JPH0382156A - Semiconductor memory cell and manufacture thereof - Google Patents
Semiconductor memory cell and manufacture thereofInfo
- Publication number
- JPH0382156A JPH0382156A JP1219455A JP21945589A JPH0382156A JP H0382156 A JPH0382156 A JP H0382156A JP 1219455 A JP1219455 A JP 1219455A JP 21945589 A JP21945589 A JP 21945589A JP H0382156 A JPH0382156 A JP H0382156A
- Authority
- JP
- Japan
- Prior art keywords
- memory cell
- insulating film
- electrode
- gate
- gate electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 230000015654 memory Effects 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000003860 storage Methods 0.000 claims abstract description 16
- 239000003990 capacitor Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000002955 isolation Methods 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 239000010703 silicon Substances 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 16
- 238000001020 plasma etching Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 2
- HQOWCDPFDSRYRO-CDKVKFQUSA-N CCCCCCc1ccc(cc1)C1(c2cc3-c4sc5cc(\C=C6/C(=O)c7ccccc7C6=C(C#N)C#N)sc5c4C(c3cc2-c2sc3cc(C=C4C(=O)c5ccccc5C4=C(C#N)C#N)sc3c12)(c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1 Chemical compound CCCCCCc1ccc(cc1)C1(c2cc3-c4sc5cc(\C=C6/C(=O)c7ccccc7C6=C(C#N)C#N)sc5c4C(c3cc2-c2sc3cc(C=C4C(=O)c5ccccc5C4=C(C#N)C#N)sc3c12)(c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1)c1ccc(CCCCCC)cc1 HQOWCDPFDSRYRO-CDKVKFQUSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は容量部と絶縁ゲート電界効果トランジスタとを
含んでなる半導体メモリおよびその製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory including a capacitor section and an insulated gate field effect transistor, and a method for manufacturing the same.
〔従来の技術]
電荷の形で二進情報を貯蔵する半導体メモリセルはセル
面積が小さいため、高集積、大容量、メモリセルとして
秀れている。特にメモリセルとして一つのトランジスタ
と一つの容量とからなるメモリセル(以下ITICセル
と略す)は、構成要素も少なく、セル面積も小さいため
高集積メモリ用メモリセルとして重要である。ところで
メモリの高集積化によるメモリセルサイズの縮小に伴い
、ITIC:セル構造における容量部面積が減少してき
ている。[Prior Art] Semiconductor memory cells that store binary information in the form of charges have a small cell area, so they are highly integrated, have a large capacity, and are excellent as memory cells. In particular, a memory cell (hereinafter abbreviated as an ITIC cell) consisting of one transistor and one capacitor is important as a memory cell for highly integrated memory because it has few constituent elements and has a small cell area. Incidentally, as the memory cell size is reduced due to higher integration of memories, the area of the capacitor part in the ITIC: cell structure has been reduced.
そして容量部面積の減少による記憶電荷量の減少は、耐
α粒子問題、センスアンプの感度の劣化を引き起こす。A decrease in the amount of storage charge due to a decrease in the area of the capacitor section causes problems with resistance to alpha particles and deterioration of the sensitivity of the sense amplifier.
従来、このような問題点を解決するため、メモリセル面
積の縮小にもかかわらず大きな記憶容量部を形成する方
法が知られている。たとえば国際固体素子会議(Int
ernational Electron Devic
esMeeting) 1978年、 348〜351
ページにrNovel HighDensity、 5
tacked Capacitor MOSRAMJと
題して発表された論文においては、第3図に示した如く
、ITICセルの容量部を二層の多結晶シリコン51.
52により形成した構造のものが示されている。−層目
の多結晶シリコン51はスイッチングトランジスタのソ
ース側に電気的に接続しており、二層目の多結晶シリコ
ン52は一層目の多結晶シリコン51の対向電極として
一定電位に保たれている。そしてこのメモリセルに蓄え
られる電荷量の大きさはこの二層多結晶シリコン51.
52間に形成される容量の大きさによって決まる。この
ため、この構造のメモリセルは蓄積容量をできるだけ大
きく取ろうとして前記多結晶シリコンはメモリセル上の
ほとんどの面積を被うように大きく設計されている。Conventionally, in order to solve these problems, a method has been known in which a large storage capacity section is formed despite the reduction in memory cell area. For example, the International Solid State Devices Conference (Int.
ernational Electron Device
esMeeting) 1978, 348-351
rNovel High Density on the page, 5
In a paper published under the title tacked capacitor MOSRAMJ, as shown in FIG.
