JPS59182558A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS59182558A
JPS59182558A JP58055065A JP5506583A JPS59182558A JP S59182558 A JPS59182558 A JP S59182558A JP 58055065 A JP58055065 A JP 58055065A JP 5506583 A JP5506583 A JP 5506583A JP S59182558 A JPS59182558 A JP S59182558A
Authority
JP
Japan
Prior art keywords
capacitor
layer
bit line
word line
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055065A
Other languages
Japanese (ja)
Inventor
Shinichiro Kimura
紳一郎 木村
Mitsunori Ketsusako
光紀 蕨迫
Masanobu Miyao
正信 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58055065A priority Critical patent/JPS59182558A/en
Publication of JPS59182558A publication Critical patent/JPS59182558A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate

Abstract

PURPOSE:To improve integration by means of vertically supplying a substrate with an electric charge by a method wherein, in a memory utilizing a memory cell comprising a single transistor and a single capacitor as minimum unit, a channel region pierced by a word line is provided on the part where the word line and a bit line intersect while one end and the other end are respectively abutted against an electric charge storing capacitor and a bit line. CONSTITUTION:A low resistance Si layer 32 to be a bit line is deposited on an insulating substrate 31 to form an Si layer 33 to be a channel region on the central part of the surface of the layer 32. Next the layer 33 is encircled by an insulating film 34 wherein a word line 35 is buried while a capacitor comprising a metal layer 36 to be one side electrode and a metal oxide film 37 with high permittivity is formed to coat the oxide film 37 with a metal grounding electrode 38. Through these procedures, a memory with integration much higher than a plane memory may be produced by means of vertically supplying the substrate 31 with electric charge being stored as memory.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体記憶装置に係り、特に高集積化に好適な
ダイナミック形メモリに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor memory device, and particularly to a dynamic memory suitable for high integration.

〔背景技術〕[Background technology]

従来の単一トランジスタおよび単一のキャパシタによっ
て構成されるダイナミック形メモリは、第1図に示すよ
うに、スイッチング用トランジスタと電荷蓄積用キャパ
シタが基板11上に平面的に作製されているために、集
積度の向りには限界がある。第1図において、図番号1
1は基板、12はMO8F’ETのゲート絶縁膜、13
は低抵抗拡散層、14はキャパシタ用絶縁膜、15はワ
ード線、16はビット線を表わしている。
In a conventional dynamic memory composed of a single transistor and a single capacitor, as shown in FIG. There are limits to the direction of integration. In Figure 1, figure number 1
1 is the substrate, 12 is the gate insulating film of MO8F'ET, 13
14 represents a low resistance diffusion layer, 14 represents a capacitor insulating film, 15 represents a word line, and 16 represents a bit line.

従来、集積度の向とは素子の寸法及び形状を一定の割合
で縮少することによって実現されてきたが、素子の微細
化による電荷蓄積容量の減少に伴い、様々な問題が現わ
れている。SN比の低下やα線によるソフトエラーなど
がその例である。このために電荷蓄積キャパシタ部はあ
まり小さくすることができず、高集積化の障害となって
いる。
Conventionally, increasing the degree of integration has been achieved by reducing the size and shape of devices at a certain rate, but various problems have emerged as the charge storage capacity decreases due to miniaturization of devices. Examples include a decrease in the signal-to-noise ratio and soft errors caused by alpha rays. For this reason, the charge storage capacitor section cannot be made very small, which is an obstacle to high integration.

丘述した問題に対するひとつの解決手段として、電荷を
基板に対して平行にではなく、垂直に如し、素子の占め
る面積を小さくする考えがある。第2図のようなSI 
’J’ (Static InductionTran
sistorl 構造である(例えば特許公報:昭57
−355911゜この素子では、電荷は基板の底面に設
けたソース電極23からドレイン電極27に向かって基
板21に垂直に流れるため、平面的な構造に比べて素子
の縮少が可能である。ここで、22はゲート部の接合、
24はゲート電極、25は絶縁物、26はドレイン部の
接合である。この構造を用いると、チャネル領域の寸法
は基板の加工精度を向とさせることで縮少可能であシ高
集積化に適している。しかし、ゲート電極24に接する
接合部22を基板内部に埋め込むプロセスなど、製造に
おいて複雑な過程を必要とする。
One solution to the above-mentioned problem is to reduce the area occupied by the device by directing the charge perpendicular to the substrate rather than parallel to it. SI as shown in Figure 2
'J' (Static Induction Tran
sistorl structure (for example, Patent Publication: 1983)
-355911° In this device, since charges flow perpendicularly to the substrate 21 from the source electrode 23 provided on the bottom surface of the substrate toward the drain electrode 27, the device can be reduced in size compared to a planar structure. Here, 22 is the junction of the gate part,
24 is a gate electrode, 25 is an insulator, and 26 is a drain junction. When this structure is used, the dimensions of the channel region can be reduced by improving the processing accuracy of the substrate, making it suitable for high integration. However, complicated manufacturing steps are required, such as a process for embedding the bonding portion 22 in contact with the gate electrode 24 inside the substrate.

