JPS6321351B2 - - Google Patents

Info

Publication number
JPS6321351B2
JPS6321351B2 JP58025682A JP2568283A JPS6321351B2 JP S6321351 B2 JPS6321351 B2 JP S6321351B2 JP 58025682 A JP58025682 A JP 58025682A JP 2568283 A JP2568283 A JP 2568283A JP S6321351 B2 JPS6321351 B2 JP S6321351B2
Authority
JP
Japan
Prior art keywords
forming
gate electrode
active region
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58025682A
Other languages
Japanese (ja)
Other versions
JPS58169960A (en
Inventor
Toshio Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58025682A priority Critical patent/JPS58169960A/en
Publication of JPS58169960A publication Critical patent/JPS58169960A/en
Publication of JPS6321351B2 publication Critical patent/JPS6321351B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 この発明は容量素子を含む集積回路に係り、特
に大容量のICメモリとして好適なMOS集積回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit including a capacitive element, and particularly to a MOS integrated circuit suitable as a large-capacity IC memory.

MOS集積回路は高密度大規模化に好適であり、
大容量ICメモリを実現することができる。とく
に1トランジスタ型のICメモリはトランジスタ
と容量素子とを各一個用いて記憶作用をもたらす
ため素子占有面積が小さく、高密度記憶集積回路
として注目されている。従来は容量素子とトラン
ジスタとが活性領域内で個別に形成され、トラン
ジスタのゲート電極および2個の逆導電型領域と
容量素子の電極との四要素が平面的に展開されて
活性領域上に設けられるが、より高密度化のため
にこれらの要素の縮小が望ましいことである。ま
た、トランジスタのゲート電極を縮小することに
より該ゲート電極と配線電極の結合を縮小面積に
て確実に行うことが必要技術となつている。
MOS integrated circuits are suitable for high density and large scale,
Large capacity IC memory can be realized. In particular, a one-transistor type IC memory uses one transistor and one capacitor to provide a memory function, so the device occupies a small area, and is attracting attention as a high-density memory integrated circuit. Conventionally, a capacitive element and a transistor are formed separately within an active region, and four elements, the gate electrode of the transistor, two opposite conductivity type regions, and the electrode of the capacitive element, are laid out in a plane and provided on the active region. However, it is desirable to reduce these elements for higher density. Furthermore, it has become a necessary technology to reduce the size of the gate electrode of a transistor so that the gate electrode and the wiring electrode can be reliably coupled to each other in a reduced area.

この発明の目的は、より高密度のMOS集積回
路を提供することにある。
An object of the present invention is to provide a higher density MOS integrated circuit.

この発明の集積回路の特徴は、一導電型半導体
基板上にゲート絶縁膜を介してゲート電極が設け
られ、基板内に逆導電型領域がこのゲート電極と
各々の端部が整合するように設けられ、ゲート電
極上には絶縁膜を介して容量素子の電極が設けら
れ、この容量素子の電極がさらに絶縁膜で覆われ
てその上にアルミニウム等の配線層が設けられて
いる集積回路にある。
The integrated circuit of the present invention is characterized in that a gate electrode is provided on a semiconductor substrate of one conductivity type via a gate insulating film, and regions of opposite conductivity type are provided in the substrate so that their respective ends are aligned with the gate electrode. In an integrated circuit, an electrode of a capacitive element is provided on the gate electrode via an insulating film, the electrode of the capacitive element is further covered with an insulating film, and a wiring layer of aluminum or the like is provided on top of the electrode. .

このような半導体装置は、たとえば一導電型半
導体表面に対するシリコン窒化膜の選択酸化性を
用いて活性領域をシリコン窒化膜で保護して周辺
の前記半導体表面に厚い酸化膜を成長せしめた集
積回路において、前記活性領域に予め該領域を横
切るゲート電極を設けたのち前記シリコン窒化膜
を選択被覆して選択酸化を施し、該選択酸化に用
いたシリコン窒化膜の一端上に容量素子電極を形
成し、前記活性領域の他端に逆導電型領域を形成
する製造方法で製造できる。
Such a semiconductor device is an integrated circuit in which, for example, the active region is protected by a silicon nitride film and a thick oxide film is grown on the surrounding semiconductor surface by using the selective oxidation property of a silicon nitride film with respect to the surface of a semiconductor of one conductivity type. , providing a gate electrode across the active region in advance, selectively covering the silicon nitride film and performing selective oxidation, and forming a capacitive element electrode on one end of the silicon nitride film used for the selective oxidation; It can be manufactured by a manufacturing method in which a region of opposite conductivity type is formed at the other end of the active region.