A structure formed by 52 is shown. - The polycrystalline silicon 51 of the second layer is electrically connected to the source side of the switching transistor, and the polycrystalline silicon 52 of the second layer is kept at a constant potential as a counter electrode to the polycrystalline silicon 51 of the first layer. . The amount of charge stored in this memory cell is determined by the two-layer polycrystalline silicon 51.
It depends on the size of the capacitance formed between 52 and 52. Therefore, in order to maximize the storage capacity of a memory cell with this structure, the polycrystalline silicon is designed to be large enough to cover most of the area on the memory cell.
なお第3図においては53はビット線、54はビット線
に接続した拡散層、55はスイッチングトランジスタの
ゲート電極、56は絶縁膜を各々示している。In FIG. 3, reference numeral 53 indicates a bit line, 54 a diffusion layer connected to the bit line, 55 a gate electrode of a switching transistor, and 56 an insulating film.
[発明が解決しようとする課題]
しかしながら、このような構造においてはメモリの高集
積化とともにメモリセル面積が縮小され蓄積容量も次第
に減少してくるという問題がある。[Problems to be Solved by the Invention] However, in such a structure, there is a problem in that as the memory becomes highly integrated, the memory cell area is reduced and the storage capacity is gradually reduced.
また、読み出しに必要な蓄積電荷を確保するために、−
層目の多結晶シリコン51の膜厚を厚くして側壁面積を
増加させると、素子表面の凹凸が大きくなり、−層目多
結晶シリコン51の加工等製造プロセスが非常に難しく
なるという問題がある。In addition, in order to secure the accumulated charge necessary for reading, −
If the thickness of the layer polycrystalline silicon 51 is increased to increase the side wall area, there is a problem that the unevenness of the element surface becomes larger and the manufacturing process such as processing of the -th layer polycrystalline silicon 51 becomes extremely difficult. .
本発明の目的はこのような従来の欠点を除去して、高集
積化に適した微細な半導体メモリセルおよびその製造方
法を提供することにある。An object of the present invention is to eliminate such conventional drawbacks and provide a fine semiconductor memory cell suitable for high integration and a method for manufacturing the same.
〔課題を解決するための手段]
前記目的を遠戚するため、本発明に係る半導体メモリセ
ルは折り返しビット線型メモリセルにおいて、一つのメ
モリセル領域を通る二本のゲート電極上に設けた凸状絶
縁膜の側壁および該ゲート電極の側壁に積層型容量部を
形成したものである。[Means for Solving the Problems] In order to achieve the above object, the semiconductor memory cell according to the present invention is a folded bit line type memory cell, in which a convex shape is provided on two gate electrodes passing through one memory cell region. A stacked capacitor portion is formed on the sidewall of the insulating film and the sidewall of the gate electrode.
また、本発明による半導体メモリセルの製造方法は半導
体基板上に素子分離領域、ゲート絶縁膜。Further, the method for manufacturing a semiconductor memory cell according to the present invention includes forming an element isolation region and a gate insulating film on a semiconductor substrate.
ゲート電極をそれぞれ形成した後、ゲート電極上に凸状
絶縁膜の凸部を形成する工程と、一つのメモリセル領域
を通るゲート電極間にコンタクト孔を開口する工程と、
少なくとも前記凸状絶縁膜の側壁を電荷蓄積電極で被う
工程と、少なくとも前記電荷蓄積電極を容量絶縁膜で被
う工程と、前記容量絶縁膜を介して少なくとも前記電荷
蓄積電極を被うように対向電極を形成する工程とを含む
ものである。After each gate electrode is formed, a step of forming a convex portion of a convex insulating film on the gate electrode, a step of opening a contact hole between the gate electrodes passing through one memory cell region,
a step of covering at least a side wall of the convex insulating film with a charge storage electrode; a step of covering at least the charge storage electrode with a capacitive insulating film; and a step of covering at least the charge storage electrode via the capacitive insulating film. The method includes a step of forming a counter electrode.
以下本発明の典型的な実施例を図面を用いて詳述する。 Hereinafter, typical embodiments of the present invention will be described in detail with reference to the drawings.
第1図は本発明により形成されるメモリセルの模式的断
面図であり、第2図(a)、 (b)、 (C) 、(
6)。FIG. 1 is a schematic cross-sectional view of a memory cell formed according to the present invention, and FIGS. 2(a), (b), (C), (
6).
