JPS5834959A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5834959A
JPS5834959A JP56134866A JP13486681A JPS5834959A JP S5834959 A JPS5834959 A JP S5834959A JP 56134866 A JP56134866 A JP 56134866A JP 13486681 A JP13486681 A JP 13486681A JP S5834959 A JPS5834959 A JP S5834959A
Authority
JP
Japan
Prior art keywords
substrate
type
field effect
semiconductor substrate
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56134866A
Other languages
Japanese (ja)
Other versions
JPH0612801B2 (en
Inventor
Yoshio Kono
河野 芳雄
Sotohisa Asai
浅井 外壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56134866A priority Critical patent/JPH0612801B2/en
Publication of JPS5834959A publication Critical patent/JPS5834959A/en
Publication of JPH0612801B2 publication Critical patent/JPH0612801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0925Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable a high speed operation, by forming a C FET on a semiconductor substrate constituted of a non-defect layer formed from the surface of the semiconductor substrate to the neighborhood of a well depth and a crystal defect layer formed in the substrate. CONSTITUTION:A CZ substrate is applied to an appropriate low temperature heat treatment, and thus a substrate containing crystal defect nuclei is obtained. When this substrate is heat-treated at a high temperature, oxygen out-diffuses in the neighborhood of the substrate, nuclei are crushed, and thus the non-defect layer 10a is obtained. Nuclei grow in this substrate, and the crystal defect layer 10b is formed. The width of the non-defect layer 10a can be controlled by a heat treatment method and is formed normally to the same degree as the depth of an N type well 2 diffused layer. Then, a C FET is formed on this substrate 10. Thus, a latch-up is not generated, and the formation of fine patterns or a high speed operation is enabled.

Description

【発明の詳細な説明】 この発明紘微細化を可能にする相補型電界効果トランジ
スタを有する半導体装置およびその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having complementary field effect transistors that enables miniaturization, and a method for manufacturing the same.

