JPS63226955A - Manufacture of capacitive element - Google Patents

Manufacture of capacitive element

Info

Publication number
JPS63226955A
JPS63226955A JP62061730A JP6173087A JPS63226955A JP S63226955 A JPS63226955 A JP S63226955A JP 62061730 A JP62061730 A JP 62061730A JP 6173087 A JP6173087 A JP 6173087A JP S63226955 A JPS63226955 A JP S63226955A
Authority
JP
Japan
Prior art keywords
insulating film
capacitive
crystal semiconductor
electrode
capacitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62061730A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubota
久保田 大志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62061730A priority Critical patent/JPS63226955A/en
Publication of JPS63226955A publication Critical patent/JPS63226955A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a manufacturing method of a capacitive element suitable for a highly integrated semiconductor device by a method wherein a thermal oxide film of a single-crystal semiconductor grown by a selective epitaxial growth method is used for a capacitive insulating film so that the breakdown strength of the capacitive insulating film can be enhanced. CONSTITUTION:An insulating film 15 is formed on a single-crystal semiconductor substrate 11; a hole, for a seed, which reaches the single-crystal semiconductor substrate 11 is made at a part of the insulating film 15p a single-crystal semiconductor 16 is epitaxially grown selectively in such a way that it covers the inside of the hole for the seed and the circumference of the hole for the seed on the insulating film 15. The grown single-crystal semiconductor layer 16 is used as an electrode, on one side, of a capacitive element; a capacitive insulating film 17 is formed on the electrode; an electrode 18; on the other side, of the capacitive element is formed on the capacitive insulating film 17. During this process, charge-storage single-crystal silicon 16 is oxidized thermally and the capacitive insulating film 17 is formed. After that, e.g., a second interlayer insulating film 19 is grown; after that, a contact hole is made at a part of a diffusion layer 12 by a photoresist process; a bit line 20 is wired; a memory cell is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶半導体基板上に形成される容量素子、
特に高集積半導体装置に好適な容量素子の製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a capacitive element formed on a single crystal semiconductor substrate,
In particular, the present invention relates to a method of manufacturing a capacitive element suitable for highly integrated semiconductor devices.

〔従来の技術〕[Conventional technology]

電荷の形で二進化情報を記憶する半導体メモリセルは、
セル面積が小さいため、高集積・大容量メモリ用メモリ
セルとして優れている。このながでも特に、一つのトラ
ンジスタと一つの容量素子から構成されるメモリセル(
以下ITICセルという)は、構成要素を少なく、セル
面積も小さいため高集積・大容量メモリ用メモリセルと
して今日の主流となっている。
Semiconductor memory cells that store binary information in the form of electrical charges are
Because the cell area is small, it is excellent as a memory cell for highly integrated, large-capacity memories. In particular, a memory cell consisting of one transistor and one capacitive element (
The ITIC cell (hereinafter referred to as an ITIC cell) has a small number of components and a small cell area, so it has become the mainstream today as a memory cell for highly integrated and large capacity memories.

ところでメモリの高集積化に伴うメモリセルサイズの縮
小によって、ITICセル構造における容量素子の基板
上に占める面積が減少してきている。このため蓄積電荷
容量が減少し、α線耐性が劣化し、センスアンプ感度も
悪化するという問題点がある。
By the way, as the size of memory cells decreases due to higher integration of memories, the area occupied by capacitive elements on the substrate in the ITIC cell structure is decreasing. Therefore, there are problems in that the storage charge capacity is reduced, the resistance to alpha rays is deteriorated, and the sensitivity of the sense amplifier is also deteriorated.

この問題点を解決するなめ容量素子の基板上に占める面
積を縮小しながらも蓄積電荷容量は減少させない方法と
して、電荷蓄積半導体電極にスイッチングトランジスタ
のソースあるいはドレイン領域に電気的に接続された多
結晶半導体を用い、この多結晶半導体の表面に容量絶縁
膜を形成し、さらにその上に成長させた多結晶半導体(
セルプレート電極)との間に容量素子(スタックキャパ
シタ)を形成する方法が従来知らている。例えば予稿集
「インタナショナル・ソリッド・ステート・サーキット
・コンフエレンス(InternationalSol
id 5tate C1rcuits Confere
nce ) J 、 1985年、250〜251頁に
rlMb  DRAM  ウィズ 3デイメンシヨナル
・スタックド・キャパシタ・セルズ(A IMb DR
AM with 3−DimensionalStac
ked Capacitor Ce1ls ) Jと題
して発表された論文がある。
As a method to solve this problem and reduce the area occupied on the substrate of the capacitive element without reducing the storage charge capacity, we have developed a polycrystalline semiconductor electrode that is electrically connected to the source or drain region of the switching transistor. A polycrystalline semiconductor (
A method of forming a capacitive element (stack capacitor) between the cell plate electrode and the cell plate electrode is conventionally known. For example, the Proceedings of the International Solid State Circuit Conference (InternationalSol
id 5tate C1rcuits Conference
nce) J, 1985, pp. 250-251.
AM with 3-Dimensional Stac
There is a paper published under the title ked Capacitor Cells) J.