〔発明の目的〕[Purpose of the invention]

本光明の目的は、半導体記憶装置において、記憶として
蓄えられる電荷を基板に垂直に流すことによって素子の
面積を縮少し、集積度を向上させることにある。
The purpose of the present invention is to reduce the area of the element and improve the degree of integration in a semiconductor memory device by causing charges stored as memory to flow perpendicularly to the substrate.

〔発明の、概要〕[Summary of the invention]

本発明におけるメモリセルの特徴は、第3図に示したよ
うに、ワード線とピッhaの交点部に、ワード線を貫通
するようにチャネル部を設け、電荷を基板に対して垂直
に流すことによって素子の占める面積を小さくすること
にある。また、素子の微細化による蓄積電荷量の減少を
防ぐために、キャパシタの誘改体に誘電率の大きな金属
酸化物を用いた点にも特徴がある。
The feature of the memory cell according to the present invention is that, as shown in FIG. 3, a channel portion is provided at the intersection of the word line and the pitch so as to penetrate the word line, so that charges flow perpendicularly to the substrate. The objective is to reduce the area occupied by the element. Another feature is that a metal oxide with a high dielectric constant is used as the dielectric material of the capacitor in order to prevent the amount of stored charge from decreasing due to miniaturization of the device.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の実施例を示すものである。゛ここで、
半導体メモリセルは、絶縁性基板31hに形成したビッ
ト線となる低抵抗5i32と、32のSiの上にエピタ
キシャル成長させたチャネルとなるS工33、および、
その上に形成されたキャパシタ36,37.38よυ構
成される。キャパシタはワード線35と絶縁分離する絶
縁膜34上に形成され、その一端は絶縁膜の開口部でS
i層と接している。キャパシタの誘鴫体には、キャパシ
タの一方の電極となる金属36の表面を酸化したもの3
7、若しくは、金属層の上に堆積させた酸化膜を用いる
。38はキャパシタの他方の成極でありアース電位とな
っている。
FIG. 3 shows an embodiment of the invention.゛Here,
The semiconductor memory cell includes a low resistance 5i 32 formed on an insulating substrate 31h to serve as a bit line, an S layer 33 epitaxially grown on Si 32 to serve as a channel, and
The capacitors 36, 37, and 38 are formed thereon. The capacitor is formed on an insulating film 34 that is insulated from the word line 35, and one end of the capacitor is connected to S at the opening of the insulating film.
It is in contact with the i layer. The dielectric material of the capacitor is a material obtained by oxidizing the surface of the metal 36 that becomes one electrode of the capacitor.
7, or using an oxide film deposited on top of the metal layer. 38 is the other polarization of the capacitor and is at ground potential.

次に第4図を用いて第3図に示す半導体装置の作製例を
示す。
Next, an example of manufacturing the semiconductor device shown in FIG. 3 will be shown using FIG. 4.