相補型電界効果トランジスタデバイスは標準の電界効果
デバイスよシ相当に消費電力が少ない利卓があるため、
最近の高密度集積回路化に伴い、従来の電界効果トラン
ジスタデバイスが相補型電界効果トランジスタに置きか
えられるようになった。しかし、この相補型電界効果ト
ランジスタデバイスはP型チャンネル電界効果トランジ
スタとN型チャンネル電界効果トランジスタとを同一基
板上に形成するため、一般的に単純なN型、あるいHp
型の電界効果トランジスタデバイスと比較してパターン
が大きく、動作速度が遅い。しかし、最近では微細加工
技術の向上に伴い、個々のトランジスタが微細化され、
高速性能が得られるようになった。ところで、第1図に
示す相補型電界効果トランジスタデバイスにおいて、P
型チャンネル電界効果トランジスタとN型チャンネル電
界効果トランジスタとを接近させると、寄生のPNP型
およびNPN聾のバイポーラ型トランジスタの電流増幅
率が大きくなシ、PNPN型およびNPNP型寄生すイ
リスタの動作が容易となる。すなわち、もし出力端子か
ら正電圧のノイズが入っ九場合、N型つエール(2)中
の出方端子に1#続するP型拡散層(6)からホールが
注入され、このN型つェール(2)中で少数キャリアと
なる。ここで、微細化のために、N型つェール(2)の
拡散層を浅くすると、少数キャリアはP型基板(1)へ
抜ける確率が高くなる。っまシ、寄生NPN ) :7
ンジスタの電流増幅率が高くなる。P型基板(1)にホ
ールが注入されると、電源電圧Vssが印加するN型拡
散層(1)よりホールと再結合するために電子が注入さ
れ、P型基板(1)では少数キャリアとなル、一部の電
子ll1N型ウエール(2)に到達する。っまシ、微細
化のために、N型つェールC1)とP型電界効果トラン
ジスタを近づけると、寄生NPN ) jンジスタの実
効ベース幅が狭くなって、N7ウエールQ)に電子が逆
注入されやすくなる。もしN型つェール(2)に多量の
電子が注入すると、このN型つェール(2)のP型拡散
層(6)からホールが注入され、一部はN型つェールQ
)を通過し、PII基板(1)に注入され、その結果ま
すますN型つエール(2)に電子が注入され、最後には
電源電圧在Cと電源電圧VSSとに定常的な電流が流れ
、いわゆるラッチアップ現象が生ずる。また、もし出力
端子に負の電圧のノイズが加わった場合は最初にN型チ
ャンネル電界効果トランジスタの出力端子に接続されて
いるN型拡散層(7)から電子が注入され、最後にラッ
チアップが起きる。このラッチアップ現象はウエールを
P型にしても同様に起きる。なお、第1図において、(
3)ii分離酸化膜、(4)はゲート酸化膜、5)は多
孔質シリコン、(8)はリンガラス膜、(9)は電極で
ある。
Complementary field effect transistor devices have the advantage of consuming considerably less power than standard field effect devices.
With the recent trend toward higher density integration, traditional field effect transistor devices have been replaced by complementary field effect transistors. However, since this complementary field effect transistor device forms a P-type channel field effect transistor and an N-type channel field effect transistor on the same substrate, it is generally a simple N-type or Hp
Compared to conventional field effect transistor devices, the pattern is larger and the operating speed is slower. However, with the recent improvement in microfabrication technology, individual transistors have become smaller and smaller.
High-speed performance is now available. By the way, in the complementary field effect transistor device shown in FIG.
When the type channel field effect transistor and the N type channel field effect transistor are brought close together, the current amplification factor of the parasitic PNP type and NPN type bipolar type transistor becomes large, and the operation of the PNPN type and NPNP type parasitic iris is facilitated. becomes. That is, if positive voltage noise enters from the output terminal, holes will be injected from the P-type diffusion layer (6) connected to the output terminal of the N-type wire (2), and this (2) Become a minority carrier. Here, if the diffusion layer of the N-type thale (2) is made shallow for miniaturization, the probability that minority carriers will escape to the P-type substrate (1) increases. Parasitic NPN): 7
The current amplification factor of the transistor increases. When holes are injected into the P-type substrate (1), electrons are injected from the N-type diffusion layer (1) to which the power supply voltage Vss is applied to recombine with the holes, and the P-type substrate (1) becomes minority carriers. Therefore, some electrons reach the ll1N type well (2). However, when an N-type wale C1) and a P-type field effect transistor are brought close together for miniaturization, the effective base width of the parasitic NPN transistor becomes narrower, and electrons are injected back into the N7 well Q). It becomes easier. If a large amount of electrons are injected into the N-type thale (2), holes will be injected from the P-type diffusion layer (6) of the N-type thale (2), and some of them will be injected into the N-type thale Q.
) and are injected into the PII substrate (1), and as a result, more and more electrons are injected into the N-type tube (2), and finally a steady current flows between the power supply voltage C and the power supply voltage VSS. , a so-called latch-up phenomenon occurs. Also, if negative voltage noise is applied to the output terminal, electrons are first injected from the N-type diffusion layer (7) connected to the output terminal of the N-type channel field effect transistor, and finally latch-up occurs. get up. This latch-up phenomenon similarly occurs even if the wale is made of P type. In addition, in Figure 1, (
3) ii isolation oxide film, (4) a gate oxide film, 5) porous silicon, (8) a phosphorus glass film, and (9) an electrode.

このように、従来の相補型電界効果トランジスタを有す
る半導体装置ではP型電界効果トランジスタとN型電界
効果トランジスタとが接近することによシ、小さいノイ
ズによってもラッチアップが起こる。したがって、この
ラッチアップを防ぐためにはこのP型およびN型の電界
効果トランジスタをある程度離しておく必要があシ、微
細化のさまたげとなる欠点があった。
As described above, in a conventional semiconductor device having complementary field effect transistors, latch-up occurs due to the proximity of the P-type field effect transistor and the N-type field effect transistor, even due to small noise. Therefore, in order to prevent this latch-up, it is necessary to separate the P-type and N-type field effect transistors to some extent, which has the drawback of hindering miniaturization.