この論文には、第2図に示すように、スタックドキャパ
シタ型ITICセルの断面図が示されている。このセル
は、シリコン基板11上に拡散層12.12’および素
子分離酸化膜14が形成されこれらの上に第1層間絶縁
膜15を介しワード線13を設け、絶縁膜15に拡散層
12′まで開孔して電荷蓄積ポリシリコン電極26を設
け、このポリシリコン電極26上に容量絶縁膜17、セ
ルプレート電極18.第2層間絶縁膜19を積層し、さ
らに拡散層12まで開孔してビット線2゜を設けて構成
される。
This paper shows a cross-sectional view of a stacked capacitor type ITIC cell, as shown in FIG. In this cell, a diffusion layer 12.12' and an element isolation oxide film 14 are formed on a silicon substrate 11, a word line 13 is provided on these through a first interlayer insulating film 15, and a diffusion layer 12' is formed on the insulating film 15. A charge storage polysilicon electrode 26 is provided by opening up to the hole, and a capacitor insulating film 17, a cell plate electrode 18 . A second interlayer insulating film 19 is laminated, and a hole is further opened up to the diffusion layer 12 to provide a bit line 2°.

第2図において、電荷蓄積ポリシリコン電極26は、拡
散層12と電気的に接続されている。
In FIG. 2, charge storage polysilicon electrode 26 is electrically connected to diffusion layer 12. In FIG.

この電荷蓄積ポリシリコン電極26を熱酸化して、容量
絶縁膜17が形成されている。この容量素子は、セルプ
レート電極18と電荷蓄積ポリシリコン電極26との間
に形成されている。
This charge storage polysilicon electrode 26 is thermally oxidized to form a capacitor insulating film 17. This capacitive element is formed between the cell plate electrode 18 and the charge storage polysilicon electrode 26.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ことように従来技術によるスタックキャパシタでは、第
2図に示すように、容量素子の一方の電極として電荷蓄
積ポリシリコン電極26を用いるため、容量絶縁膜17
は電荷蓄積ポリシリコン電極26の熱酸化膜となってい
た。
Particularly, in the stack capacitor according to the prior art, as shown in FIG.
was a thermally oxidized film of the charge storage polysilicon electrode 26.

ポリシリコンは、表面の平滑性が単結晶シリコンに比べ
で劣り、また面方位も一定でない。その結果、容量絶縁
膜17の耐圧が低く、薄膜化が困難であり、大きな容量
を保つことができないという欠点があった。
The surface smoothness of polysilicon is inferior to that of single crystal silicon, and the surface orientation is not constant. As a result, the withstand voltage of the capacitive insulating film 17 is low, making it difficult to make the film thin, and it is difficult to maintain a large capacitance.

本発明の目的は、このような欠点を除き容量絶縁膜の耐
圧を高めることができ、高集積半導体装置に好適な容量
素子の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a capacitor element that can eliminate such drawbacks and increase the withstand voltage of a capacitor insulating film, and is suitable for highly integrated semiconductor devices.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の容量素子製造方法の構造は、単結晶半導体基板
上に絶縁膜を形成し、この絶縁膜の一部に前記単結晶半
導体に達するシート用穴を形成し、このシート用穴の内
部および前記絶縁膜上のシート用穴の周辺を覆うように
前記単結晶半導体を選択エピタキシャル成長させ、この
成長した単結晶半導体層を容量素子の一方の電極として
、この電極上に容量絶縁膜を形成し、この容量絶縁膜上
に容量素子の他方の電極を形成することを特徴とする。
The structure of the capacitive element manufacturing method of the present invention is to form an insulating film on a single-crystal semiconductor substrate, form a sheet hole in a part of this insulating film reaching the single-crystal semiconductor, and selectively epitaxially growing the single crystal semiconductor so as to cover the periphery of the sheet hole on the insulating film, using the grown single crystal semiconductor layer as one electrode of a capacitive element, and forming a capacitive insulating film on this electrode; The method is characterized in that the other electrode of the capacitive element is formed on this capacitive insulating film.

〔作用〕[Effect]

本発明の構成によれば、容量絶縁膜として、選択エピタ
キシャル成長法によって成長した単結晶半導体の熱酸化
膜を用いることができるようになるので、表面が平滑で
面方位が一定となり、容量絶縁膜の耐圧を高めた容量素
子を得ることができる。
According to the configuration of the present invention, it becomes possible to use a thermally oxidized film of a single crystal semiconductor grown by selective epitaxial growth as a capacitive insulating film, so that the surface is smooth and the plane orientation is constant, and the capacitive insulating film is A capacitive element with increased breakdown voltage can be obtained.

