- film
- polycrystalline
- polysilicon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229920005591 polysilicon Polymers 0.000 claims description 18
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 15
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 239000011574 phosphorus Substances 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 3
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- -1 boron ions Chemical class 0.000 abstract description 2
- 150000004767 nitrides Chemical class 0.000 abstract 3
- 238000005530 etching Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Local Oxidation Of Silicon (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体装置の製造方法に係V、特に絶縁ゲート
型電界効果半導体装置の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an insulated gate field effect semiconductor device.
現在使用されている絶縁ゲート型電界効果牛導体装置の
一例として、シリコングー)MO81Cのトランジスタ
ーを第1図に示す。このようなシリコンゲートトランジ
スターは、ゲート電極とソース、ドレインとの容量が小
さい為にスピードが速い。また、寄生MO8防止にいわ
ゆる選択酸化を用いている為に、集積度も高い等の特徴
を有す。As an example of an insulated gate field effect conductor device currently in use, a silicon MO81C transistor is shown in FIG. Such silicon gate transistors are fast because the capacitance between the gate electrode, source, and drain is small. Furthermore, since so-called selective oxidation is used to prevent parasitic MO8, it has features such as a high degree of integration.
しかしながら、第1図からも容易にわかる様に。However, as can be easily seen from Figure 1.
ポリシリコン配線プルセス、ソース、ドレインのコンタ
クト、寄生MO8防止の選択酸化プルセスが、それぞれ
別のフォトレジスト工程に依って形成され、各工程間に
一定の設計マージンが必要となる。したがって、より一
層の高集積度化にとって改良の土地が残る。A polysilicon interconnection process, source and drain contacts, and a selective oxidation process for preventing parasitic MO8 are formed by separate photoresist processes, and a certain design margin is required between each process. Therefore, there remains land for improvement for higher integration.
本発明の目的は、ゲート配S、ソース、ドレインとその
コンタクト部の絶縁分離領域をセル7アラインで形成し
て、設計マージンを減少させ超高集積度なMO8ICを
実現する方法を提供する事にある。An object of the present invention is to provide a method for realizing an ultra-highly integrated MO8IC by reducing the design margin by forming insulating isolation regions for the gate wiring S, source, drain, and their contact portions in cell 7 alignment. be.
前記目的を達成する為の本発明の基本的構成は第1導電
型牛導体基体表面に第1の比較的厚い酸化膜を形成する
工程と、厚い酸化膜の形成されていない半導体基板表面
に比較的薄い酸化膜を選択的に形成する工程と、これら
の比較的厚い酸化膜と比較的薄い酸化膜上全面にポリシ
リコン層を形成する工程と、このポリシリコン層を選択
除去する工程と、このポリシリコン層上の誘電体をマス
クにしてポリシリコン側面とポリシリコンの下以外の比
較的薄い酸化膜下の半導体基体を選択酸化する工程と、
比較的薄い酸化膜下の基体が酸化された比較的厚い酸化
膜と比較的薄い酸化膜が接触する近傍に酸化膜を除去し
てポリシリコン層に酸化膜を介して接触する様に窓を形
成する工程と。The basic structure of the present invention to achieve the above object includes a step of forming a first relatively thick oxide film on the surface of the first conductive type conductor substrate, and a step of forming a first relatively thick oxide film on the surface of the semiconductor substrate where no thick oxide film is formed. A process of selectively forming a relatively thin oxide film, a process of forming a polysilicon layer on the entire surface of these relatively thick oxide films and a relatively thin oxide film, a process of selectively removing this polysilicon layer, and a process of selectively removing this polysilicon layer. selectively oxidizing the semiconductor substrate under a relatively thin oxide film other than the sides of the polysilicon and under the polysilicon using the dielectric on the polysilicon layer as a mask;
The substrate under the relatively thin oxide film is oxidized.The oxide film is removed near the contact between the relatively thick oxide film and the relatively thin oxide film, and a window is formed so that the substrate contacts the polysilicon layer through the oxide film. The process of doing.
この窓より第2導電型のソース及びドレイン領域を形成
する工程と、この窓よりソース及びドレインの電極を取
り出す工程とを含む。The method includes a step of forming source and drain regions of the second conductivity type through this window, and a step of taking out source and drain electrodes from this window.