したがって、この発明の目的は微細化が可能であシ、シ
かもラッチアップを有効に抑制することができる半導体
装置およびその製造方法を提供するものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor device that can be miniaturized and can effectively suppress latch-up, and a method for manufacturing the same.

このような目的を達成するため、この発明は半導体基板
表面からウエール深さ近傍までに形成される無欠陥層お
よびその基板内部に形成した結晶欠陥層からなる半導体
基板上に相補型電界効果トランジスタを形成するもので
あり、以下実施例を用いて詳細に説明する。
In order to achieve such an object, the present invention provides a complementary field effect transistor on a semiconductor substrate consisting of a defect-free layer formed from the surface of the semiconductor substrate to near the depth of the wale and a crystal defect layer formed inside the substrate. This will be described in detail below using examples.

第2図はこの発明に係る半導体装置およびその製造方法
の一実施例を示す断面図である。同図において、(10
)は表面からウエールfRキ近傍まで形成され九無欠陥
層(10m)および内部に形成された結晶欠陥層(10
b)とを備えたP型基板である。
FIG. 2 is a sectional view showing an embodiment of a semiconductor device and a method for manufacturing the same according to the present invention. In the same figure, (10
) is formed from the surface to the vicinity of the wale fR and has a nine defect-free layer (10 m) and a crystal defect layer (10 m) formed inside.
b) It is a P-type substrate.

次に、上記構成による半導体装置のラッチアップが有効
に抑制される動作について説明する。例えば出力端子に
正電圧のノイズが入った場合、N型つエール(2)中の
出力端子に接続されているP型拡散層(6)からホール
が注入され、一部はP型基板(10)に注入されるが、
このP型基板(10)の結晶欠陥層(11111b)に
より再結合され、ラッチアップが起こbにくくなる。例
えばP型基板(10)にホールが残って、N型チャンネ
ル電界効果トランジスタのN型拡散層(7)から電子が
注入されても、電子が結晶欠陥層(10b)で再結合さ
れ、ラッチアップを防ぐことができる。また、例えば出
力端子に負電圧のノイズが入った場合も同様に、N型電
界効果トランジスタの出力端子に接続されているN型拡
散層(7)から注入された電子は結晶欠陥層(tab)
で結合され、N型つエール(2)から逆注入されるホー
ルも再結合されてラッチアップが防止される。また、能
動領域は無欠陥層(1軛)に形成されているため、易動
度の低下、リーク電流の増大はないことはもちろんであ
る。
Next, a description will be given of an operation in which latch-up of the semiconductor device with the above configuration is effectively suppressed. For example, when positive voltage noise enters the output terminal, holes are injected from the P-type diffusion layer (6) connected to the output terminal in the N-type substrate (2), and some of them are ), but
They are recombined by the crystal defect layer (11111b) of this P-type substrate (10), making it difficult for latch-up to occur. For example, even if holes remain in the P-type substrate (10) and electrons are injected from the N-type diffusion layer (7) of the N-type channel field effect transistor, the electrons are recombined in the crystal defect layer (10b) and latch up. can be prevented. Similarly, when negative voltage noise enters the output terminal, for example, electrons injected from the N-type diffusion layer (7) connected to the output terminal of the N-type field effect transistor are transferred to the crystal defect layer (Tab).
The holes injected back from the N-type tube (2) are also recombined to prevent latch-up. Furthermore, since the active region is formed in a defect-free layer (one yoke), there is of course no decrease in mobility and no increase in leakage current.