(e)、■、(2)、(11)は本発明における製造プ
ロセスを順を追って示した模式的断面図である。(e), ■, (2), and (11) are schematic cross-sectional views sequentially showing the manufacturing process in the present invention.
第1図において、本発明に係る半導体メモリセルの積層
型容量部は、シリコン基板lの第一拡散層2に接続した
第一、第二蓄積電極3,4と容量絶縁膜5を介して形成
される対向電極6とにより構成されており、該積層型容
量部は1つのメモリセル領域を通る2本のゲート電極7
上に設けた絶縁膜11の凸部側壁及びゲート電極7の側
壁に形成したものである。7はワード線に接続されてい
るスイッチングトランジスタの第一ゲート電極で、これ
はビット線8に接続されている第二拡散層9と、第一、
第二蓄積電極3,4との間の電荷の移動を制御する。第
二ゲート電極10は隣りのメモリセルのスイッチングト
ランジスタのゲート電極を示している。In FIG. 1, a stacked capacitor section of a semiconductor memory cell according to the present invention is formed by first and second storage electrodes 3 and 4 connected to a first diffusion layer 2 of a silicon substrate l and a capacitor insulating film 5. The stacked capacitor section includes two gate electrodes 7 passing through one memory cell region.
It is formed on the side wall of the convex portion of the insulating film 11 provided above and the side wall of the gate electrode 7. 7 is a first gate electrode of a switching transistor connected to a word line, which is connected to a second diffusion layer 9 connected to a bit line 8;
Controls the movement of charges between the second storage electrodes 3 and 4. The second gate electrode 10 indicates the gate electrode of a switching transistor of an adjacent memory cell.
次に第1図に示す本発明の半導体メモリセルの製造方法
を第2図に基づいて説明する。Next, a method for manufacturing the semiconductor memory cell of the present invention shown in FIG. 1 will be explained based on FIG. 2.
まず、第2図(a)に示すように、p型シリコン基板2
1上の素子間分離領域に絶縁膜22を形成し、さらに素
子領域上にゲート絶縁膜23を形成した後、CVD法を
用いて低抵抗多結晶シリコン、厚い絶縁膜を順次堆積し
、次にゲート電極形状を有するレジスト24をパターニ
ングした後、前記レジスト24をマスクとして前記絶縁
膜、多結晶シリコンを順次エツチング除去しゲート電極
形状を有する絶縁膜25、多結晶シリコン26を形成す
る。First, as shown in FIG. 2(a), a p-type silicon substrate 2
After forming an insulating film 22 in the element isolation region above 1 and further forming a gate insulating film 23 on the element region, low resistance polycrystalline silicon and a thick insulating film are successively deposited using the CVD method. After patterning the resist 24 having the shape of a gate electrode, the insulating film and polycrystalline silicon are sequentially etched away using the resist 24 as a mask to form an insulating film 25 and polycrystalline silicon 26 having the shape of the gate electrode.
次に第2図(ロ)に示すように、前記レジスト24を除
去し、ウェハー全面に塗布したレジストを反応性イオン
エツチング技術(以下RIEと略す)を用いて前記絶縁
膜25表面が現われるまでエッチバックしてゲート電極
間にレジスト27を残した後、少なくとも容量形成部を
被うようにレジスト28をパタニングし、さらに前記レ
ジストをマスクとしてRIE技術を用いて前記絶縁膜2
5をエツチングする。Next, as shown in FIG. 2(B), the resist 24 is removed, and the resist applied to the entire surface of the wafer is etched using reactive ion etching technology (hereinafter abbreviated as RIE) until the surface of the insulating film 25 is exposed. After backing up and leaving a resist 27 between the gate electrodes, a resist 28 is patterned so as to cover at least the capacitor forming portion, and then the insulating film 28 is patterned using the RIE technique using the resist as a mask.
Etch 5.
なお、第2図(C)は第2図6)のA−A ’線断面図
である。Note that FIG. 2(C) is a cross-sectional view taken along the line AA′ of FIG. 2(6).
次に第2図(d)に示すように、前記レジスト27゜2
8を除去した後、イオン注入法を用いて低濃度のn型不
純物例えばリン、砒素を前記シリコン基板21に注入し
て低濃度不純物層(拡散層)29を形成し、その後、C
VD法を用いて絶縁膜30を堆積し、さらにイオン注入
法を用いて高濃度n型不純物を前記シリコン基板21に
注入して高濃度不純物層(拡散層)31を形成する。Next, as shown in FIG. 2(d), the resist 27°2
8, a low concentration n-type impurity such as phosphorus or arsenic is implanted into the silicon substrate 21 using an ion implantation method to form a low concentration impurity layer (diffusion layer) 29.