この発明によれば、平面形状が十分に小さい集
積回路を、特別な微細加工技術を用いることなく
実現できる。
According to this invention, an integrated circuit having a sufficiently small planar shape can be realized without using special microfabrication techniques.

次にこの発明の特徴をより良く理解するため
に、この発明の実施例につき図を用いて説明す
る。
Next, in order to better understand the characteristics of the present invention, embodiments of the present invention will be described using figures.

第1図〜第4図はこの発明の一実施例の主たる
製造工程における断面図である。
1 to 4 are cross-sectional views showing the main manufacturing steps of an embodiment of the present invention.

この実施例のMOS集積回路は、比抵抗1Ωcmの
P型シリコン単結晶基体1の一表面に厚さ300Å
のシリコン酸化物のゲート絶縁膜2を、熱酸化成
長し、更にこの上面に燐添加の多結晶シリコンの
ゲート電極3,4を選択的に形成する(第1図)。
The MOS integrated circuit of this example has a thickness of 300 Å on one surface of a P-type silicon single crystal substrate 1 with a specific resistance of 1 Ωcm.
A gate insulating film 2 of silicon oxide is grown by thermal oxidation, and gate electrodes 3 and 4 of phosphorous-doped polycrystalline silicon are selectively formed on its upper surface (FIG. 1).

ゲート電極3,4は100Å程度のシリコン酸化
膜5,6を介して、活性領域を形成するシリコン
窒化膜7,8で被覆され、基体を熱酸化処理して
活性領域周囲に1.0μm程度の厚いシリコン酸化膜
9を形成する。なお、このシリコン窒化膜7,8
を選択酸化用マスクとした厚いシリコン酸化膜9
の形成に先だつて、シリコン窒化膜7,8をマス
クとして予め不活性領域表面に寄生効果防止用の
不純物導入が行なわれ、高濃度P型領域10が形
成される。(第2図)。
The gate electrodes 3 and 4 are covered with silicon nitride films 7 and 8 that form an active region via silicon oxide films 5 and 6 of about 100 Å, and the substrate is thermally oxidized to form a thick film of about 1.0 μm around the active region. A silicon oxide film 9 is formed. Note that these silicon nitride films 7 and 8
Thick silicon oxide film 9 using as a mask for selective oxidation
Prior to the formation of P-type region 10, impurities for preventing parasitic effects are introduced into the surface of the inactive region using silicon nitride films 7 and 8 as masks, thereby forming highly doped P-type region 10. (Figure 2).

次に、活性領域を区画形成したシリコン窒化膜
7,8の上面に燐添加の多結晶シリコンの容量素
子電極11を形成し、該電極上に厚さ5000Å程度
のシリコン酸化膜12を熱酸化形成する。このシ
リコン酸化膜12は、シリコン窒化膜7,8の蝕
刻マスクとしても用いられる。すなわち、それぞ
れの活性領域の一端側で容量素子電極11および
シリコン窒化膜7,8を保護し、他端側のゲート
電極3,4の一部表面および基体表面からシリコ
ン窒化膜を除去することを可能にする(第3図)。
Next, a capacitive element electrode 11 of phosphorous-doped polycrystalline silicon is formed on the upper surface of the silicon nitride films 7 and 8 that have defined the active region, and a silicon oxide film 12 with a thickness of about 5000 Å is thermally oxidized on the electrode. do. This silicon oxide film 12 is also used as an etching mask for the silicon nitride films 7 and 8. That is, the capacitive element electrode 11 and the silicon nitride films 7 and 8 are protected at one end of each active region, and the silicon nitride film is removed from the partial surfaces of the gate electrodes 3 and 4 and the substrate surface at the other end. (Figure 3).