次に、前記P型基板(10)の製造方法について第3図
(&)および第3図(b)を参照して説明する。まず、
CZ基板を適当な低温熱処理を行なうと、第3図(a)
に点(11)で示すように、結晶欠陥の核を含んだ基板
(12)が得られる。この基板(12)を高温で熱処理
を行なうと、基板(12)の表面近くでは酸素が外方拡
散して核がつぶれ無欠陥層(lea)が得られる。
Next, a method for manufacturing the P-type substrate (10) will be explained with reference to FIGS. 3(&) and 3(b). first,
When the CZ substrate is subjected to appropriate low-temperature heat treatment, the result is shown in Figure 3 (a).
As shown by point (11), a substrate (12) containing crystal defect nuclei is obtained. When this substrate (12) is heat-treated at a high temperature, oxygen diffuses outward near the surface of the substrate (12), crushing the nuclei, and obtaining a defect-free layer (lea).

一方、この基板(12)の内部では核が成長し、第3図
伽)に示すように、結晶欠陥層(1−)が形成される。
On the other hand, nuclei grow inside this substrate (12), and a crystal defect layer (1-) is formed as shown in FIG. 3).

表お、上記無欠陥層(10m)の幅は熱処理方法によっ
て制御することができ、通常は第2図に示したように、
N型つエールQ)の拡散層の深さと同じ程度に形成され
る。
In addition, the width of the defect-free layer (10 m) can be controlled by the heat treatment method, and usually, as shown in Figure 2,
It is formed to the same depth as the diffusion layer of the N-type ale Q).

なお、上記実施例ではP型基板を用いてN型つエール°
を形成したが、N−基板を用いてP型つエールを形成し
てもよい仁とはもちろんである。まえ、ウェール形成前
での熱処理によって結晶欠陥層を設けているが、ウエー
ル形成後での熱処理によって設けてもよいこと社もちろ
んである。また、熱処理ではなく、イオン注入などのダ
メツジによって結晶欠陥層を形成してもよいことはもち
ろんである。
Note that in the above embodiment, a P-type substrate is used and an N-type substrate is used.
However, it is of course possible to form a P-type layer using an N-substrate. Although the crystal defect layer is provided by heat treatment before forming the wale, it is of course possible to provide it by heat treatment after forming the wale. Furthermore, it goes without saying that the crystal defect layer may be formed by damage such as ion implantation instead of heat treatment.