まず、第4図(a)に示すように、単結晶アルミナ基板
などの絶縁性単結晶基板41上にビット線となる低抵抗
n形5i42をエピタキシャル成長させる。絶縁性基板
からSi層への不純物のオートドーピングを回避したい
時には、単結晶SI基板の内部に酸素原子イオンを打ち
込んで基板の内部に絶縁膜層を形成した、公知のSIM
OX基板を用い、絶縁膜層の上の単結晶Siを低抵抗化
させたものでも良い。次に第4図(b)に示すようにレ
ジスト43を塗布しビット線となる部分のみを残して低
抵抗Si層をエツチングする。さらに、第4図(C)に
示すように、レジスト43を残したままスノくツタ法な
どの低温蒸着法を用いて5jChなどの絶縁膜44を低
抵抗Si層42の膜厚程度の厚さで堆積させる。絶縁膜
44形成後、酸素プラズマ中でレジストを灰化させ、レ
ジスト上の絶縁1漢のみを除去する。さらに、それを酸
素雰囲気中にさらし露出したビット線42の表面を酸化
し第4図(d)のような構造を作る。以上の過程でビッ
ト線は酸化1i帷中に埋めこまれ表面はほぼ平坦となる
。次に、ビット線に接しかつチャネルとなるべき単結晶
Si層を形成するために、ビット線上の酸化膜を一部分
除去し、第4図(e)に示すように選択的にSi層45
をエピタキシャル成長させる。図面を簡略化するために
、以下では第4図(e)に示した構造においてABCD
で切断した断面のみを示す。選択的にエピタキシャル成
長させた後、MO8F’ETの。
First, as shown in FIG. 4(a), a low-resistance n-type 5i 42 that will become a bit line is epitaxially grown on an insulating single-crystal substrate 41 such as a single-crystal alumina substrate. When it is desired to avoid auto-doping of impurities from an insulating substrate to a Si layer, a known SIM is used in which oxygen atom ions are implanted into a single crystal SI substrate to form an insulating film layer inside the substrate.
It is also possible to use an OX substrate and lower the resistance of single crystal Si on the insulating film layer. Next, as shown in FIG. 4(b), a resist 43 is applied and the low resistance Si layer is etched, leaving only the portion that will become the bit line. Furthermore, as shown in FIG. 4(C), an insulating film 44 such as 5jCh is formed to a thickness approximately equal to that of the low resistance Si layer 42 using a low-temperature evaporation method such as the snow ivy method while leaving the resist 43. Deposit with. After forming the insulating film 44, the resist is ashed in oxygen plasma, and only one layer of the insulating film on the resist is removed. Further, it is exposed to an oxygen atmosphere to oxidize the exposed surface of the bit line 42 to form a structure as shown in FIG. 4(d). In the above process, the bit line is buried in the oxide layer 1i, and the surface becomes almost flat. Next, in order to form a single crystal Si layer in contact with the bit line and to serve as a channel, a portion of the oxide film on the bit line is removed, and the Si layer 45 is selectively removed as shown in FIG. 4(e).
grown epitaxially. To simplify the drawing, in the structure shown in FIG. 4(e), ABCD
Only the cross section cut at is shown. After selective epitaxial growth of MO8F'ET.

ゲート絶縁膜を形成するために高温の酸系雰囲気でSi
層45の表面を薄く酸化する。これを示したのが第4図
(f)の44′である。次に、電荷蓄積用キャパシタの
一方の電極となる金属層とのオーム接触を取シやすくす
るために、第4図(g)の46に示すように酸化膜を通
して不純物をイオン打ち込みし、一部分を低抵抗化する
。以上の手順で作られた突出部を覆うようにMO8F’
ETのワード線となる金属層47を被着させる。これを
示したのが第4図(h)である。この時、突出部の側壁
とワード線との被着性を良くするために、金属層は低圧
CDD法などのステップカバレジの良い方法を用いる。
Si is grown in a high temperature acidic atmosphere to form a gate insulating film.
The surface of layer 45 is lightly oxidized. This is shown at 44' in FIG. 4(f). Next, in order to facilitate ohmic contact with the metal layer that will become one electrode of the charge storage capacitor, impurity ions are implanted through the oxide film as shown at 46 in FIG. Lower resistance. MO8F' to cover the protrusion made in the above steps.
A metal layer 47 is deposited which will become the word line of the ET. This is shown in FIG. 4(h). At this time, in order to improve adhesion between the side wall of the protrusion and the word line, a method with good step coverage, such as a low-pressure CDD method, is used to form the metal layer.

段差部に被着させた膜を異方性エツチングが可能なドラ
イエッチ法でエツチングすると、一般に、段差部の側壁
に被着した部分が残ってしまう。この現象を利用し、第
4図(i)に示すように、突出部を囲むワード@47を
形成する。次にこの上に、2g4図(j)に示すように
、8102などのI―間聞納喚48を公知のバイアスス
パッタ法などを用いて被着させ、表面の平坦化を行う。
When a film deposited on a stepped portion is etched using a dry etching method capable of anisotropic etching, the portion deposited on the side wall of the stepped portion generally remains. Utilizing this phenomenon, a word @47 surrounding the protrusion is formed as shown in FIG. 4(i). Next, as shown in FIG. 2G4 (j), an I-interlayer 48 such as 8102 is deposited using a known bias sputtering method or the like to flatten the surface.

さらに、一部に穴を開け、低抵抗Si層46を露出させ
る。
Furthermore, a hole is made in a part to expose the low resistance Si layer 46.

