JPS5838939B2 - integrated circuit - Google Patents

integrated circuit

Info

Publication number
JPS5838939B2
JPS5838939B2 JP51016703A JP1670376A JPS5838939B2 JP S5838939 B2 JPS5838939 B2 JP S5838939B2 JP 51016703 A JP51016703 A JP 51016703A JP 1670376 A JP1670376 A JP 1670376A JP S5838939 B2 JPS5838939 B2 JP S5838939B2
Authority
JP
Japan
Prior art keywords
silicon nitride
integrated circuit
active region
electrode
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51016703A
Other languages
Japanese (ja)
Other versions
JPS5299791A (en
Inventor
俊男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP51016703A priority Critical patent/JPS5838939B2/en
Publication of JPS5299791A publication Critical patent/JPS5299791A/en
Publication of JPS5838939B2 publication Critical patent/JPS5838939B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は大容量のICメモリとして好適なMO8集積
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an MO8 integrated circuit suitable as a large capacity IC memory.

MO8集積回路は高密度大規模化に好適であり、大容量
ICメモリを実現することができる。
MO8 integrated circuits are suitable for high-density, large-scale applications, and can realize large-capacity IC memories.

とくに1トランジスタ型のICメモリはトランジスタと
容量素子とを各−個用いて記憶作用をもたらすため素子
占有面積が小さく、高密度記憶集積回路として注目され
ている。
In particular, a one-transistor type IC memory uses a transistor and a capacitive element to provide a memory function, and therefore occupies a small area, and is attracting attention as a high-density memory integrated circuit.

従来は容量素子とトランジスタとが活性領域内で個別に
形成され、トランジスタのゲート電極および2個の逆導
電型領域と容量素子の電極との四要素が活性領域上に設
けられるが、より高密度化のためにこれらの要素の縮小
が望ましいことである。
Conventionally, a capacitive element and a transistor are formed separately in an active region, and four elements, the gate electrode of the transistor, two opposite conductivity type regions, and the electrode of the capacitive element, are provided on the active region, but with higher density It is desirable to reduce these elements in order to

また、トランジスタのゲート電極を縮小することにより
該ゲート電極と配線電極の結合を微小面積にて確実に行
うことが必要技術となっている。
Furthermore, it has become a necessary technology to reduce the size of the gate electrode of a transistor so that the gate electrode and the wiring electrode can be reliably coupled to each other in a minute area.

この発明の目的は、より高密度のMO8集積回路を提供
することにある。
It is an object of the invention to provide a higher density MO8 integrated circuit.

この発明のMO8集積回路は、−導電型半導体表面に対
するシリコン窒化膜の選択酸化性を用いて活性領域をシ
リコン窒化膜で保護し、周辺の半導体表面に厚い酸化膜
を成長せしめた集積回路において、前記活性領域の一端
を覆う前記選択酸化用シリコン窒化膜と前記半導体表面
との間にゲート電極の一端が割り込み、前記シリコン窒
化膜上の電極が基体との間に容量素子を形成し、該容量
素子の直下の基体表面と前記活性領域の他端の基体表面
に設けた逆導電型領域との導電チャンネル結合を前記ゲ
ート電極にて行なわせしめるものである。
The MO8 integrated circuit of the present invention is an integrated circuit in which the active region is protected with a silicon nitride film by using the selective oxidation property of the silicon nitride film with respect to the surface of a -conductivity type semiconductor, and a thick oxide film is grown on the peripheral semiconductor surface. One end of the gate electrode is inserted between the silicon nitride film for selective oxidation covering one end of the active region and the semiconductor surface, and the electrode on the silicon nitride film forms a capacitive element between the base and the capacitor. The conductive channel coupling between the substrate surface immediately below the element and the opposite conductivity type region provided on the substrate surface at the other end of the active region is performed by the gate electrode.