以下2本発明の実施例を図面を用いて説明する。Two embodiments of the present invention will be described below with reference to the drawings.
第2図(a)〜第2図(g)は本発明に依る一実施例の
手順を示す。第2図(a)に示す様に%P型半導体基体
表面にチ、化膜に依る選択酸化を用いて比較的厚い酸化
膜lを形成する。次に比較的薄い酸化膜2を形成する。FIGS. 2(a) to 2(g) show the procedure of an embodiment according to the present invention. As shown in FIG. 2(a), a comparatively thick oxide film 1 is formed on the surface of a P-type semiconductor substrate using selective oxidation using a chemical film. Next, a relatively thin oxide film 2 is formed.
次に酸化膜1,2上にリンをドープしたポリシリコン3
とチ、化膜4を形成する。第2図(b)はそのX−X/
方向の断面図に相当する。次に第2図(e)に示す様に
、チ、化膜4およびポリシリコン3を選択除去してボロ
ンをイオン注入し。Next, polysilicon 3 doped with phosphorus is placed on oxide films 1 and 2.
Then, a chemical film 4 is formed. Figure 2(b) shows the X-X/
Corresponds to a cross-sectional view in the direction. Next, as shown in FIG. 2(e), the silicon dioxide film 4 and polysilicon 3 are selectively removed and boron ions are implanted.
比較的高濃度のP型領域6を形成する。次に第2図(d
)の様にチ、化膜4を用いて選択酸化を施す。A relatively high concentration P-type region 6 is formed. Next, Figure 2 (d
), selective oxidation is performed using the chemical film 4.
次に第2図(e)に示す様にチ、化膜4をマスクにして
、半導体基体表面に垂直な方向にのみ進行する酸化膜上
全面を適度に施すと窓7を開封出来る。Next, as shown in FIG. 2(e), using the oxide film 4 as a mask, the window 7 can be opened by appropriately applying the oxide film to the entire surface, which progresses only in the direction perpendicular to the surface of the semiconductor substrate.
次に第2図(0に示す様に窓7よりりンを拡散して。Next, diffuse phosphorus through window 7 as shown in Figure 2 (0).
n型のソース、ドレイン領域8を形成する。次に第2図
(−に示す様に配線領域9を形成して完成する。N-type source and drain regions 8 are formed. Next, as shown in FIG. 2 (-), a wiring region 9 is formed and completed.
以下1本発明に依る効果を示す。前記実施例からもわか
る様に1本発明では絶縁分離領域、ソース、ドレイン領
域とそのコンタクト領域、ゲートポリシリコン領域をは
は完全圧セルファラインで形成している為に、前記各領
域間に設計上のマーシスを必要としない、また、実施例
の窓7は、酸化膜の工、チング量のコントロール精度に
依っては数1000λ程度の極めて微細/<ターンにす
る事も可能となる。この為、極めてコン7くクトなトラ
ンジスタを単純に作る事が出来る。The effects of the present invention will be described below. As can be seen from the above embodiments, in the present invention, the insulating isolation region, the source and drain regions and their contact regions, and the gate polysilicon region are formed with full-pressure self-alignment lines. Moreover, the window 7 of the embodiment does not require the above Marsis, and depending on the processing of the oxide film and the accuracy of controlling the amount of chipping, it is possible to make the window 7 into an extremely fine turn of about several thousand λ. For this reason, an extremely compact transistor can be simply manufactured.
第1図は現在使用されている代表的シリコングー)MO
8型トランジスタの断面図を示す。第2図(1)〜第2
図(φは本発明に依る実施例を示す図で、第2図(a)
は平面図、第2図(b)〜第2図(−は第2図((転)
のx−x’での断面図を製造工程にしたがって示したも
のである。
崗1図において、l・・・・・・比較的厚い第1の酸化
膜、2・・・・・・比較的薄い酸化膜、3・・・・・・
ポリシリコン層、4・・・・・・チ、化膜、5・・・・
・・P型半導体基体、6・・・・・・P型絶縁分離領域
、7・・・・・・ソース、ドレインを形成し且つコンタ
クトを取る為の窓、8・・・・・・n型ソース、ドレイ
ン領域、9・・・・・・配線領域、10・・・・・・比
較的厚い第2の酸化膜、11・・・・・・酸化膜。
である。
う
第1図
第 2閃 (fl)
餡 ?凶(6)
PJ Z 図((1)Figure 1 shows typical silicone materials currently in use.
