JPS58169960A - Integrated circuit containing capacity element - Google Patents

Integrated circuit containing capacity element

Info

Publication number
JPS58169960A
JPS58169960A JP58025682A JP2568283A JPS58169960A JP S58169960 A JPS58169960 A JP S58169960A JP 58025682 A JP58025682 A JP 58025682A JP 2568283 A JP2568283 A JP 2568283A JP S58169960 A JPS58169960 A JP S58169960A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
gate
capacity element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58025682A
Other languages
Japanese (ja)
Other versions
JPS6321351B2 (en
Inventor
Toshio Wada
和田 俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58025682A priority Critical patent/JPS58169960A/en
Publication of JPS58169960A publication Critical patent/JPS58169960A/en
Publication of JPS6321351B2 publication Critical patent/JPS6321351B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain an IC memory of high density by a method wherein gated electrodes are formed on a gate insulation film by aligning the end parts with the N-layers of a P type substrate, then the electrode of a capacity element is superposed via the insulation film, and accordingly an Al wiring is provided by covering it with an insulation film. CONSTITUTION:The gate electrodes 3 and 4 are formed on the gate oxide film 2 of the P type Si substrate 1, and covered with Si3N4 films 7 and 8, and an active region is isolated by a thick field oxide film 9 and a P<+> channel stopper. The electrode 11 of the capacity element of P doped poly Si is superposed on the Si3N4 films 7 and 8, and covered with an SiO2 film 12. Successively etched by the mask 12, P ions are implanted into the substrate surface selectively exposed, with the electrodes 3 and 4 as the mask resulting in the formation of N- layers 13 and 14, and the Al electrode 15 is connected to the exposed surfaces of the electrodes 3 and 4. by this constitution, a memory cell of the minimum occupation area which is constituted of the gate electrodes, capacity element electrode, and N-layers can be obtained on the active region.

Description

【発明の詳細な説明】 この発明μ容量素子を含む集積回路に係り1%九大容量
のICメモリとして好適なMUSg積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit including a μ-capacitance element, and relates to a MUSg product circuit suitable as an IC memory with a capacity of 1%.

MO8集積回路は高密度大規模化゛に好適であり。MO8 integrated circuits are suitable for high density and large scale.

大容量1cメモリを5j!現することができる。とく1
’Cj)ランジスタ型のICメモリvJトランジスタと
容量素子とを各−個用いて記憶r1:用倉も皮らすため
素子占有(2)積が小さく、高密展−記憶集積回路とし
て注目されている。従来μ容量素子とトランジスタとが
活性領域内で個別に形成され、トランジスタのゲート電
極お工び2個の逆尋1型領域と容量素子の1極との四l
!累が平向的に展叩されて活性領域上に設けられるが、
ニジ扁密度化のためにこれらの4i!累の細小が望まし
いことである。まあ トランジスタのゲート[iQM4
小することにより醪ゲート電極と配線電極の結合全微小
r1n横にて確g@に打うことが必l!技術となってい
る。
5J large capacity 1C memory! can be expressed. Special 1
'Cj) Transistor-type IC memory vJ Storage using each transistor and capacitive element r1: The device occupancy is small because the storage area is also exposed. (2) It is attracting attention as a high-density integrated memory integrated circuit. . Conventionally, a μ-capacitor element and a transistor are formed separately in an active region, and the gate electrode of the transistor is formed by two inverse 1-type regions and one pole of the capacitor element.
! The layer is spread out flatly and provided on the active area,
These 4i for rainbow density! It is desirable that the thickness be small and thin. Well, the gate of the transistor [iQM4
By making it smaller, it is necessary to strike exactly g @ at the side of the total microscopic r1n of the connection between the gate electrode and the wiring electrode! It has become a technology.

この発明の目的は、工9高密度のM(J8集積(ロ)路
t′提供することにある。
It is an object of the present invention to provide a high-density M (J8 integrated path t').