このような半導体装置は、たとえば−導電型半導体表面
に対するシリコン窒化膜の選択酸化性を用いて活性領域
をシリコン窒化膜で保護して周辺の前記半導体表面に厚
い酸化膜を成長せしめた集積回路において、前記活性領
域に予め該領域を横切るゲート電極を設けたのち前記シ
リコン窒化膜を選択被覆して選択酸化を施し、該選択酸
化に用いたシリコン窒化膜の一端上に容量素子電極を形
成し、前記活性領域の他端lこ逆導電型領域を形成する
ことを特徴とする製造方法で製造できる。
Such a semiconductor device is, for example, an integrated circuit in which the active region is protected by a silicon nitride film and a thick oxide film is grown on the surrounding semiconductor surface by using the selective oxidation property of the silicon nitride film with respect to the conductive semiconductor surface. , providing a gate electrode across the active region in advance, selectively covering the silicon nitride film and performing selective oxidation, and forming a capacitive element electrode on one end of the silicon nitride film used for the selective oxidation; It can be manufactured by a manufacturing method characterized in that a region of opposite conductivity type is formed at the other end of the active region.

この発明の集積回路は、トランジスタ動作をせしめる容
量素子側の逆導電型領域を除去して三要素にて記憶作用
を実現することにより、より高密度な集積回路を実現し
、かつゲート電極をシリコン窒化膜の除去部分で露呈し
て導電結合し得るための微細化技術をもたらしている。
The integrated circuit of the present invention realizes a higher density integrated circuit by removing the opposite conductivity type region on the capacitive element side that causes transistor operation and realizing a memory function with three elements, and the gate electrode is made of silicon. This brings about a miniaturization technology that allows conductive bonding to occur when the nitride film is exposed in the removed portion.

次にこの発明の特徴をより良く理解するために、この発
明の実施例につき図を用いて説明する。
Next, in order to better understand the characteristics of the present invention, embodiments of the present invention will be described using figures.

第1図〜第5図はこの発明の一実施例の主たる製造工程
における断面図である。
1 to 5 are cross-sectional views showing the main manufacturing steps of an embodiment of the present invention.

この実施例のMO8集積回路は、比抵抗1Ω鼾のP型シ
リコン単結晶基体1の一表面に厚さ300人のシリコン
酸化物のゲート絶縁膜2を、熱酸化成長し、更にこの上
面に燐添加の多結晶シリコンのゲート電極3,4を選択
的に形成する(第1図)。
In the MO8 integrated circuit of this embodiment, a gate insulating film 2 of silicon oxide with a thickness of 300 μm is grown by thermal oxidation on one surface of a P-type silicon single crystal substrate 1 with a resistivity of 1Ω, and then phosphorus is added on the upper surface. Added polycrystalline silicon gate electrodes 3, 4 are selectively formed (FIG. 1).

ゲート電極3,4は100λ程度のシリコン酸化膜5,
6を介して、活性領域を形成するシリコン窒化膜7,8
で被覆され、基体を熱酸化処理して活性領域周囲に10
μm程度の厚いシリコン酸化膜9を形成する。
The gate electrodes 3 and 4 are silicon oxide films 5 of about 100λ,
6, silicon nitride films 7 and 8 forming an active region.
The substrate is thermally oxidized to form a 10
A silicon oxide film 9 with a thickness of approximately μm is formed.

このシリコン窒化膜7,8を選択酸化用マスクとした厚
いシリコン酸化膜9の形成は、シリコン窒化膜7,8を
マスクとして予め不活性領域表面に寄生効果防止用の不
純物導入が行なわれ、高濃度P要領域10を形成する(
第2図)。
In forming the thick silicon oxide film 9 using the silicon nitride films 7 and 8 as masks for selective oxidation, impurities for preventing parasitic effects are introduced into the surface of the inactive region in advance using the silicon nitride films 7 and 8 as masks. Forming concentration P required region 10 (
Figure 2).

次に、活性領域を区画形成したシリコン窒化膜7.8の
上面に燐添加の多結晶シリコンの容量素子電極11を形
成し、該電極上の厚さ5000λ程度のシリコン酸化膜
12を、熱酸化形成する。
Next, a capacitive element electrode 11 of phosphorous-doped polycrystalline silicon is formed on the upper surface of the silicon nitride film 7.8 that has defined the active region, and a silicon oxide film 12 with a thickness of about 5000λ on the electrode is thermally oxidized. Form.

このシリコン酸化膜12はシリコン窒化膜7,8の食刻
マスクとして用いられ、それぞれの活性領域の一端側で
容量素子電極11およびシリコン窒化膜7,8を保護し
て他端側のゲート電極3,4の一部表面および基体表面
からシリコン窒化膜を除去する(第3図)。
This silicon oxide film 12 is used as an etching mask for the silicon nitride films 7 and 8, and protects the capacitive element electrode 11 and the silicon nitride films 7 and 8 at one end of each active region, and protects the gate electrode 3 at the other end. , 4 and the substrate surface (FIG. 3).

