JPH03256358A - Semiconductor memory device and manufacturing method - Google Patents

Semiconductor memory device and manufacturing method

Info

Publication number
JPH03256358A
JPH03256358A JP2054533A JP5453390A JPH03256358A JP H03256358 A JPH03256358 A JP H03256358A JP 2054533 A JP2054533 A JP 2054533A JP 5453390 A JP5453390 A JP 5453390A JP H03256358 A JPH03256358 A JP H03256358A
Authority
JP
Japan
Prior art keywords
semiconductor memory
memory device
manufacturing
lower electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2054533A
Other languages
Japanese (ja)
Other versions
JP2898686B2 (en
Inventor
Kazunari Torii
鳥居 和功
Toru Kaga
徹 加賀
Eiji Takeda
英次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2054533A priority Critical patent/JP2898686B2/en
Publication of JPH03256358A publication Critical patent/JPH03256358A/en
Application granted granted Critical
Publication of JP2898686B2 publication Critical patent/JP2898686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fine memory cell which uses a thin ferroelectric film for accumulated electrodes by covering an offset induced by a separation oxide layer between a word line, a bit line and components with an insulation material so as to make the surface flat and then forming an accumulated capacity section which uses the ferroelectric thin film on the flattened surface. CONSTITUTION:An accumulated capacity section is not directly formed on an offset induced by a separation oxide layer 2 between a word line 4, a bit line 8 and components, but the capacity section, which comprises a lower part of electrode, a thin ferroelectric film 15 and a plate electrode 16, is formed on a flattened surface covered with an insulation film 12 after having formed a switching transistor and the bit line 8.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置およびその製造方法に係り、特に
、電荷蓄積容量の絶縁膜として強誘電体キャパシタを用
いた半導体記憶装置およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular, a semiconductor memory device using a ferroelectric capacitor as an insulating film of a charge storage capacitor and a method for manufacturing the same. Regarding.

[従来の技術] 従来の強誘電体キャパシタを用いたメモリについては、
アイ・ニス・ニス・シー・シー・89(1989年)第
242〜243頁(I S S CC89,1989゜
pp、 242−243 )に論じられている。
[Prior art] Regarding memories using conventional ferroelectric capacitors,
ISS CC 89, 1989, pp. 242-243.

〔発明が解決しようとする課題] 上記従来技術では、加工寸法が3μm1セルサイズが1
lX21μm3と大きく、強誘電体キャパシタはゲート
電極上の平坦な部分に形成されている。
[Problem to be solved by the invention] In the above conventional technology, the processing size is 3 μm, 1 cell size is 1
The ferroelectric capacitor is as large as 1×21 μm3 and is formed on a flat portion on the gate electrode.

一方、DRAM (ダイナミック ランダムアクセスメ
モリ(Dynamic Random Access 
Memory))では3年で4倍のペースで高集積化を
実現してきており、既にメガビットメモリの量産が始ま
っている。この高集積化は主に素子の微細化によって行
われてきた。しかし、微細化に伴う蓄積容量の減少のた
めに信号対雑音(SN)比の低下や、α線の入射による
信号反転等の弊害が顕在化し、信頼性の確保が大きな問
題となっている。
On the other hand, DRAM (Dynamic Random Access Memory)
Memory) has been achieving high integration at a rate of four times in three years, and mass production of megabit memory has already begun. This high degree of integration has been achieved mainly by miniaturizing elements. However, due to the reduction in storage capacity accompanying miniaturization, adverse effects such as a reduction in the signal-to-noise (SN) ratio and signal inversion due to the incidence of alpha rays have become apparent, and ensuring reliability has become a major problem.

このため、従来の基板表面のみを蓄積容量として利用す
る平面型のセルに変わって、特公昭61−55528号
公報に記載されているような、蓄積容量の一部をスイッ
チ用トランジスタや素子間分離酸化膜の1に積み上げた
積層容量型セル(ST(、:スタックトキャパシタ(S
 Tacked Capacitor))が用いられて
いる。
For this reason, instead of the conventional planar cell that uses only the surface of the substrate as a storage capacitor, a part of the storage capacitance can be used as a switching transistor or separated between elements as described in Japanese Patent Publication No. 61-55528. A stacked capacitor cell (ST) stacked on the oxide film 1
Tacked Capacitor)) is used.

さらに、微細なセル面積を実現するためのSTC構造と
して、実開昭55−178894号公報に述べられてい
るものや、アイ・ニス・デイ・エム・88 (1988
年)第596〜599頁(I S DM88.1988
゜pp、596−599)に述べられているものがある
Furthermore, as an STC structure for realizing a fine cell area, there are those described in Japanese Utility Model Application Publication No. 55-178894, and the one described in I. Niss.DM.88 (1988
) pp. 596-599 (IS DM88.1988
(pp. 596-599).