次に第4図(k)に示すように、その酸化物の′、Tf
j’cIt率が大きい、例えばタンタル、ニオブ、チタ
ンハフニウムなど゛の金属49を蒸着し、低抵抗3i層
とオーミンクな接、触を取りキャパシタの一方の電極と
なるようにパターニングを行う。この金属層の表面を公
知の陽極酸化法などを用いて薄く酸化し、第4図(/り
に示すように電荷蓄積用キャパシタの誘電体50とする
。さらに、第4図(ホ)に示すように基板全面にキャパ
シタの他方の電極となる金属51を蒸着する。
Next, as shown in FIG. 4(k), the oxide', Tf
A metal 49 having a high j'cIt rate, such as tantalum, niobium, or titanium hafnium, is deposited and patterned so that it comes into ohmic contact with the low resistance layer 3i and forms one electrode of the capacitor. The surface of this metal layer is thinly oxidized using a known anodic oxidation method to form a dielectric material 50 of a charge storage capacitor as shown in FIG. A metal 51, which will become the other electrode of the capacitor, is deposited over the entire surface of the substrate.

また本実施例では金属49を用いたが、この金属49の
かわりに多結晶Si等を用い、誘成体絶縁膜50をスパ
ッタ法や陽極酸化法等で被着することもできる。
Furthermore, although the metal 49 is used in this embodiment, polycrystalline Si or the like may be used instead of the metal 49, and the dielectric insulating film 50 may be deposited by a sputtering method, an anodic oxidation method, or the like.

〔発明の効果〕〔Effect of the invention〕

本発明で述べた半導体装置を用いれば、第1図に示した
平面的なメモリに比べて、はるかに集積密度の高いメモ
リを作ることが可能である。1だ、ワード線がチャネル
となる突出したSi層の外周を覆っているために、チャ
ネル巾とチャネル長の実効的な比率を大きくでき、ひい
てはMO8F’ETの特性向上に大きな効果がある。ま
た、l戎荷蓄積用キャパシタが最上階に位置しているた
め、α粒子の入射によるソフトエラーも起こりにくい。
By using the semiconductor device described in the present invention, it is possible to create a memory with a much higher integration density than the planar memory shown in FIG. 1. Since the word line covers the outer periphery of the protruding Si layer that becomes the channel, the effective ratio of channel width to channel length can be increased, which has a great effect on improving the characteristics of MO8F'ET. Furthermore, since the capacitor for storing the load is located on the top floor, soft errors due to incidence of α particles are less likely to occur.

かつ、電荷蓄潰用キャパシタの誘電体としてメンタル酸
化物などの高誘電率材料を用いているために、小面積で
も蓄積電荷量の大きなキャパシタが得られる。
Furthermore, since a high dielectric constant material such as mental oxide is used as the dielectric of the charge storage capacitor, a capacitor with a large amount of stored charge can be obtained even with a small area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の平面形ダイナミックメモリの断面図、
第2図は、電荷を基板に対して垂直に流す静電誘導形ト
ランジスタの断面図、第3図は、本発明のメモリセルを
表わす断面図をそれぞれ爪体棹体、34・・・層間、絶
縁膜、35・・・ワード線、36・・・金属、37・・
・金属36の酸化膜、37・・・金χ 4 (α) 孕1 (b) (h)   47
Figure 1 is a cross-sectional view of a conventional planar dynamic memory.
FIG. 2 is a cross-sectional view of an electrostatic induction transistor that allows charges to flow perpendicularly to the substrate, and FIG. 3 is a cross-sectional view showing a memory cell of the present invention. Insulating film, 35... Word line, 36... Metal, 37...
・Oxide film of metal 36, 37... Gold χ 4 (α) Pregnancy 1 (b) (h) 47

Claims (1)