シリコン窒化膜が除去された基体表面には多結晶シリコ
ンをマスクとして燐が接合深さ1μm、表面濃度1o3
9ca程度にイオン注入され、活性領域他端にそれぞれ
N型領域13.14が形成され、ゲート電極3,4の露
呈面にアルミニウムの配線電極15が導電結合して第4
図の如く完成される。
On the surface of the substrate from which the silicon nitride film has been removed, phosphorus is applied to a junction depth of 1 μm and a surface concentration of 103 using polycrystalline silicon as a mask.
Ions are implanted to approximately 9 ca, and N-type regions 13 and 14 are formed at the other end of the active region, and aluminum wiring electrodes 15 are conductively coupled to the exposed surfaces of the gate electrodes 3 and 4.
It is completed as shown in the figure.

この完成されたMO8集積回路はそれぞれの活性領域に
ゲート電極と容量素子電極とN型領域とから成る最少素
子占有面積のメモリセルを形成する。
In this completed MO8 integrated circuit, a memory cell with a minimum element occupation area is formed in each active region, consisting of a gate electrode, a capacitive element electrode, and an N-type region.

第5図は第4図の完成されたMO8集積回路の4ビツト
マトリクス部分を示す一部上面図である。
FIG. 5 is a partial top view showing a 4-bit matrix portion of the completed MO8 integrated circuit of FIG.

この図に示すようにメモリセルのN型領域13と容量素
子を導電チャンネルで結合するゲート電極3と容量素子
電極11とは重なり合うため、従来の1トランジスタ型
メモリセルに比してトランジスタ作用のためのN型領域
を除去して面積の縮小化が行なわれる。
As shown in this figure, the gate electrode 3 that connects the N-type region 13 of the memory cell and the capacitive element through a conductive channel and the capacitive element electrode 11 overlap, so that the transistor action is improved compared to the conventional one-transistor type memory cell. The area is reduced by removing the N-type region.

又、ゲート電極3,4と配線電極15との導電結合はシ
リコン窒化膜の食刻面で得られ、シリコン窒化膜がシリ
コン酸化膜と食刻選択性を有するため0.5〜2μ扉程
度の微小露呈面において確実性の高い導電結合が得られ
る。
Further, the conductive coupling between the gate electrodes 3 and 4 and the wiring electrode 15 is obtained on the etched surface of the silicon nitride film, and since the silicon nitride film has etching selectivity with respect to the silicon oxide film, the conductive coupling between the gate electrodes 3 and 4 and the wiring electrode 15 is achieved by the etching surface of the silicon nitride film. Highly reliable conductive coupling can be obtained on minute exposed surfaces.

上にこの発明の一実施例を説明したが、この発明は上述
のようにメモリ用の集積回路に限らず、ロジック用MO
8集積回路にも適用できる。
Although one embodiment of the present invention has been described above, the present invention is not limited to memory integrated circuits as described above, but can also be applied to logic MOSFETs.
It can also be applied to 8 integrated circuits.

また、用いた導電型、電極材料、絶縁物等は必要に応じ
て変更され得る。
Further, the conductivity type, electrode material, insulator, etc. used may be changed as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はこの発明の一実施例の主たる製造工程
におけるそれぞれ断面図、第5図はこの発明の一実施例
の上面図である。 1・・・・・・P型シリコン単結晶基板、2・・・・・
・ゲート絶縁膜、3,4・・・・・・ゲート電極、5,
6・・・・・・シリコン酸化膜、7,8・・・・・・シ
リコン窒化膜、9・・・・・・シリコン酸化膜、10・
・・・・・高濃度P要領域、11・・・・・・容量素子
電極、12・・・・・・シリコン酸化膜、13.14・
・・・・・N型領域、15・・・・・・配線電極。
1 to 4 are sectional views showing the main manufacturing steps of an embodiment of the present invention, and FIG. 5 is a top view of the embodiment of the present invention. 1... P-type silicon single crystal substrate, 2...
・Gate insulating film, 3, 4...Gate electrode, 5,
6...Silicon oxide film, 7,8...Silicon nitride film, 9...Silicon oxide film, 10.
...High concentration P important region, 11...Capacitive element electrode, 12...Silicon oxide film, 13.14.
...N-type region, 15... Wiring electrode.