第2図、第3図は、それぞれの平面レイアウトを示した
ものである。これらSTC構造ではビット線を蓄積電極
よりも先に形成するため、蓄積容量の面積を大きく取る
ことができる。反面、蓄積容量の絶縁膜を、ワード線、
ビット線、素子間分離酸化膜などによる段差上に形成す
ることになる。
FIGS. 2 and 3 show respective planar layouts. In these STC structures, the bit line is formed before the storage electrode, so the area of the storage capacitor can be increased. On the other hand, the insulating film of the storage capacitor is
It is formed on a step formed by a bit line, an isolation oxide film between elements, or the like.

ところが、強誘電体薄膜は、このような段差上に形成す
ることは困難であり、このため、強誘電体を蓄積容量の
絶縁膜に用いて超高集積メモリを実現することは、非常
に困難である。
However, it is difficult to form a ferroelectric thin film on such a step, and for this reason, it is extremely difficult to realize an ultra-highly integrated memory using a ferroelectric as an insulating film for a storage capacitor. It is.

本発明の目的は、強誘電体薄膜を用いたSTC型超型巣
高集積メモリ供することにある。
An object of the present invention is to provide an STC type super-high density integrated memory using a ferroelectric thin film.

[課題を解決するための手段1 ワード線、ビット線、素子間分離酸化膜などによる段差
を絶縁物質で覆うことにより平坦化し、その後、この平
坦面上に、強誘電体薄膜を用いた蓄積容量部を形成する
ことを要旨とする。
[Means for solving the problem 1: Level differences caused by word lines, bit lines, element isolation oxide films, etc. are flattened by covering them with an insulating material, and then a storage capacitor using a ferroelectric thin film is formed on this flat surface. The gist is to form a section.

すなわち、本発明の半導体記憶装置の製造方法は、1つ
のスイッチ用トランジスタと、1つの電荷蓄積容量を有
するメモリセルを含んでなり、かつ、上記電荷蓄積容量
の誘電体膜として強誘電体物質を用いた半導体記憶装置
の製造方法において、上記スイッチ用トランジスタを形
成した半導体基板上を絶縁物質で覆って、下地段差を平
坦化する工程と、その後、上記絶縁物質にコンタクトホ
ルを穿設する工程と、その後、上記コンタクトホール内
部を導電物質で埋め込む工程と、その後、上記平坦表面
上に下部電極を形成する工程と、その後、上記下部電極
上に強誘電体膜を形成する工程とを含むことを特徴とす
る。
That is, the method for manufacturing a semiconductor memory device of the present invention includes a memory cell having one switching transistor and one charge storage capacitor, and a ferroelectric material is used as a dielectric film of the charge storage capacitor. The method for manufacturing the semiconductor memory device used includes the steps of: covering the semiconductor substrate on which the switch transistor is formed with an insulating material and flattening the underlying step; and then, forming a contact hole in the insulating material. , then, the step of filling the inside of the contact hole with a conductive material, the step of forming a lower electrode on the flat surface, and the step of forming a ferroelectric film on the lower electrode. Features.

また、本発明の半導体記憶装置は、1つのスイッチ用ト
ランジスタと、1つの電荷蓄積容量を有するメモリセル
を含んでなり、かつ、上記電荷蓄積容量の絶縁膜として
強誘電体物質を用いた半導体記憶装置において、上記ス
イッチ用トランジスタが形成された半導体基板上を覆い
下地段差を平坦化する絶縁物質と、該平坦表面上に形成
された下部電極と強誘電体膜を有することを特徴とする
Further, the semiconductor memory device of the present invention includes a memory cell having one switching transistor and one charge storage capacitor, and uses a ferroelectric material as an insulating film of the charge storage capacitor. The device is characterized by comprising an insulating material covering the semiconductor substrate on which the switching transistor is formed and flattening the underlying step, and a lower electrode and a ferroelectric film formed on the flat surface.

〔作用〕[Effect]

本発明の半導体記憶装置では、蓄積電極部を平坦面に形
成することにより、強誘電体薄膜を蓄積電極部に用いた
微細なメモリセルを実現できる。
In the semiconductor memory device of the present invention, by forming the storage electrode portion on a flat surface, a fine memory cell using a ferroelectric thin film in the storage electrode portion can be realized.