この発明の集積回路の!値は、−導電型半導体基板上に
ゲート絶縁膜を介してゲート電極が設けられ、基板IF
3に逆導電型領域がこのゲート電極と各々の端部が整合
する工うに設けられ、ゲート電極上九μ絶縁膜を介して
容量本すの電極が咋けられ、この容量素≠の電極がさら
に絶縁膜で蝋われてその上にアルミニウム等の配線層が
設けられている集積回路にある。
This inventive integrated circuit! The value is - A gate electrode is provided on a conductive type semiconductor substrate via a gate insulating film, and the substrate IF
3, an opposite conductivity type region is provided in such a way that each end is aligned with this gate electrode, and a capacitive main electrode is placed on the gate electrode through a 9μ insulating film, and this capacitive element ≠ electrode is formed. Furthermore, there is an integrated circuit in which an insulating film is soldered and a wiring layer made of aluminum or the like is provided thereon.

このような半導体装置は、たとえば−専II型半得体表
面に対するシリコン窒化膜の選択酸化性を用いて活性領
域をシリコン窒化膜で保護して周辺の前記半導体表面に
厚い酸化膜を成長せしめ次集檀回路において、前記活性
領域に予め該領域を横切るゲート電極を設けたのち11
′l配シリコン窒化膜を選択被覆して選択酸化を施し、
該選択酸化rC用いたシリコン窒化膜の一趨上vc答量
累子電極を形成し、前記活性領域の他端に逆導電型領域
を形成する製造方法で製造できる。
Such a semiconductor device, for example, uses the selective oxidizing properties of a silicon nitride film on the surface of a type II semiconductor to protect the active region with a silicon nitride film and grow a thick oxide film on the surrounding semiconductor surface. In the Dan circuit, after providing the active region with a gate electrode that crosses the region in advance, 11
Selectively coat a silicon nitride film and perform selective oxidation,
It can be manufactured by a manufacturing method in which a single-sided VC resistor electrode is formed using a silicon nitride film using the selectively oxidized rC, and an opposite conductivity type region is formed at the other end of the active region.

この発明によれば、平向形状が十分に小さい集積回路を
、特別な微細加工技術を用いることなく実現できる。
According to this invention, an integrated circuit with a sufficiently small planar shape can be realized without using special microfabrication techniques.

次にこの発明の特徴をより良く理解するため【。Next, to better understand the characteristics of this invention.

この発明の実施例につき−を用いて説明する。An embodiment of this invention will be explained using -.

第1図〜第4図にこの発明の一5jl!施例の王たる製
造工程における断面図である。
Figures 1 to 4 show this invention! It is a sectional view in the main manufacturing process of the example.

この実施例のMO8集積回路に、比抵抗1ωすP型シリ
コン率結晶基体lの一表面に厚さ300にのシリコン酸
化物のゲート絶縁膜2を、熱酸化成長し、更にこの上d
IJ(燐添加の多結晶シリコンのゲート電極3.4を選
択的足形成する(第1図)。
In the MO8 integrated circuit of this example, a gate insulating film 2 of silicon oxide with a thickness of 300 mm was grown by thermal oxidation on one surface of a P-type silicon crystal base l having a specific resistance of 1 ω, and then d
IJ (selective formation of gate electrodes 3.4 of phosphorous-doped polycrystalline silicon (FIG. 1)).

ゲート電極3,4ζ100λ程度のシリコン酸化膜5.
61に介して、活性領域を形成するシリコン窒化膜7.
8で被覆され、基体を熱酸化処理して活性領域周1al
[1,Qgn程度の厚い7リコン酸化膜9を形成する。
Gate electrodes 3, 4 Silicon oxide film of about 100λ 5.
61, a silicon nitride film 7. forms an active region.
8, and the substrate is thermally oxidized to form a 1al layer around the active region.
[1, A thick 7 silicon oxide film 9 of about Qgn is formed.