〔実施例〕〔Example〕

第1図(a)〜(d)は本発明の一実施例によって形成
される容量素子を用いたITICセル膜の模式的断面図
である。
FIGS. 1(a) to 1(d) are schematic cross-sectional views of an ITIC cell film using a capacitive element formed according to an embodiment of the present invention.

まず、第1図(a)において、シリコン基板11に通常
のMO3FET製造工程によって、拡散層12、ワード
線13、素子分離酸化膜14を形成し、第1層間絶縁[
15を形成する。フォトレジストをバターニングした後
、第1層間絶縁膜15の一部をエツチングし、拡散層1
2の一部を露出させる。
First, in FIG. 1(a), a diffusion layer 12, a word line 13, and an element isolation oxide film 14 are formed on a silicon substrate 11 by a normal MO3FET manufacturing process, and a first interlayer insulation [
form 15. After patterning the photoresist, a part of the first interlayer insulating film 15 is etched to form the diffusion layer 1.
Expose part of 2.

次に、第1図(b)において、露出した拡散層12の一
部をシートとして選択エピタキシャル成長法により、電
荷蓄積単結晶シリコン16を成長させる。このf&、フ
ォトレジストをパターニングし、このレジストをマスク
として、電荷蓄積単結晶シリコン16をエツチングし所
望を形状を得る3 次に、第1図(C)において、電荷蓄積単結晶シリコン
16を熱酸化して、容量絶縁膜17を形成し、セルプレ
ート電[18を成長させる。このセルプレート電極18
は、ポリシリコンで良い。
Next, in FIG. 1(b), a charge storage single crystal silicon 16 is grown by selective epitaxial growth using a portion of the exposed diffusion layer 12 as a sheet. This f& photoresist is patterned, and using this resist as a mask, the charge storage single crystal silicon 16 is etched to obtain the desired shape. Next, in FIG. 1(C), the charge storage single crystal silicon 16 is thermally oxidized. Then, a capacitor insulating film 17 is formed, and a cell plate electrode [18] is grown. This cell plate electrode 18
Polysilicon is fine.

再びフォトレジスト工程によって、セルプレート電極1
8のエツチングを行ない、所望の形状の容量素子を得る
Cell plate electrode 1 is formed again by photoresist process.
8 to obtain a capacitive element of a desired shape.

最後に第1図(d)において、第2層間絶縁膜1つを成
長させた後、拡散層12の一部にフォトレジスト工程に
よりコンタクトホールを開け、ビット線20を配線して
、メモリセルが形成される。この場合、容量素子はセル
プレート電極18と電荷蓄積単結晶シリコン電極16と
の間に形成されている。
Finally, in FIG. 1(d), after growing one second interlayer insulating film, a contact hole is opened in a part of the diffusion layer 12 by a photoresist process, a bit line 20 is wired, and a memory cell is formed. It is formed. In this case, the capacitive element is formed between the cell plate electrode 18 and the charge storage single crystal silicon electrode 16.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の方法によれば、容量素子の
一方の電極として、表面が平滑で、かつ面方位が一定で
ある単結晶半導体を用いることができるため、容量絶縁
膜が均一で高耐圧である単結晶半導体の熱酸化膜を用い
ることができる。従って、容量絶縁膜の薄膜化が容易と
なり、セル面積を縮小して容量素子の基板に占る面積が
減少しても大きな容量が可能な容量素子を得ることがで
きる。
As explained above, according to the method of the present invention, a single crystal semiconductor with a smooth surface and a constant plane orientation can be used as one electrode of a capacitive element, so that the capacitive insulating film is uniform and has a high A thermal oxide film of a single crystal semiconductor that has a breakdown voltage can be used. Therefore, the capacitive insulating film can be easily made thinner, and even if the cell area is reduced and the area occupied by the capacitive element on the substrate is reduced, a capacitive element that can have a large capacity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を工程順に説
明しなITICセルを示す模式的断面図、第2図は従来
法による製造方法により作成された容量素子によるIT
ICセルを示す模式断面図である。 11・・・シリコン基板、12・・・拡散層、13・・
・ワード線、14・・・素子分離酸化膜、15・・・第
1層間絶縁膜、16・・・電荷蓄積単結晶シリコン電極
、26・・・電荷蓄積ポリシリコン電極、17・・・容
量絶縁膜、18・・・セルプレート電極、19・・・第
2層間絶縁膜、20・・・ビット線。 茅 /I!r 華 ! 囚 手 2 ■
FIGS. 1(a) to (d) are schematic cross-sectional views showing an ITIC cell for explaining one embodiment of the present invention in the order of steps, and FIG. 2 is an ITIC cell using a capacitive element manufactured by a conventional manufacturing method.
FIG. 2 is a schematic cross-sectional view showing an IC cell. 11... Silicon substrate, 12... Diffusion layer, 13...
・Word line, 14... Element isolation oxide film, 15... First interlayer insulating film, 16... Charge storage single crystal silicon electrode, 26... Charge storage polysilicon electrode, 17... Capacitive insulation film, 18... cell plate electrode, 19... second interlayer insulating film, 20... bit line; Kaya /I! r Hua! Prisoner 2 ■