また、本発明の半導体記憶装置の製造方法では、強誘電
体薄膜を蓄積電極部に用いた微細なメモリヒルを実現で
きると共に、下部電極も平坦面上に形成することになる
ので、スパッタ法などの段差被覆性の低い方法を用いて
も容易に形成できる。
Furthermore, in the method for manufacturing a semiconductor memory device of the present invention, it is possible to realize a fine memory hill using a ferroelectric thin film for the storage electrode part, and the lower electrode is also formed on a flat surface, so it is possible to use a method such as sputtering. It can be easily formed using a method that provides low step coverage.

また、強誘電体薄膜の形成を、スイッチ用トランジスタ
の形成と切り離して行うことができるので、S1界面損
傷等の問題を回避できる。
Further, since the formation of the ferroelectric thin film can be performed separately from the formation of the switching transistor, problems such as damage to the S1 interface can be avoided.

なお、本発明の構造は、強誘電体の分極を反転させない
DRAMにも、分極を反転させる不揮発性のメモリにも
用いることが可能である。
Note that the structure of the present invention can be used for both a DRAM in which the polarization of a ferroelectric material is not inverted, and a nonvolatile memory in which the polarization is inverted.

[実施例] 実施例1 第1図は、本発明の第1の実施例のSTC型メモリの断
面図である。1は第1導電型半導体基板、2は素子間分
離酸化膜、3はゲート酸化膜、4はワード線、5.7.
9、loは層間絶縁膜、6は第2導電型不純物拡散眉、
8はビット線、12は平坦化用絶縁膜、11.13はメ
モリ部コンタクトプラグ、14は下部電極、15は強誘
電体薄膜、16はプレート電極である。
[Example] Example 1 FIG. 1 is a sectional view of an STC type memory according to a first example of the present invention. 1 is a first conductive type semiconductor substrate, 2 is an element isolation oxide film, 3 is a gate oxide film, 4 is a word line, 5.7.
9, lo is an interlayer insulating film, 6 is a second conductivity type impurity diffusion layer,
8 is a bit line, 12 is a flattening insulating film, 11 and 13 are memory contact plugs, 14 is a lower electrode, 15 is a ferroelectric thin film, and 16 is a plate electrode.

本実施例でのビット線形成までの工程は、従来と何ら変
わるところはない。本実施例では、従来のようにワード
線4、ビット線8、素子間分離酸化JI!2などによる
段差上に直接、蓄積容量部を形成するのではなく、スイ
ッチ用トランジスタおよび、ビット線8を形成した後、
絶縁膜12で覆って平坦化した上に、蓄積容量部(下部
電極14、強誘電体薄膜15、プレート電極16)を形
成した構造を用いる。この断面図では、ソース・ドレイ
ンは、単純な不純物拡散層構造となっているが、公知の
電界緩和型のソース・ドレイン不純物拡散層構造にする
ことも可能である。なお、プレート電極15の上に図示
しない層間絶縁膜を形成し、A1などが配線されるが、
ここでは省略しである。
The steps up to bit line formation in this embodiment are no different from the conventional process. In this embodiment, word line 4, bit line 8, element isolation oxidation JI! After forming the switching transistor and the bit line 8 instead of directly forming the storage capacitor section on the step such as 2,
A structure is used in which a storage capacitor section (lower electrode 14, ferroelectric thin film 15, plate electrode 16) is formed on the insulating film 12 covered and planarized. In this cross-sectional view, the source/drain has a simple impurity diffusion layer structure, but it is also possible to use a known electric field relaxation type source/drain impurity diffusion layer structure. Note that an interlayer insulating film (not shown) is formed on the plate electrode 15, and A1 etc. are wired.
It is omitted here.

実施例 2 本実施例では、第2図に示した平面レイアウトを用いた
。21はスイッチ用トランジスタのチャネル領域や不純
物拡散層が作られるアクティブ領域、4はスイッチ用ト
ランジスタのゲート電極となるワード線、23はビット
線8と基板の拡散層を接触させるためのコンタクト孔、
25は蓄積容量下部電極と拡散層を接続するためのメモ
リ部コンタクト孔、8はビット線である。判り易くする
ため、メモリ部コンタクト孔25の上に配置される蓄積
容量下部電極や、プレート電極は省略しである。
Example 2 In this example, the planar layout shown in FIG. 2 was used. 21 is an active region where a channel region and an impurity diffusion layer of a switching transistor are formed; 4 is a word line serving as a gate electrode of the switching transistor; 23 is a contact hole for bringing the bit line 8 into contact with the diffusion layer of the substrate;
25 is a memory part contact hole for connecting the storage capacitor lower electrode and the diffusion layer, and 8 is a bit line. For clarity, the storage capacitor lower electrode and plate electrode disposed above the memory part contact hole 25 are omitted.