シリコン窒化膜が除去された基体表面には、多
結晶シリコンゲート電極3,4をマスクとして燐
が接合深さ1μm、表面濃度1019cm-3程度にイオン
注入され、活性領域他端にそれぞれN型領域1
3,14が形成され、ゲート電極3,4の露呈面
にアルミニウムの配線電極15が導電結合して第
4図の如く完成される。この完成されたMOS集
積回路はそれぞれの活性領域にゲート電極と容量
素子電極とN型領域とから成る最少素子占有面積
のメモリセルを形成する。
Phosphorus is ion-implanted into the substrate surface from which the silicon nitride film has been removed, using the polycrystalline silicon gate electrodes 3 and 4 as masks, with a junction depth of 1 μm and a surface concentration of about 10 19 cm -3 , and N at the other end of the active region. mold area 1
3 and 14 are formed, and an aluminum wiring electrode 15 is conductively coupled to the exposed surfaces of the gate electrodes 3 and 4, completing the process as shown in FIG. In this completed MOS integrated circuit, a memory cell with a minimum element occupation area is formed in each active region, consisting of a gate electrode, a capacitor electrode, and an N-type region.

第5図は第4図の完成されたMOS集積回路の
4ビツトマトリクス部分を示す一部上面図であ
る。この図に示すようにメモリセルのN型領域1
3と容量素子を導電チヤンネルで結合するゲート
電極3と容量素子電極11とは重なり合うため、
従来の1トランジスタ型メモリセルに比して面積
の縮小化が行なわれる。又、ゲート電極3,4と
配線電極15との導電結合はシリコン窒化膜の蝕
刻面で得られ、シリコン窒化膜がシリコン酸化膜
と蝕刻選択性を有するため0.5〜2μm程度の微小
露呈面において確実性の高い導電結合が得られ
る。
5 is a partial top view showing a 4-bit matrix portion of the completed MOS integrated circuit of FIG. 4. FIG. As shown in this figure, N-type region 1 of the memory cell
Since the gate electrode 3 and the capacitive element electrode 11, which connect the capacitive element and the gate electrode 3 through a conductive channel, overlap,
The area is reduced compared to a conventional one-transistor type memory cell. In addition, the conductive bond between the gate electrodes 3 and 4 and the wiring electrode 15 is obtained on the etched surface of the silicon nitride film, and since the silicon nitride film has etching selectivity with respect to the silicon oxide film, it is ensured on the minute exposed surface of about 0.5 to 2 μm. A highly conductive bond can be obtained.

以上、この発明の一実施例を説明したが、この
発明は上述のようにメモリ用の集積回路に限ら
ず、ロジツク用MOS集積回路にも適用できる。
また、用いた導電型、電極材料、絶縁物等は必要
に応じて変更され得る。
Although one embodiment of the present invention has been described above, the present invention is not limited to memory integrated circuits as described above, but can also be applied to logic MOS integrated circuits.
Further, the conductivity type, electrode material, insulator, etc. used may be changed as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は各々この発明の一実施例の
主たる製造工程における工程順の断面図、第5図
はこの発明の一実施例の上面図である。 なお図において、1…P型シリコン単結晶基
板、2…ゲート絶縁膜、3,4…ゲート電極、
5,6…シリコン酸化膜、7,8…シリコン窒化
膜、9…シリコン酸化膜、10…高濃度P型領
域、11…容量素子電極、12…シリコン酸化
膜、13,14…N型領域、15…配線電極、で
ある。
1 to 4 are sectional views showing the order of steps in the main manufacturing process of an embodiment of the present invention, and FIG. 5 is a top view of the embodiment of the invention. In the figure, 1... P-type silicon single crystal substrate, 2... gate insulating film, 3, 4... gate electrode,
5, 6... Silicon oxide film, 7, 8... Silicon nitride film, 9... Silicon oxide film, 10... High concentration P type region, 11... Capacitive element electrode, 12... Silicon oxide film, 13, 14... N type region, 15... Wiring electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 電界効果トランジスタと容量素子の直列構成
をメモリセルとするICメモリの製造方法におい
て、一導電型半導体基板表面にゲート絶縁膜を形
成する工程と、活性領域上のゲート絶縁膜上に多
結晶シリコンによつて前記トランジスタのゲート
電極を選択的に形成する工程と、該ゲート電極表
面に酸化膜を形成する工程と、前記活性領域表面
上のみに窒化膜を選択的に形成する工程と、前記
窒化膜をマスクとして前記活性領域以外の半導体
基板表面に厚いシリコン酸化膜を形成する工程
と、前記ゲート電極の一端において前記窒化膜を
部分的に除去する工程と、前記ゲート電極の前記
一端とは反対に位置する他端側の窒化膜上に容量
素子の上部電極を形成する工程と、前記ゲート電
極の前記一端に端部が位置する逆導電型領域を形
成する工程とを含むことを特徴とするICメモリ
の製造方法。
1. In a method for manufacturing an IC memory in which a memory cell is a series configuration of a field effect transistor and a capacitive element, there are two steps: forming a gate insulating film on the surface of a semiconductor substrate of one conductivity type, and depositing polycrystalline silicon on the gate insulating film on the active region. a step of selectively forming a gate electrode of the transistor, a step of forming an oxide film on the surface of the gate electrode, a step of selectively forming a nitride film only on the surface of the active region, and a step of forming the nitride film selectively on the surface of the active region; a step of forming a thick silicon oxide film on the surface of the semiconductor substrate other than the active region using a film as a mask; a step of partially removing the nitride film at one end of the gate electrode; and a step opposite to the one end of the gate electrode. forming an upper electrode of a capacitive element on the nitride film at the other end located at the gate electrode; and forming an opposite conductivity type region having an end located at the one end of the gate electrode. IC memory manufacturing method.
JP58025682A 1983-02-18 1983-02-18 Integrated circuit containing capacity element Granted JPS58169960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025682A JPS58169960A (en) 1983-02-18 1983-02-18 Integrated circuit containing capacity element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025682A JPS58169960A (en) 1983-02-18 1983-02-18 Integrated circuit containing capacity element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51016703A Division JPS5838939B2 (en) 1976-02-18 1976-02-18 integrated circuit