An insulating film 30 is deposited using a VD method, and a high concentration n-type impurity is implanted into the silicon substrate 21 using an ion implantation method to form a high concentration impurity layer (diffusion layer) 31.
次に第2図(e)に示すように、一つのメモリセル領域
内を通る二本のゲート電極間のみを開口するようにレジ
スト32をバターニングし、前記レジスト32をマスク
としてRIE技術を用いて前記絶縁膜30及びゲート絶
縁膜23を順次エツチング除去する。Next, as shown in FIG. 2(e), the resist 32 is buttered so as to open only between the two gate electrodes passing through one memory cell region, and RIE technology is used with the resist 32 as a mask. Then, the insulating film 30 and the gate insulating film 23 are removed by etching in sequence.
次に第2図ωに示すように、CVD法を用いて低抵抗多
結晶シリコン33を全面に堆積する。Next, as shown in FIG. 2, low-resistance polycrystalline silicon 33 is deposited over the entire surface using the CVD method.
次に第2図Qに示すように、RIE技術を用いて前記多
結晶シリコン33をエツチングし、前記絶縁膜25の側
壁に前記多結晶シリコン33′を残した後、CVD法や
熱酸化法を用いて薄い絶縁膜34を形成し、次にCVD
法を用いて低抵抗多結晶シリコン35を堆積する。Next, as shown in FIG. 2Q, the polycrystalline silicon 33 is etched using the RIE technique, leaving the polycrystalline silicon 33' on the sidewalls of the insulating film 25, and then CVD or thermal oxidation is performed. A thin insulating film 34 is formed using CVD.
A low resistance polycrystalline silicon 35 is deposited using a method.
次に第2図(へ)に示すように、CVD法により絶縁膜
36を堆積した後、ビット線とスイッチングトランジス
タのドレイン領域を結ぶコンタクト孔を少なくとも埋め
るように低抵抗多結晶シリコン37を形成し、さらにC
VD法により絶縁膜38を堆積し、その後ビット線39
と前記多結晶シリコン37をコンタクト孔を通して接続
し、第1図に示す半導体メモリセルを完成させる。Next, as shown in FIG. 2(f), after depositing an insulating film 36 by the CVD method, a low-resistance polycrystalline silicon 37 is formed to at least fill the contact hole connecting the bit line and the drain region of the switching transistor. , and further C
An insulating film 38 is deposited by the VD method, and then a bit line 39 is formed.
and the polycrystalline silicon 37 are connected through contact holes to complete the semiconductor memory cell shown in FIG.
〔発明の効果]
本発明によれば、電荷蓄積電極形成領域をゲート電極上
に設けた絶縁膜の側壁だけでなくゲート電極の側壁にま
で広げ、表面段差を最大限に活用しているため、微細な
メモリセル面積においても電荷蓄積電極形成膜厚を従来
構造より薄く形成でき、かつ十分な蓄積電荷量が確保で
きる。このような表面段差の緩和により製造プロセスが
容易となる。[Effects of the Invention] According to the present invention, the charge storage electrode formation region is extended not only to the sidewalls of the insulating film provided on the gate electrode but also to the sidewalls of the gate electrode, making full use of the surface steps. Even in a small memory cell area, the thickness of the charge storage electrode can be formed thinner than in the conventional structure, and a sufficient amount of stored charge can be ensured. The manufacturing process is facilitated by alleviating such surface steps.
以上述べたように本発明によれば、高集積化に適したメ
モリセルおよびその製造方法を容易に得ることができる
効果を有するものである。As described above, according to the present invention, it is possible to easily obtain a memory cell suitable for high integration and a method for manufacturing the same.
第1図は本発明方法により形成されるメモリセルの模式
的断面図、第2図(a)〜(ロ)は本発明の実施例をプ
ロセスを追って示した模式的断面図、第3図は従来知ら
れているITICセルの模式的断面図である。
1.21・・・シリコン基板FIG. 1 is a schematic cross-sectional view of a memory cell formed by the method of the present invention, FIGS. 1 is a schematic cross-sectional view of a conventionally known ITIC cell. 1.21...Silicon substrate
Claims (2)
メモリセル領域を通る二本のゲート電極上に設けた凸状
絶縁膜の側壁および該ゲート電極の側壁に積層型容量部
を形成したことを特徴とする半導体メモリセル。(1) In a folded bit line type memory cell, a stacked capacitor portion is formed on the sidewalls of a convex insulating film provided on two gate electrodes passing through one memory cell region and on the sidewalls of the gate electrodes. semiconductor memory cell.