まず、第4図(2)に示したように、スイッチ用−トラ
ンジスタを公知のMO3FET形成工程により形成する
。ここで、1は第1導電型半導体基板、2は素子間分離
絶縁膜、3はゲート酸化膜、4はワード線、5は層間絶
縁膜、6は第2導電型不純物拡散層(例えば、n型の場
合、ヒ素、リン等)である。
First, as shown in FIG. 4(2), a switch transistor is formed by a known MO3FET forming process. Here, 1 is a first conductivity type semiconductor substrate, 2 is an element isolation insulating film, 3 is a gate oxide film, 4 is a word line, 5 is an interlayer insulating film, and 6 is a second conductivity type impurity diffusion layer (for example, n type, arsenic, phosphorus, etc.).

次に、第4図(b )のように、表面全体に公知のCV
D法を用いて絶縁膜41を堆積させ、ビット線が基板の
拡散層と接触する部分のみ、公知のホトリソグラフィ法
とドライエツチング法を用いて開口する。この絶縁膜は
、次の工程でビット線を加工する際の下地となり、基板
表面が露出したり、素子間分離絶縁膜が削られるのを防
ぐ働きがある。膜厚はビット線加工時の下地との選択比
で決まる。本実施例では、20〜1100nとした。
Next, as shown in FIG. 4(b), a known CV is applied to the entire surface.
An insulating film 41 is deposited using the D method, and an opening is made using known photolithography and dry etching methods only in the portion where the bit line contacts the diffusion layer of the substrate. This insulating film serves as a base for processing bit lines in the next step, and serves to prevent the substrate surface from being exposed and the element isolation insulating film from being scraped. The film thickness is determined by the selection ratio with respect to the underlying layer during bit line processing. In this example, it was set to 20 to 1100n.

次に、第4図(C)のようにビット線8を形成する。ビ
ット線の材料としては、金属のシリサイドと多結晶シリ
コンの積層膜やタングステンを用いた。この上に、BP
SGなどのシリコン酸化膜系の絶縁膜12をCVD法等
により堆積させ、平坦化する。この絶縁膜は、下の段差
を埋めて平坦化するのに十分な膜厚とする必要がある。
Next, bit lines 8 are formed as shown in FIG. 4(C). A laminated film of metal silicide and polycrystalline silicon or tungsten was used as the material for the bit line. On top of this, BP
A silicon oxide film-based insulating film 12 such as SG is deposited by CVD or the like and planarized. This insulating film needs to be thick enough to fill in the level difference underneath and flatten it.

本実施例では、膜厚を500〜11000nとした。な
お、段差上にCVD法により5102を堆積し、エッチ
バック法により平坦化する方法を用いても良い。
In this example, the film thickness was set to 500 to 11000 nm. Note that a method may be used in which 5102 is deposited on the step by a CVD method and planarized by an etch-back method.

次に、第4図(d)のように公知のホトリソグラフィ法
とドライエツチング法を用いて蓄積容量部が基板と接触
するメモリ部コンタクト孔42を開口する。このコンタ
クト孔を導電性物質43で埋める。本実施例では、公知
のCVD法を用いて多結晶シリコンを選択的に成長させ
た後、不純物拡散層と同じ導電型の不純物−を拡散する
方法を用いたが、タングステンを用いても良い。
Next, as shown in FIG. 4(d), a memory part contact hole 42, through which the storage capacitance part comes into contact with the substrate, is opened using a known photolithography method and dry etching method. This contact hole is filled with a conductive material 43. In this embodiment, a method was used in which polycrystalline silicon was selectively grown using a known CVD method and then an impurity of the same conductivity type as the impurity diffusion layer was diffused, but tungsten may also be used.

次に、第4図(e)のように下部電極14を形成する。Next, the lower electrode 14 is formed as shown in FIG. 4(e).

本実施例では、DCスパッタ法を用いて厚さ約1ooo
AのPt膜を被着した。フォトレジストをマスクに用い
たスパッタエツチング法によりパターンニングした後、
この表面に強誘電体薄膜15を形成する。本実施例では
、高周波マグネトロンスパッタ法により、厚さ約50n
mのPbTiO2を形成したが、強誘電体膜としてはP
 b (Z rxT 1 +−x)03等を用いてもよ
い。また、強誘電体膜の形成方法としては、公知のゾル
−ゲル法やCVD法、MOCVD法等を用いてもよい。
In this example, a thickness of approximately 100 mm was obtained using the DC sputtering method.
A Pt film was deposited. After patterning by sputter etching using photoresist as a mask,
A ferroelectric thin film 15 is formed on this surface. In this example, a thickness of approximately 50 nm was obtained by high-frequency magnetron sputtering.
m of PbTiO2 was formed, but as a ferroelectric film, PbTiO2 was formed.
b (Z rxT 1 +−x)03 or the like may be used. Further, as a method for forming the ferroelectric film, a known sol-gel method, CVD method, MOCVD method, or the like may be used.