Publications (2)

Publication Number Publication Date
JPS58169960A JPS58169960A (en) 1983-10-06
JPS6321351B2 true JPS6321351B2 (en) 1988-05-06

Family

ID=12172553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025682A Granted JPS58169960A (en) 1983-02-18 1983-02-18 Integrated circuit containing capacity element

Country Status (1)

Country Link
JP (1) JPS58169960A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620704B2 (en) 2018-01-19 2020-04-14 Cirrus Logic, Inc. Haptic output systems
US10667051B2 (en) 2018-03-26 2020-05-26 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10732714B2 (en) 2017-05-08 2020-08-04 Cirrus Logic, Inc. Integrated haptic system
US10795443B2 (en) 2018-03-23 2020-10-06 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10820100B2 (en) 2018-03-26 2020-10-27 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10828672B2 (en) 2019-03-29 2020-11-10 Cirrus Logic, Inc. Driver circuitry
US10832537B2 (en) 2018-04-04 2020-11-10 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US10848886B2 (en) 2018-01-19 2020-11-24 Cirrus Logic, Inc. Always-on detection systems
US10860202B2 (en) 2018-10-26 2020-12-08 Cirrus Logic, Inc. Force sensing system and method
US10976825B2 (en) 2019-06-07 2021-04-13 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US10992297B2 (en) 2019-03-29 2021-04-27 Cirrus Logic, Inc. Device comprising force sensors
US11069206B2 (en) 2018-05-04 2021-07-20 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11139767B2 (en) 2018-03-22 2021-10-05 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US11150733B2 (en) 2019-06-07 2021-10-19 Cirrus Logic, Inc. Methods and apparatuses for providing a haptic output signal to a haptic actuator
US11259121B2 (en) 2017-07-21 2022-02-22 Cirrus Logic, Inc. Surface speaker
US11263877B2 (en) 2019-03-29 2022-03-01 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
US11283337B2 (en) 2019-03-29 2022-03-22 Cirrus Logic, Inc. Methods and systems for improving transducer dynamics
US11380175B2 (en) 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11509292B2 (en) 2019-03-29 2022-11-22 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
US11552649B1 (en) 2021-12-03 2023-01-10 Cirrus Logic, Inc. Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths
US11644370B2 (en) 2019-03-29 2023-05-09 Cirrus Logic, Inc. Force sensing with an electromagnetic load