なお、この7リコン窒化膜7,8t″選択酸化市マスク
とじ友廖いノリコン酸化膜9の形@、ニ先だって、シリ
コン窒化膜7.8をマスクとして予め不活性領域表−に
寄生効果防止用の不純物導入が行なわれ、高濃度Pmm
境域Oが形成される(第2図)。
In addition, the silicon nitride film 7, 8t" selective oxidation mask is attached to the silicon oxide film 9, and the silicon nitride film 7.8 is used as a mask to prevent parasitic effects on the surface of the inactive region. impurities are introduced, resulting in a high concentration of Pmm
A boundary area O is formed (Figure 2).

次に、活性領域を区画形成し′fc7リコン輩化換7.
8の上面vc燐添加の多結晶シリコンの容積素子電極1
1を形成し、該電極上に厚さ5L)OOA程度のシリコ
ン酸化膜12を熱酸化形成する0この/リコン酸化1a
12ぼ、シリコン窒化膜7.8の゛蝕刻マスクとしても
用いられる。すなわち、それぞれの活性領域の一端側で
谷量累子電極11およびシリコン窒化膜7.8會保饅し
、他端側のゲート電極3.4の一部tk面および基体表
面からシリコン窒化膜を除去することを可能にする(第
3図)0シリコン窒化膜が除去された基体表面(に、多
結晶シリコンゲート電極3.4ヲマスクとし、て燐が接
合深さ1μm1表面濃flOcr!t  程&にイオン
注入され、活性領域他端にそれぞれN型領域13゜14
が形成され、ゲート電極3.4の裏呈面にアルミニウム
の配線電極15が導電結合して第4図の如く完成される
。この完成されたM08果槓回路にそれぞれの活性領域
にゲート電極と答!#木子電極とN型領域とから成る最
少菓子占有面積のメモリセルを形成する。
Next, the active region is partitioned and 'fc7 recongenization is performed.7.
Top surface of 8 VC phosphorus-doped polycrystalline silicon volumetric element electrode 1
1, and thermally oxidize a silicon oxide film 12 with a thickness of about 5 L) OOA on the electrode.
12 is also used as an etching mask for the silicon nitride film 7.8. That is, the valley electrode 11 and the silicon nitride film 7.8 are deposited on one end side of each active region, and the silicon nitride film is deposited from a portion of the tk plane and the substrate surface of the gate electrode 3.4 on the other end side. (Figure 3) 0 On the substrate surface from which the silicon nitride film has been removed, a polycrystalline silicon gate electrode 3.4 is masked and phosphorus is concentrated on the surface to a junction depth of 1 μm. ions are implanted into the active region, and N-type regions 13 and 14 are formed at the other end of the active region.
is formed, and an aluminum wiring electrode 15 is conductively coupled to the reverse surface of the gate electrode 3.4 to complete the process as shown in FIG. Add gate electrodes to each active region in this completed M08 circuit! # Form a memory cell with a minimum confectionary area consisting of a wooden electrode and an N-type region.

第5図に第4図の完成されたMOB集積回路の4ビツト
マトリクス部5j−を示す一部上面図である。
FIG. 5 is a partial top view showing the 4-bit matrix section 5j- of the completed MOB integrated circuit of FIG. 4.

この図に示すようにメモリセルのN型領域13と答1木
子を導電チャンネルで結合するゲート電極3と容を素子
電極11とは重なり合うため、従来の1トランジスタ型
メモリセルに比して面積の縮小化が行なわれる。又、ゲ
ート電極3,4と配線1極15との導電結合ぼシリコン
窒化膜の蝕刻面で得られ、シリコン窒化膜がシリコン酸
化膜と蝕刻選択性を有するため0.5〜2μms!度の
微小篇呈面において確冥注の高い導電結合が得られる。
As shown in this figure, the gate electrode 3 that connects the N-type region 13 of the memory cell and the element electrode 11 through a conductive channel overlaps with the element electrode 11, so the area is smaller than that of a conventional one-transistor memory cell. Miniaturization is performed. Further, the conductive bond between the gate electrodes 3, 4 and the wiring 1 pole 15 is obtained on the etched surface of the silicon nitride film, and since the silicon nitride film has etching selectivity with respect to the silicon oxide film, it takes 0.5 to 2 μms! A highly reliable conductive bond can be obtained on the microscopic surface.