次に、プレート電極16を被着し、メモリセルの蓄積容
量部を完成させる。最後に、層間絶縁膜を形成し、その
上にAl配線を作り、メモリセルを完成する。
Next, a plate electrode 16 is deposited to complete the storage capacitor portion of the memory cell. Finally, an interlayer insulating film is formed and Al wiring is formed on it to complete the memory cell.

実施例3 本実施例では、第3図に示した平面レイアウトを用いた
。ここで、31はスイッチ用トランジスタのチャネル領
域や不純物拡散層が作られるアクティブ領域であり、4
はスイッチ用トランジスタのゲート電極となるワード線
、33はビット線8と基板の拡散層を接触させるための
コンタクト孔、35は蓄積容量下部電極14と拡散層を
接続するためのメモリ部コンタクト孔、16はプレート
電極である。
Example 3 In this example, the planar layout shown in FIG. 3 was used. Here, 31 is an active region where a channel region and an impurity diffusion layer of a switching transistor are formed, and 4
33 is a contact hole for connecting the bit line 8 and the diffusion layer of the substrate; 35 is a memory part contact hole for connecting the storage capacitor lower electrode 14 and the diffusion layer; 16 is a plate electrode.

この平面レイアウトでは、アクティブ領域がワード線・
ビット線に対して斜めに配置されているため、その断面
図としては、同一のアクティブ領域内にある二つのメモ
リコンタクト孔35の中心を結ぶ線で切ったものを用い
る。
In this planar layout, the active area is the word line
Since it is arranged obliquely to the bit line, its cross-sectional view is taken along a line connecting the centers of two memory contact holes 35 in the same active region.

本実施例では、第5図(2)のように、第2の実施例と
同じ方法でビット線を被着した後、この上に、絶縁膜9
を被着する。そして、この絶縁膜と一緒にビット線を加
工する。さらに絶縁膜10を堆積させ、公知のドライエ
ッチ法を用いることにより先の加工で露出したビット線
の側壁を覆う。
In this embodiment, as shown in FIG. 5(2), after a bit line is deposited in the same manner as in the second embodiment, an insulating film 9 is deposited on the bit line.
be coated with. Then, bit lines are processed together with this insulating film. Furthermore, an insulating film 10 is deposited to cover the sidewalls of the bit lines exposed in the previous processing by using a known dry etching method.

こうすると、メモリ部コンタクト孔35を開口する領域
は、絶縁されたワード線と絶縁されたビット線に囲まれ
るようになり、メモリコンタクト領域が自己整合的に形
成される。次に、メモリコンタクト領域の露出した拡散
層の上にのみ、選択的に導体層11を成長させる。本実
施例では、公知のCVD法を用いて多結晶シリコンを選
択的に成長させ、不純物拡散層と同じ導電型の不純物を
拡散した(第5図(b))。
In this way, the region where the memory contact hole 35 is opened is surrounded by the insulated word line and the insulated bit line, and the memory contact region is formed in a self-aligned manner. Next, a conductor layer 11 is selectively grown only on the exposed diffusion layer in the memory contact region. In this example, polycrystalline silicon was selectively grown using a known CVD method, and impurities of the same conductivity type as the impurity diffusion layer were diffused (FIG. 5(b)).

第1の実施例(第4図(d))では、ワード線の間の狭
い領域に深いメモリコンタクト孔を形成する必要がある
。孔が合わせずれによってワード線上にずれると、孔形
成時に、下層のワード線が露出する危険がある。そこで
本実施例のように、拡散層領域を持ち上げる(導体層1
1を設ける)ことによって、コンタクト孔を開口する際
の加工が容易になる。
In the first embodiment (FIG. 4(d)), it is necessary to form deep memory contact holes in narrow regions between word lines. If the hole is shifted onto the word line due to misalignment, there is a risk that the underlying word line will be exposed when the hole is formed. Therefore, as in this embodiment, the diffusion layer region is lifted (conductor layer 1
1) facilitates processing when opening a contact hole.

第5図(b)以降は、絶縁膜で平坦化を行なった後、蓄
積容量部、および、配線を形成して、第1図に示したよ
うな、メモリセルを完成する。
From FIG. 5(b) onward, after planarization is performed with an insulating film, a storage capacitor section and wiring are formed to complete a memory cell as shown in FIG. 1.