Claims (1)

【特許請求の範囲】[Claims]  単結晶半導体基板上に絶縁膜を形成し、この絶縁膜の
一部に前記単結晶半導体に達するシート用穴を形成し、
このシート用穴の内部および前記絶縁膜上のシート用穴
の周辺を覆うように前記単結晶半導体を選択エピタキシ
ャル成長させ、この成長した単結晶半導体層を容量素子
の一方の電極として、この電極上に容量絶縁膜を形成し
、この容量絶縁膜上に容量素子の他方の電極を形成する
ことを特徴とする容量素子の製造方法。
forming an insulating film on a single crystal semiconductor substrate, forming a sheet hole reaching the single crystal semiconductor in a part of the insulating film;
The single crystal semiconductor is selectively epitaxially grown so as to cover the inside of the sheet hole and the periphery of the sheet hole on the insulating film, and this grown single crystal semiconductor layer is used as one electrode of a capacitive element and is placed on this electrode. 1. A method for manufacturing a capacitive element, comprising forming a capacitive insulating film, and forming the other electrode of the capacitive element on the capacitive insulating film.
JP62061730A 1987-03-16 1987-03-16 Manufacture of capacitive element Pending JPS63226955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061730A JPS63226955A (en) 1987-03-16 1987-03-16 Manufacture of capacitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061730A JPS63226955A (en) 1987-03-16 1987-03-16 Manufacture of capacitive element

Publications (1)

Publication Number Publication Date
JPS63226955A true JPS63226955A (en) 1988-09-21

Family

ID=13179618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061730A Pending JPS63226955A (en) 1987-03-16 1987-03-16 Manufacture of capacitive element

Country Status (1)

Country Link
JP (1) JPS63226955A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228163A (en) * 1988-03-09 1989-09-12 Toshiba Corp Semiconductor storage device and manufacture thereof
JPH01241857A (en) * 1988-03-24 1989-09-26 Toshiba Corp Manufacture of semiconductor device
JPH02310963A (en) * 1989-05-10 1990-12-26 Samsung Electron Co Ltd Manufacture of semi conductor device
JPH03165557A (en) * 1989-11-24 1991-07-17 Mitsubishi Electric Corp Semiconductor device provided with stacked capacitor cell
JPH03230562A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228163A (en) * 1988-03-09 1989-09-12 Toshiba Corp Semiconductor storage device and manufacture thereof
JPH01241857A (en) * 1988-03-24 1989-09-26 Toshiba Corp Manufacture of semiconductor device
JPH02310963A (en) * 1989-05-10 1990-12-26 Samsung Electron Co Ltd Manufacture of semi conductor device
JPH03165557A (en) * 1989-11-24 1991-07-17 Mitsubishi Electric Corp Semiconductor device provided with stacked capacitor cell
JPH03230562A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US5057888A (en) Double DRAM cell
JP2655859B2 (en) Semiconductor storage device
JPH03209868A (en) Manufacture of ic capacitor and semiconductor ic device
JPH0818016A (en) Preparation of semiconductor
US4820652A (en) Manufacturing process and structure of semiconductor memory devices
JPS61107762A (en) Manufacture of semiconductor memory device
JP2524002B2 (en) Method of manufacturing bipolar dynamic RAM having vertical structure and structure of the dynamic RAM
JPS62193273A (en) Semiconductor memory
JPS63226955A (en) Manufacture of capacitive element
KR100261210B1 (en) Method for manufacturing decoupling capacitor
JPH04287366A (en) Semiconductor integrated circuit device and its manufacture
JPS6123361A (en) Semiconductor memory device
JPS6336142B2 (en)
JPH0691216B2 (en) Semiconductor memory device
JPH0266967A (en) Cell structure of dynamic random-access memory
JPS61140171A (en) Semiconductor memory device
JP2705146B2 (en) MOS type semiconductor device
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JP2827377B2 (en) Semiconductor integrated circuit
JPS62156856A (en) Dynamic memory cell and manufacture thereof
JPS58212160A (en) Manufacture of semiconductor memory device
JPS5827669B2 (en) semiconductor storage device
JP3095450B2 (en) Dynamic semiconductor memory device and method of manufacturing the same
JPH0382156A (en) Semiconductor memory cell and manufacture thereof
JPS60111456A (en) Semiconductor memory device