以上、この発明の一実施例を説明したが、この発明ぼ上
述のようにメモリ用の集積回路に限らず。
Although one embodiment of the present invention has been described above, the present invention is not limited to integrated circuits for memory as described above.

ロジック用MO8集積回路にも適用できる0また。Also applicable to MO8 integrated circuits for logic.

用い几導電型、電極材料、絶縁物等は必II!に応じて
変更され得る。
The conductive type, electrode material, insulator, etc. used are a must! may be changed accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

wJ1図乃至纂4図は各々この発明の一実施例の主たる
製造工程における工程順の11’rl1図、第5図はこ
の発明の一実施例の上面図である。 なお図において1.1・・・P型シリコン単結晶基板、
2・・・ゲート絶縁膜、3.4・・・ゲート電極、5,
6・・・シリコン緻化膜、7.8・・・7リコン輩化膜
、9・・・シリコン酸化膜、10・・・高a度Pg領域
、11・・・容量集子電極、12・・・シリコン酸化膜
、13.14・・・N型領域、15・・・配線電極、で
ある。
Figures wJ1 to 4 are diagrams 11'rl1 showing the sequence of steps in the main manufacturing process of an embodiment of the present invention, and Figure 5 is a top view of the embodiment of the present invention. In addition, in the figure, 1.1...P-type silicon single crystal substrate,
2... Gate insulating film, 3.4... Gate electrode, 5,
6... Silicon densified film, 7.8... 7 Recondensed film, 9... Silicon oxide film, 10... High a degree Pg region, 11... Capacitor collector electrode, 12. . . . silicon oxide film, 13. 14 . . N type region, 15 . . . wiring electrode.

Claims (1)

【特許請求の範囲】 一導電型半導体基板上(第1の絶縁膜會介してゲート電
極が設けられ、前記−導電型半導体基板に前記ゲート電
極とその端部が整合する平面形状の逆導電型領域が設け
られ、前記ゲート1N極上に第2の絶縁膜を介して容量
素子電極が設けられ。 該容積素子電極上に第3の絶縁膜を介して配#膚が設け
られていることを特徴とする集積回路7.
[Scope of Claims] A gate electrode is provided on a semiconductor substrate of one conductivity type (a gate electrode is provided through a first insulating film, and the opposite conductivity type has a planar shape in which the gate electrode and its end are aligned with the semiconductor substrate of -conductivity type) A capacitive element electrode is provided on the gate 1N electrode via a second insulating film, and a wiring is provided on the capacitive element electrode via a third insulating film. 7.
JP58025682A 1983-02-18 1983-02-18 Integrated circuit containing capacity element Granted JPS58169960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025682A JPS58169960A (en) 1983-02-18 1983-02-18 Integrated circuit containing capacity element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025682A JPS58169960A (en) 1983-02-18 1983-02-18 Integrated circuit containing capacity element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51016703A Division JPS5838939B2 (en) 1976-02-18 1976-02-18 integrated circuit

Publications (2)

Publication Number Publication Date
JPS58169960A true JPS58169960A (en) 1983-10-06
JPS6321351B2 JPS6321351B2 (en) 1988-05-06

Family

ID=12172553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025682A Granted JPS58169960A (en) 1983-02-18 1983-02-18 Integrated circuit containing capacity element

Country Status (1)