以上、本発明を実施例に基づき具体的に説明したが、本
発明は、上記実施例に限定されるものではなく、その要
旨を逸脱しない範囲において種々変更可能であることは
勿論である。
Although the present invention has been specifically described above based on Examples, the present invention is not limited to the above-mentioned Examples, and it goes without saying that various modifications can be made without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、段差被覆性が悪く
、薄膜化の難しい強誘電体を用いて、微細なメモリセル
を形成することが可能となり、ギガビットレベルのメモ
リも実現可能となる。
As described above, according to the present invention, it is possible to form a minute memory cell using a ferroelectric material that has poor step coverage and is difficult to make into a thin film, and it is also possible to realize gigabit level memory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のメモリセルの断面図、第2
図は従来および本発明の別の実施例のSTC型DRAM
セルの平面図、第3図は従来および本発明の別の実施例
のSTC型DRAMセルの第2の平面図、第4図(2)
〜(d)は本発明の一実施例の製造工程図、第5図(2
)、(b)は本発明の別の実施例の製造工程図である。 l・・・第1導電型半導体基板 2・・・素子間分離酸化膜 3・・・ゲート酸化膜 4・・・ワード線 5.7.9.10・・・層間絶縁膜 6・・・第2導電型不純物拡散眉 8・・・ビット線 11.13・・・メモリ部コンタクトプラグ14・・・
下部電極 15・・・強誘電体薄膜 16・・・プレート電極 21.31・・・アクティブ領域 3.33・・・コンタクト孔 5.35.42・・・メモリ部コンタ ト・・絶縁膜 3・・・導電性物質 ケト孔
FIG. 1 is a cross-sectional view of a memory cell according to an embodiment of the present invention, and FIG.
The figure shows a conventional STC type DRAM and another embodiment of the present invention.
A plan view of the cell, FIG. 3 is a second plan view of the STC type DRAM cell of the conventional and another embodiment of the present invention, FIG. 4 (2)
~(d) is a manufacturing process diagram of an embodiment of the present invention, and FIG.
) and (b) are manufacturing process diagrams of another embodiment of the present invention. l...first conductivity type semiconductor substrate 2...element isolation oxide film 3...gate oxide film 4...word line 5.7.9.10...interlayer insulating film 6...th 2-conductivity type impurity diffusion eyebrow 8...Bit line 11.13...Memory part contact plug 14...
Lower electrode 15... Ferroelectric thin film 16... Plate electrode 21.31... Active region 3.33... Contact hole 5.35.42... Memory part contact... Insulating film 3...・Conductive substance ketopore

Claims (1)