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732714B2 (en) 2017-05-08 2020-08-04 Cirrus Logic, Inc. Integrated haptic system
US11500469B2 (en) 2017-05-08 2022-11-15 Cirrus Logic, Inc. Integrated haptic system
US11259121B2 (en) 2017-07-21 2022-02-22 Cirrus Logic, Inc. Surface speaker
US10848886B2 (en) 2018-01-19 2020-11-24 Cirrus Logic, Inc. Always-on detection systems
US10969871B2 (en) 2018-01-19 2021-04-06 Cirrus Logic, Inc. Haptic output systems
US10620704B2 (en) 2018-01-19 2020-04-14 Cirrus Logic, Inc. Haptic output systems
US11139767B2 (en) 2018-03-22 2021-10-05 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10795443B2 (en) 2018-03-23 2020-10-06 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10667051B2 (en) 2018-03-26 2020-05-26 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10820100B2 (en) 2018-03-26 2020-10-27 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US11636742B2 (en) 2018-04-04 2023-04-25 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US10832537B2 (en) 2018-04-04 2020-11-10 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11069206B2 (en) 2018-05-04 2021-07-20 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
US11269509B2 (en) 2018-10-26 2022-03-08 Cirrus Logic, Inc. Force sensing system and method
US11507267B2 (en) 2018-10-26 2022-11-22 Cirrus Logic, Inc. Force sensing system and method
US10860202B2 (en) 2018-10-26 2020-12-08 Cirrus Logic, Inc. Force sensing system and method
US11396031B2 (en) 2019-03-29 2022-07-26 Cirrus Logic, Inc. Driver circuitry
US11515875B2 (en) 2019-03-29 2022-11-29 Cirrus Logic, Inc. Device comprising force sensors
US11283337B2 (en) 2019-03-29 2022-03-22 Cirrus Logic, Inc. Methods and systems for improving transducer dynamics
US11644370B2 (en) 2019-03-29 2023-05-09 Cirrus Logic, Inc. Force sensing with an electromagnetic load
US11263877B2 (en) 2019-03-29 2022-03-01 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus
US10828672B2 (en) 2019-03-29 2020-11-10 Cirrus Logic, Inc. Driver circuitry
US10992297B2 (en) 2019-03-29 2021-04-27 Cirrus Logic, Inc. Device comprising force sensors
US11509292B2 (en) 2019-03-29 2022-11-22 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US11150733B2 (en) 2019-06-07 2021-10-19 Cirrus Logic, Inc. Methods and apparatuses for providing a haptic output signal to a haptic actuator
US10976825B2 (en) 2019-06-07 2021-04-13 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11380175B2 (en) 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
US11552649B1 (en) 2021-12-03 2023-01-10 Cirrus Logic, Inc. Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths

Also Published As

Publication number Publication date
JPS58169960A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
JPS6321351B2 (en)
JP2655859B2 (en) Semiconductor storage device
JP3957013B2 (en) Static random access memory device
JP2827675B2 (en) Semiconductor storage device
JP3229665B2 (en) Method of manufacturing MOSFET
JPH031837B2 (en)
JPH07130874A (en) Semiconductor storage device and its manufacture
JPH02198170A (en) Semiconductor integrated circuit device and manufacture thereof
JP2538856B2 (en) Method for manufacturing semiconductor device
JP2538857B2 (en) Method for manufacturing semiconductor device
JPS5838939B2 (en) integrated circuit
JP2773205B2 (en) Semiconductor memory
JPS6113388B2 (en)
JP3535542B2 (en) Semiconductor memory device and method of manufacturing the same
JPS6219078B2 (en)
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JP3417482B2 (en) Method for manufacturing semiconductor device
JPS62206874A (en) Semiconductor device and manufacture thereof
JPS63307775A (en) Capacitor and manufacture thereof
JP2515040B2 (en) Semiconductor device and manufacturing method thereof
JPH0529574A (en) Manufacture of semiconductor device
JP3095450B2 (en) Dynamic semiconductor memory device and method of manufacturing the same
JP2827377B2 (en) Semiconductor integrated circuit
KR940000312B1 (en) Sram having a resistance resistor and fabricating method thereof
JP2952987B2 (en) Groove separated semiconductor device