A cross-sectional view of an 8-type transistor is shown. Figure 2 (1) - 2nd
Figure (φ is a diagram showing an embodiment according to the present invention, and Figure 2 (a)
Figure 2(b) to Figure 2 (- is Figure 2 ((transformed)
3 is a cross-sectional view taken along line xx' according to the manufacturing process. In Figure 1, 1... relatively thick first oxide film, 2... relatively thin oxide film, 3...
Polysilicon layer, 4... Ch, chemical film, 5...
... P-type semiconductor substrate, 6 ... P-type isolation region, 7 ... window for forming source and drain and making contact, 8 ... n-type Source, drain region, 9... Wiring region, 10... Relatively thick second oxide film, 11... Oxide film. It is. U Figure 1 2nd Flash (fl) Bean paste? Evil (6) PJ Z diagram ((1)
Claims (1)
酸化膜と比較的薄い酸化膜上にポリシリコン層を形成す
る工程と、該ポリシリコン層を選択除去する工程と、該
選択除去されたポリシリコン上の誘電体をマスクにして
該ポリシリコン層側面と該ポリシリコン層の下以外の比
較的薄い酸化膜下の半導体基体を選択酸化する工程とを
含むことを特徴とする半導体装置の製造方法。a step of forming a polysilicon layer on a relatively thick oxide film and a relatively thin oxide film formed on the surface of a semiconductor substrate of a first conductivity type; a step of selectively removing the polysilicon layer; and a step of selectively removing the polysilicon layer. selectively oxidizing the side surface of the polysilicon layer and the semiconductor substrate under a relatively thin oxide film other than under the polysilicon layer using a dielectric on the polysilicon layer as a mask. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14048881A JPS5842272A (en) | 1981-09-07 | 1981-09-07 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14048881A JPS5842272A (en) | 1981-09-07 | 1981-09-07 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5842272A true JPS5842272A (en) | 1983-03-11 |
Family
ID=15269771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14048881A Pending JPS5842272A (en) | 1981-09-07 | 1981-09-07 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5842272A (en) |
-
1981
- 1981-09-07 JP JP14048881A patent/JPS5842272A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4319395A (en) | Method of making self-aligned device | |
US5108937A (en) | Method of making a recessed gate MOSFET device structure | |
JPS6316673A (en) | Manufacture of semiconductor device | |
JP2002299620A (en) | Method for manufacturing silicon carbide semiconductor device | |
JPS60194570A (en) | Manufacture of semiconductor device | |
KR100232197B1 (en) | Method of manufacturing semiconductor device | |
JPS61182267A (en) | Manufacture of semiconductor device | |
JPS6272171A (en) | Semiconductor memory | |
JPS5842272A (en) | Manufacture of semiconductor device | |
JPH06163905A (en) | Fabrication of insulated gate semiconductor | |
JPS63128626A (en) | Method of forming contact of semiconductor integrated circuit device | |
JPS6039868A (en) | Manufacture of semiconductor device | |
JPS60117658A (en) | Manufacture of mos dynamic memory | |
JPS61202467A (en) | Semiconductor device | |
JPH03276680A (en) | Semiconductor device and manufacture thereof | |
JPS6316672A (en) | Manufacture of semiconductor element | |
JPS6384161A (en) | Manufacture of semiconductor device | |
JP2000091440A (en) | Manufacture of semiconductor integrated circuit device | |
JPH0475346A (en) | Manufacture of semiconductor device | |
JPH065679B2 (en) | Method for manufacturing MOS semiconductor device | |
JPH0461497B2 (en) | ||
JPS626664B2 (en) | ||
JPS5951152B2 (en) | Manufacturing method of semiconductor device | |
JPS61166154A (en) | Manufacture of mis type semiconductor device | |
JPH0212012B2 (en) |