【特許請求の範囲】 1、単一のトランジスタおよび単一のキャパシタよシ構
成されるメモリセルを最小単位とする半導体記憶装置に
おいて、ワード線とビット線の交差する部分でワード線
を直通ずるようにチャネル領域を有し、該チャネル領域
の一端は電荷蓄積用キャパシタに接し、他端はビット線
に接する構造となしたことを特徴とする半導体記憶装置
。 2、単一のトランジスタおよび単一のキャパシタより構
成される半導体記憶装置において、ビット線は絶縁性基
板トに形成した単結晶シリコンを用いることを特徴とす
る特許請求の範囲第1項記載の半導体記憶装置。 3、単一のトランジスタおよび単一のキャパシタより構
成される半導体記憶装置において、比透電率が4以上の
金属酸化物を電荷蓄積容量用の誘電体として用いること
を特徴とする特許請求の範囲第1項記載の半導体記憶装
置。 4、 単一のトランジスタおよび単一のキャパシタよシ
構成される半導体記憶装置において、電荷蓄積容量部は
、ビット線およびワード線のとに積層されることを特徴
とする特許請求の範囲第1項記載の半導体記憶装置。
[Claims] 1. In a semiconductor memory device whose minimum unit is a memory cell composed of a single transistor and a single capacitor, the word line is connected directly to the bit line at the intersection of the word line and the bit line. 1. A semiconductor memory device comprising a channel region, one end of which is in contact with a charge storage capacitor, and the other end of which is in contact with a bit line. 2. In a semiconductor memory device composed of a single transistor and a single capacitor, the semiconductor according to claim 1, wherein the bit line is made of single crystal silicon formed on an insulating substrate. Storage device. 3. Claims characterized in that in a semiconductor memory device composed of a single transistor and a single capacitor, a metal oxide with a relative conductivity of 4 or more is used as a dielectric for a charge storage capacitor. 2. The semiconductor memory device according to item 1. 4. Claim 1, characterized in that in a semiconductor memory device configured with a single transistor and a single capacitor, the charge storage capacitor section is stacked on both a bit line and a word line. The semiconductor storage device described above.
JP58055065A 1983-04-01 1983-04-01 Semiconductor memory device Pending JPS59182558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055065A JPS59182558A (en) 1983-04-01 1983-04-01 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055065A JPS59182558A (en) 1983-04-01 1983-04-01 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS59182558A true JPS59182558A (en) 1984-10-17

Family

ID=12988281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055065A Pending JPS59182558A (en) 1983-04-01 1983-04-01 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS59182558A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057896A (en) * 1988-05-28 1991-10-15 Fujitsu Limited Semiconductor device and method of producing same
JPH0555504A (en) * 1991-08-29 1993-03-05 Mitsubishi Electric Corp Semiconductor memory device
US5466961A (en) * 1991-04-23 1995-11-14 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195742A (en) * 1975-02-20 1976-08-21
JPS55132063A (en) * 1979-04-02 1980-10-14 Pioneer Electronic Corp Semiconductor memory device
JPS57103350A (en) * 1980-12-18 1982-06-26 Mitsubishi Electric Corp Manufacture of semiconductor memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195742A (en) * 1975-02-20 1976-08-21
JPS55132063A (en) * 1979-04-02 1980-10-14 Pioneer Electronic Corp Semiconductor memory device
JPS57103350A (en) * 1980-12-18 1982-06-26 Mitsubishi Electric Corp Manufacture of semiconductor memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057896A (en) * 1988-05-28 1991-10-15 Fujitsu Limited Semiconductor device and method of producing same
US5466961A (en) * 1991-04-23 1995-11-14 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6373099B1 (en) 1991-04-23 2002-04-16 Canon Kabushiki Kaisha Method of manufacturing a surrounding gate type MOFSET
JPH0555504A (en) * 1991-08-29 1993-03-05 Mitsubishi Electric Corp Semiconductor memory device

Similar Documents

Publication Publication Date Title
US4742018A (en) Process for producing memory cell having stacked capacitor
JP2655859B2 (en) Semiconductor storage device
JP3123073B2 (en) Method for manufacturing semiconductor memory device
JPH03209868A (en) Manufacture of ic capacitor and semiconductor ic device
JPH0345550B2 (en)
US5240558A (en) Method for forming a semiconductor device
JP3229665B2 (en) Method of manufacturing MOSFET
JPS6321351B2 (en)
JP2001267514A (en) Transistor type ferroelectric nonvolatile memory element
JPS6187358A (en) Semiconductor memory and manufacture thereof
US4954927A (en) Double capacitor and manufacturing method thereof
JPH03256358A (en) Semiconductor memory device and manufacturing method
JPH03789B2 (en)
JP3421230B2 (en) Semiconductor storage device and method of manufacturing the same
JPS59182558A (en) Semiconductor memory device
JPH0738066A (en) Junction field dynamic ram and preparation thereof
JPH04287366A (en) Semiconductor integrated circuit device and its manufacture
US4987091A (en) Process of fabricating dynamic random access memory cell
JPH06120446A (en) Semiconductor storage device and manufacture thereof
JPH0575059A (en) Semiconductor storage device and its manufacture
JPH0795566B2 (en) Semiconductor memory device
JPS63226955A (en) Manufacture of capacitive element
JPS6054472A (en) Semiconductor memory and manufacture thereof
JPS5838939B2 (en) integrated circuit
JPS59110154A (en) Semiconductor memory cell