【特許請求の範囲】 1、1つのスイッチ用トランジスタと、1つの電荷蓄積
容量を有するメモリセルを含んでなり、かつ、上記電荷
蓄積容量の誘電体膜として強誘電体物質を用いた半導体
記憶装置の製造方法において、上記スイッチ用トランジ
スタを形成した半導体基板上を絶縁物質で覆って、下地
段差を平坦化する工程と、その後、上記絶縁物質にコン
タクトホールを穿設する工程と、その後、上記コンタク
トホール内部を導電物質で埋め込む工程と、その後、上
記平坦表面上に下部電極を形成する工程と、その後、上
記下部電極上に強誘電体膜を形成する工程とを含むこと
を特徴とする半導体記憶装置の製造方法。 2、上記スイッチ用トランジスタを形成した半導体基板
上を絶縁物質で覆って下地段差を平坦化する前に、該ス
イッチ用トランジスタの不純物ドープ層上に導体層を設
け、その後、平坦化することを特徴とする請求項1記載
の半導体記憶装置の製造方法。 3、上記導電物質が多結晶シリコンであることを特徴と
する請求項1記載の半導体記憶装置の製造方法。 4、上記下部電極が白金であることを特徴とする請求項
1または2記載の半導体記憶装置の製造方法。 5、上記下部電極が金、銅、タングステンあるいは、C
u_3Auであることを特徴とする請求項1または2記
載の半導体記憶装置の製造方法。 6、上記下部電極がタングステンシリサイド(WSi_
2)、ジルコニウムシリサイド (ZrSi_2)あるいは、モリブデンシリサイド(M
oSi_2)であることを特徴とする請求項1または2
記載の半導体記憶装置の製造方法。 7、上記強誘電体膜を、高周波マグネトロンスパッタ法
により形成することを特徴とする請求項1、2、3、4
または5記載の半導体記憶装置の製造方法。 8、上記強誘電体膜を、CVD法あるいは MOCVD法により形成することを特徴とする請求項1
、2、3、4または5記載の半導体記憶装置の製造方法
。 9、上記強誘電体膜を、ゾル−ゲル法により形成するこ
とを特徴とする請求項1、2、3、4または5記載の半
導体記憶装置の製造方法。 10、1つのスイッチ用トランジスタと、1つの電荷蓄
積容量を有するメモリセルを含んでなり、かつ、上記電
荷蓄積容量の絶縁膜として強誘電体物質を用いた半導体
記憶装置において、上記スイッチ用トランジスタが形成
された半導体基板上を覆い下地段差を平坦化する絶縁物
質と、該平坦表面上に形成された下部電極と強誘電体膜
を有することを特徴とする半導体記憶装置。
[Claims] 1. A semiconductor memory device comprising one switching transistor and one memory cell having a charge storage capacitor, and using a ferroelectric material as a dielectric film of the charge storage capacitor. The manufacturing method includes the steps of: covering the semiconductor substrate on which the switch transistor is formed with an insulating material and flattening the underlying step; thereafter, forming a contact hole in the insulating material; A semiconductor memory comprising the steps of burying the inside of the hole with a conductive material, then forming a lower electrode on the flat surface, and then forming a ferroelectric film on the lower electrode. Method of manufacturing the device. 2. Before the semiconductor substrate on which the switch transistor is formed is covered with an insulating material to flatten the underlying step, a conductor layer is provided on the impurity-doped layer of the switch transistor, and the conductor layer is then flattened. 2. The method of manufacturing a semiconductor memory device according to claim 1. 3. The method of manufacturing a semiconductor memory device according to claim 1, wherein the conductive material is polycrystalline silicon. 4. The method of manufacturing a semiconductor memory device according to claim 1 or 2, wherein the lower electrode is made of platinum. 5. The lower electrode is made of gold, copper, tungsten or C.
3. The method of manufacturing a semiconductor memory device according to claim 1, wherein the semiconductor memory device is u_3Au. 6. The lower electrode is made of tungsten silicide (WSi_
2), zirconium silicide (ZrSi_2) or molybdenum silicide (M
Claim 1 or 2 characterized in that oSi_2)
A method of manufacturing the semiconductor storage device described above. 7. Claims 1, 2, 3, and 4, wherein the ferroelectric film is formed by high-frequency magnetron sputtering.
or 5. The method of manufacturing a semiconductor memory device according to 5. 8. Claim 1, wherein the ferroelectric film is formed by a CVD method or an MOCVD method.
, 2, 3, 4 or 5, the method for manufacturing a semiconductor memory device. 9. The method of manufacturing a semiconductor memory device according to claim 1, 2, 3, 4 or 5, wherein the ferroelectric film is formed by a sol-gel method. 10. A semiconductor memory device comprising one switching transistor and one memory cell having a charge storage capacity, and using a ferroelectric material as an insulating film of the charge storage capacity, wherein the switching transistor is 1. A semiconductor memory device comprising: an insulating material that covers a formed semiconductor substrate and flattens an underlying step; and a lower electrode and a ferroelectric film formed on the flat surface.
JP2054533A 1990-03-06 1990-03-06 Semiconductor memory device and method of manufacturing the same Expired - Lifetime JP2898686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2054533A JP2898686B2 (en) 1990-03-06 1990-03-06 Semiconductor memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2054533A JP2898686B2 (en) 1990-03-06 1990-03-06 Semiconductor memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03256358A true JPH03256358A (en) 1991-11-15
JP2898686B2 JP2898686B2 (en) 1999-06-02