Claims (1)

【特許請求の範囲】[Claims] 1−導電型半導体表面の活性領域にシリコン窒化膜を成
長せしめた集積回路において、前記活性領域の一端を覆
う前記シリコン窒化膜と前記半導体表面との間にゲート
電極の一端が割り込み、前記シリコン窒化膜上の電極の
直下の基体表面と前記活性領域の他端の基体表面に設け
た逆導電型領域との導電チャンネル結合を前記ゲート電
極にて行わせしめることを特徴とする集積回路。
1- In an integrated circuit in which a silicon nitride film is grown in an active region on the surface of a conductive type semiconductor, one end of a gate electrode is inserted between the silicon nitride film covering one end of the active region and the semiconductor surface, and the silicon nitride 1. An integrated circuit characterized in that the gate electrode is used to conduct conductive channel coupling between the substrate surface immediately below the electrode on the film and an opposite conductivity type region provided on the substrate surface at the other end of the active region.
JP51016703A 1976-02-18 1976-02-18 integrated circuit Expired JPS5838939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51016703A JPS5838939B2 (en) 1976-02-18 1976-02-18 integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51016703A JPS5838939B2 (en) 1976-02-18 1976-02-18 integrated circuit

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP58025683A Division JPS58155754A (en) 1983-02-18 1983-02-18 Integrated circuit memory
JP58025682A Division JPS58169960A (en) 1983-02-18 1983-02-18 Integrated circuit containing capacity element
JP58025684A Division JPS58155755A (en) 1983-02-18 1983-02-18 Integrated circuit memory

Publications (2)

Publication Number Publication Date
JPS5299791A JPS5299791A (en) 1977-08-22
JPS5838939B2 true JPS5838939B2 (en) 1983-08-26

Family

ID=11923632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51016703A Expired JPS5838939B2 (en) 1976-02-18 1976-02-18 integrated circuit

Country Status (1)

Country Link
JP (1) JPS5838939B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325661A (en) * 1993-02-22 1994-11-25 Illinois Tool Works Inc <Itw> Film switch

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447488A (en) * 1977-09-21 1979-04-14 Hitachi Ltd Production of silicon gate type mis semiconductor device
JPS54159887A (en) * 1978-06-08 1979-12-18 Nec Corp Semiconductor memory device
JPS5911665A (en) * 1982-07-12 1984-01-21 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325661A (en) * 1993-02-22 1994-11-25 Illinois Tool Works Inc <Itw> Film switch

Also Published As

Publication number Publication date
JPS5299791A (en) 1977-08-22

Similar Documents

Publication Publication Date Title
JPS6321351B2 (en)
JP3957013B2 (en) Static random access memory device
JP2007335887A (en) Semiconductor device and its manufacturing method
JP3229665B2 (en) Method of manufacturing MOSFET
JPH11177089A (en) Manufacture of semiconductor device
JPS5838939B2 (en) integrated circuit
JP2538856B2 (en) Method for manufacturing semiconductor device
JP3340177B2 (en) Field-effect transistor
JP2538857B2 (en) Method for manufacturing semiconductor device
KR100505101B1 (en) Method of forming contact for semiconductor device
JPH1050950A (en) Manufacture of semiconductor integrated circuit device
JPS6219078B2 (en)
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JP2876716B2 (en) Semiconductor device
JP2827377B2 (en) Semiconductor integrated circuit
JPS63307775A (en) Capacitor and manufacture thereof
KR940000312B1 (en) Sram having a resistance resistor and fabricating method thereof
JP3095450B2 (en) Dynamic semiconductor memory device and method of manufacturing the same
JPH07106436A (en) Semiconductor memory and preparation thereof
JPS6132824B2 (en)
JPH0793367B2 (en) Semiconductor memory device and manufacturing method thereof
JPS6322068B2 (en)
JPH02263461A (en) Manufacture of semiconductor integrated circuit device
JPS63236355A (en) Manufacture of semiconductor storage device
KR19980031101A (en) Manufacturing method of semiconductor device