Country Link
JP (1) JPS58169960A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732714B2 (en) 2017-05-08 2020-08-04 Cirrus Logic, Inc. Integrated haptic system
US11259121B2 (en) 2017-07-21 2022-02-22 Cirrus Logic, Inc. Surface speaker
US10455339B2 (en) 2018-01-19 2019-10-22 Cirrus Logic, Inc. Always-on detection systems
US10620704B2 (en) 2018-01-19 2020-04-14 Cirrus Logic, Inc. Haptic output systems
US11139767B2 (en) 2018-03-22 2021-10-05 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10795443B2 (en) 2018-03-23 2020-10-06 Cirrus Logic, Inc. Methods and apparatus for driving a transducer
US10667051B2 (en) 2018-03-26 2020-05-26 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10820100B2 (en) 2018-03-26 2020-10-27 Cirrus Logic, Inc. Methods and apparatus for limiting the excursion of a transducer
US10832537B2 (en) 2018-04-04 2020-11-10 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11069206B2 (en) 2018-05-04 2021-07-20 Cirrus Logic, Inc. Methods and apparatus for outputting a haptic signal to a haptic transducer
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
GB201817495D0 (en) 2018-10-26 2018-12-12 Cirrus Logic Int Semiconductor Ltd A force sensing system and method
US11509292B2 (en) 2019-03-29 2022-11-22 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using least-mean-squares filter
US10726683B1 (en) 2019-03-29 2020-07-28 Cirrus Logic, Inc. Identifying mechanical impedance of an electromagnetic load using a two-tone stimulus
US10992297B2 (en) 2019-03-29 2021-04-27 Cirrus Logic, Inc. Device comprising force sensors
US10828672B2 (en) 2019-03-29 2020-11-10 Cirrus Logic, Inc. Driver circuitry
US20200313529A1 (en) 2019-03-29 2020-10-01 Cirrus Logic International Semiconductor Ltd. Methods and systems for estimating transducer parameters
US11644370B2 (en) 2019-03-29 2023-05-09 Cirrus Logic, Inc. Force sensing with an electromagnetic load
US11150733B2 (en) 2019-06-07 2021-10-19 Cirrus Logic, Inc. Methods and apparatuses for providing a haptic output signal to a haptic actuator
US10976825B2 (en) 2019-06-07 2021-04-13 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
US11408787B2 (en) 2019-10-15 2022-08-09 Cirrus Logic, Inc. Control methods for a force sensor system
US11380175B2 (en) 2019-10-24 2022-07-05 Cirrus Logic, Inc. Reproducibility of haptic waveform
US11545951B2 (en) 2019-12-06 2023-01-03 Cirrus Logic, Inc. Methods and systems for detecting and managing amplifier instability
US11552649B1 (en) 2021-12-03 2023-01-10 Cirrus Logic, Inc. Analog-to-digital converter-embedded fixed-phase variable gain amplifier stages for dual monitoring paths

Also Published As

Publication number Publication date
JPS6321351B2 (en) 1988-05-06

Similar Documents

Publication Publication Date Title
JPS58169960A (en) Integrated circuit containing capacity element
JP2655859B2 (en) Semiconductor storage device
JPS60213053A (en) Semiconductor memory element
US4261003A (en) Integrated circuit structures with full dielectric isolation and a novel method for fabrication thereof
JPH02208952A (en) Semiconductor device and its manufacture
JPS5856267B2 (en) Manufacturing method of semiconductor integrated circuit
JP3390704B2 (en) Ferroelectric nonvolatile memory
JPS58213460A (en) Semiconductor integrated circuit device
JPS59150465A (en) Semiconductor device and manufacture thereof
JPS6054472A (en) Semiconductor memory and manufacture thereof
JPS59188963A (en) Semiconductor device
JPS6113388B2 (en)
JPS63229744A (en) Semiconductor device
JPS5838939B2 (en) integrated circuit
JPH04361566A (en) Semiconductor integrated circuit
JPS59182558A (en) Semiconductor memory device
JP2990540B2 (en) Semiconductor device
JP3417482B2 (en) Method for manufacturing semiconductor device
JPH0529574A (en) Manufacture of semiconductor device
JPH04264766A (en) Manufacture of semiconductor device
JP2827377B2 (en) Semiconductor integrated circuit
JPH0624193B2 (en) Micro hole processing method
JPS5864069A (en) Semiconductor device and manufacture thereof
JPH02263461A (en) Manufacture of semiconductor integrated circuit device
JPS62113466A (en) Manufacture of semiconductor memory device