Family

ID=12973309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2054533A Expired - Lifetime JP2898686B2 (en) 1990-03-06 1990-03-06 Semiconductor memory device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2898686B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296262A (en) * 1990-04-13 1991-12-26 Mitsubishi Electric Corp Semiconductor memory cell
US5365095A (en) * 1992-02-18 1994-11-15 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device and process
US5382817A (en) * 1992-02-20 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a ferroelectric capacitor with a planarized lower electrode
US5418388A (en) * 1993-06-18 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a capacitor with an adhesion layer
US5442213A (en) * 1993-06-23 1995-08-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with high dielectric capacitor having sidewall spacers
US5486713A (en) * 1993-01-05 1996-01-23 Nec Corporation Semiconductor device having a capacitor
US5567964A (en) * 1993-06-29 1996-10-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
EP0744772A1 (en) * 1995-05-24 1996-11-27 Siemens Aktiengesellschaft DRAM storage cell with vertical transistor and method for production thereof
US5661319A (en) * 1992-06-18 1997-08-26 Matsushita Electric Industrial Co., Ltd. Semiconductor device having capacitor
US5923062A (en) * 1994-10-11 1999-07-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor device incorporating capacitors
US6271559B1 (en) 1997-11-04 2001-08-07 Hitachi, Ltd Semiconductor memory with information storage capacitance including an electrode containing precious metal and an added element
US6288931B1 (en) 1999-06-28 2001-09-11 Hyundai Electronics Industries Co., Ltd. Ferroelectric memory device having cell groups containing capacitors commonly coupled to transistor
US6822276B1 (en) 1998-09-10 2004-11-23 Renesas Technology Corp. Memory structure with a ferroelectric capacitor
EP2905809A1 (en) 2014-02-05 2015-08-12 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296262A (en) * 1990-04-13 1991-12-26 Mitsubishi Electric Corp Semiconductor memory cell
US5365095A (en) * 1992-02-18 1994-11-15 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device and process
US5449934A (en) * 1992-02-18 1995-09-12 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device and process
US5382817A (en) * 1992-02-20 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a ferroelectric capacitor with a planarized lower electrode
US5661319A (en) * 1992-06-18 1997-08-26 Matsushita Electric Industrial Co., Ltd. Semiconductor device having capacitor
US5486713A (en) * 1993-01-05 1996-01-23 Nec Corporation Semiconductor device having a capacitor
US5418388A (en) * 1993-06-18 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a capacitor with an adhesion layer
US5652186A (en) * 1993-06-23 1997-07-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and a method of manufacturing thereof
US5534458A (en) * 1993-06-23 1996-07-09 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device with high dielectric capacitor having sidewall spacers
US5442213A (en) * 1993-06-23 1995-08-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with high dielectric capacitor having sidewall spacers
US5668041A (en) * 1993-06-23 1997-09-16 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a capacitor
US5567964A (en) * 1993-06-29 1996-10-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US5693553A (en) * 1993-06-29 1997-12-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method of the same
US5923062A (en) * 1994-10-11 1999-07-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor device incorporating capacitors
US5736761A (en) * 1995-05-24 1998-04-07 Siemens Aktiengesellschaft DRAM cell arrangement and method for its manufacture
EP0744772A1 (en) * 1995-05-24 1996-11-27 Siemens Aktiengesellschaft DRAM storage cell with vertical transistor and method for production thereof
US6271559B1 (en) 1997-11-04 2001-08-07 Hitachi, Ltd Semiconductor memory with information storage capacitance including an electrode containing precious metal and an added element
US6822276B1 (en) 1998-09-10 2004-11-23 Renesas Technology Corp. Memory structure with a ferroelectric capacitor
US6288931B1 (en) 1999-06-28 2001-09-11 Hyundai Electronics Industries Co., Ltd. Ferroelectric memory device having cell groups containing capacitors commonly coupled to transistor
EP2905809A1 (en) 2014-02-05 2015-08-12 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
US9373626B2 (en) 2014-02-05 2016-06-21 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
US9773794B2 (en) 2014-02-05 2017-09-26 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2898686B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP2590171B2 (en) Semiconductor storage device
US5075745A (en) Capacitor cell for use in a semiconductor memory integrated circuit device
JP3466851B2 (en) Semiconductor device and manufacturing method thereof
US5214603A (en) Folded bitline, ultra-high density dynamic random access memory having access transistors stacked above trench storage capacitors
US6620680B2 (en) Method of forming a contact structure and a container capacitor structure
US7361552B2 (en) Semiconductor integrated circuit including a DRAM and an analog circuit
US5918118A (en) Dual deposition methods for forming contact metallizations, capacitors, and memory devices
JPH0724284B2 (en) Method for manufacturing semiconductor device
JPH07122653A (en) Semiconductor device and its manufacture
JPH07193142A (en) Highly integrated semiconductor device and manufacture thereof
US20010003665A1 (en) Method for fabricating semiconductor device
JPH03256358A (en) Semiconductor memory device and manufacturing method
KR20000023205A (en) CAPACITOR HAVING A HIGH-ε-DIELECTRIC OR FERROELECTRIC BASED ON FIN-STACK-PRINCIPLE AND METHOD FOR PRODUCING THE SAME USING NEGATIVE FORM
US5606189A (en) Dynamic RAM trench capacitor device with contact strap
KR100273987B1 (en) Dynamic random access memory device and manufacturing method thereof
JP2932540B2 (en) Semiconductor memory device
JPH10189895A (en) Manufacture of semiconductor device
JP2001168285A (en) Semiconductor device and its manufacturing method
KR100195214B1 (en) Semiconductor device and its fabrication method
JP2000323685A (en) Manufacture of semiconductor device and memory cell
US20010024862A1 (en) Method for forming a lower electrode by using an electroplating method
JP2550590B2 (en) Method for manufacturing semiconductor device
TW543191B (en) Semiconductor device and manufacturing method thereof
JP3030812B2 (en) Manufacturing method of DRAM capacitor using chemical mechanical polishing method
JPH0319362A (en) Semiconductor memory and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

EXPY Cancellation because of completion of term