ート電極をそれぞれ形成した後、ゲート電極上に凸状絶
縁膜の凸部を形成する工程と、一つのメモリセル領域を
通るゲート電極間にコンタクト孔を開口する工程と、少
なくとも前記凸状絶縁膜の側壁を電荷蓄積電極で被う工
程と、少なくとも前記電荷蓄積電極を容量絶縁膜で被う
工程と、前記容量絶縁膜を介して少なくとも前記電荷蓄
積電極を被うように対向電極を形成する工程とを含むこ
とを特徴とする半導体メモリセルの製造方法。(2) After forming an element isolation region, a gate insulating film, and a gate electrode on a semiconductor substrate, a process of forming a convex part of a convex insulating film on the gate electrode, and a gap between the gate electrodes passing through one memory cell area. a step of opening a contact hole in the convex insulating film, a step of covering at least the side wall of the convex insulating film with a charge storage electrode, a step of covering at least the charge storage electrode with a capacitive insulating film, and a step of covering at least the side wall of the convex insulating film with a capacitive insulating film; A method for manufacturing a semiconductor memory cell, comprising the step of forming a counter electrode so as to cover the charge storage electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1219455A JPH0382156A (en) | 1989-08-25 | 1989-08-25 | Semiconductor memory cell and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1219455A JPH0382156A (en) | 1989-08-25 | 1989-08-25 | Semiconductor memory cell and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0382156A true JPH0382156A (en) | 1991-04-08 |
Family
ID=16735695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1219455A Pending JPH0382156A (en) | 1989-08-25 | 1989-08-25 | Semiconductor memory cell and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0382156A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030031403A (en) * | 2001-10-15 | 2003-04-21 | 신에쓰 가가꾸 고교 가부시끼가이샤 | An abrasive machining plate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0316171A (en) * | 1989-03-09 | 1991-01-24 | Toshiba Corp | Manufacture of semiconductor device |
JPH0364068A (en) * | 1989-08-02 | 1991-03-19 | Mitsubishi Electric Corp | Semiconductor memory and manufacture thereof |
-
1989
- 1989-08-25 JP JP1219455A patent/JPH0382156A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0316171A (en) * | 1989-03-09 | 1991-01-24 | Toshiba Corp | Manufacture of semiconductor device |
JPH0364068A (en) * | 1989-08-02 | 1991-03-19 | Mitsubishi Electric Corp | Semiconductor memory and manufacture thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030031403A (en) * | 2001-10-15 | 2003-04-21 | 신에쓰 가가꾸 고교 가부시끼가이샤 | An abrasive machining plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2906807B2 (en) | Semiconductor memory cell and manufacturing method thereof | |
JP3222944B2 (en) | Method for manufacturing capacitor of DRAM cell | |
JPS6187358A (en) | Semiconductor memory and manufacture thereof | |
JPS63310162A (en) | Mis type semiconductor memory device | |
JPH02312270A (en) | Dram cell and its manufacture | |
JP3134319B2 (en) | Method for manufacturing semiconductor memory | |
JPH0294561A (en) | Semiconductor storage device and manufacture thereof | |
JPS62259464A (en) | Manufacture of semiconductor memory | |
JPH04264767A (en) | Semiconductor device and manufacture thereof | |
JPH01120050A (en) | Semiconductor memory device | |
JPH0382156A (en) | Semiconductor memory cell and manufacture thereof | |
JP2503661B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPS63226955A (en) | Manufacture of capacitive element | |
JP2950550B2 (en) | Method for manufacturing semiconductor memory device | |
JP3177038B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JPH022672A (en) | Semiconductor memory cell and manufacture thereof | |
JP2705146B2 (en) | MOS type semiconductor device | |
JP2827377B2 (en) | Semiconductor integrated circuit | |
JPH02137363A (en) | Semiconductor memory cell and manufacture thereof | |
JPS61234557A (en) | Semiconductor memory device and manufacture thereof | |
KR930009591B1 (en) | Method for manufacturing a memory device with doubled mos cell | |
JP2685833B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JPH02122560A (en) | Semiconductor storage device | |
JP2607508B2 (en) | Semiconductor storage device | |
JPH02234465A (en) | Semiconductor memory and manufacture thereof |