以上詳細に説明したように、この発明に係る半導体装置
によればノイズによってキャリアが異常発生しても、結
晶欠陥層によって再結合させられ、ラッチアップが起き
ない。このため、微細なパターン形成が可能になシ、高
速動作が可能になると共に製造の歩留シが高くなるなど
の効果がある。
As described above in detail, according to the semiconductor device according to the present invention, even if carriers are abnormally generated due to noise, they are recombined by the crystal defect layer and latch-up does not occur. Therefore, it is possible to form fine patterns, to operate at high speed, and to increase the manufacturing yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の相補型電界効果トランジスタを示す断面
図、第2図はこの発明に係る半導体装置の一実施例を示
す断面図、第3図(1)および第3図伽)は第2図に示
す基板の製造方法の一実施filを示す平面図である。 (1)・・・・P型基板、CI)・・・・N型つエール
、(3)・・・・分離酸化膜、(4)・・・・ゲート酸
化膜、(5)・・・・多孔質シリコン、(6)・・・・
P型拡散層、σ)・Φ・・N型拡散層、(8)・・・・
リンガラス層、(s)−−−@を極、(10)−−−−
P型基板、(10m)・・・・無欠陥層、(10k)・
・・・結晶欠陥層、(11)・・・・点、(12)・−
・一基板。 なお、同一符号は同一または相当部分を示す。 代理人 蔦 野 信 −(外1名) 第1図 第2図 第3図(0) 1 2 第3図(b)
FIG. 1 is a sectional view showing a conventional complementary field effect transistor, FIG. 2 is a sectional view showing an embodiment of a semiconductor device according to the present invention, and FIGS. FIG. 2 is a plan view showing one implementation of the method for manufacturing the substrate shown in the figure. (1)...P-type substrate, CI)...N-type tube, (3)...Isolation oxide film, (4)...Gate oxide film, (5)...・Porous silicon, (6)...
P-type diffusion layer, σ)・Φ...N-type diffusion layer, (8)...
Phosphorous glass layer, (s)---@ pole, (10)----
P-type substrate, (10m)...defect-free layer, (10k)...
...Crystal defect layer, (11) ... point, (12) ...
・One board. Note that the same reference numerals indicate the same or equivalent parts. Agent Shin Tsutano - (1 other person) Figure 1 Figure 2 Figure 3 (0) 1 2 Figure 3 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板表面からウエール深さ近傍−でに形成
された無欠陥層およびその基板内部に形成し九結晶欠陥
層からなる半導体基板上に相補型電界効果トランジスタ
を形成することを特徴とする半導体装置。
(1) A complementary field effect transistor is formed on a semiconductor substrate consisting of a defect-free layer formed from the surface of the semiconductor substrate to the vicinity of the wale depth and a nine-crystalline defect layer formed inside the substrate. Semiconductor equipment.
(2)半導体基板を低温熱処理によ多結晶欠陥の核を含
むように形成するgio工程と、この第1の工程の後の
半導体基板を高温で熱処理し、半導体基板表面からウエ
ール深さ近傍までは酸素が外方拡散して核がつぶれ無欠
陥層となる第2の工程と、とのgzの工程の彼の半導体
基板上に相補型電界効果トランジスタを形成する館3の
工程とからなることを特徴とする半導体装置の製造方法
(2) A GIO process in which the semiconductor substrate is formed to contain polycrystalline defect nuclei by low-temperature heat treatment, and the semiconductor substrate after this first process is heat-treated at high temperature to extend from the semiconductor substrate surface to the vicinity of the wale depth. consists of a second step in which oxygen diffuses out and the nucleus collapses to form a defect-free layer, and a third step in which a complementary field effect transistor is formed on the semiconductor substrate of the gz step. A method for manufacturing a semiconductor device, characterized by:
JP56134866A 1981-08-25 1981-08-25 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH0612801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134866A JPH0612801B2 (en) 1981-08-25 1981-08-25 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134866A JPH0612801B2 (en) 1981-08-25 1981-08-25 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS5834959A true JPS5834959A (en) 1983-03-01
JPH0612801B2 JPH0612801B2 (en) 1994-02-16

Family

ID=15138299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134866A Expired - Lifetime JPH0612801B2 (en) 1981-08-25 1981-08-25 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0612801B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143563A (en) * 1982-02-22 1983-08-26 Hitachi Ltd Semiconductor device and its manufacture
JPS615568A (en) * 1984-05-22 1986-01-11 Mitsubishi Electric Corp Manufacture of complementary mos integrated circuit
JPS62104486U (en) * 1985-12-23 1987-07-03
JPH01161756A (en) * 1987-11-18 1989-06-26 Intersil Inc Cmos integrated circuit and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143563A (en) * 1982-02-22 1983-08-26 Hitachi Ltd Semiconductor device and its manufacture
JPH0241175B2 (en) * 1982-02-22 1990-09-14 Hitachi Ltd
JPS615568A (en) * 1984-05-22 1986-01-11 Mitsubishi Electric Corp Manufacture of complementary mos integrated circuit
JPH0244152B2 (en) * 1984-05-22 1990-10-02 Mitsubishi Electric Corp
JPS62104486U (en) * 1985-12-23 1987-07-03
JPH0525267Y2 (en) * 1985-12-23 1993-06-25
JPH01161756A (en) * 1987-11-18 1989-06-26 Intersil Inc Cmos integrated circuit and its manufacture

Also Published As

Publication number Publication date
JPH0612801B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US4472873A (en) Method for forming submicron bipolar transistors without epitaxial growth and the resulting structure
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JPS5834959A (en) Semiconductor device and manufacture thereof
JPH09293797A (en) Semiconductor device and manufacture thereof
JPH1055976A (en) Manufacture of semiconductor device having various buried regions
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPH01164062A (en) Manufacture of semiconductor device
JPH03222357A (en) Semiconductor device and manufacture thereof
CN116721919A (en) Manufacturing method of NPN type digital transistor chip structure
JPH04174554A (en) Semiconductor device and its manufacture
KR930004298B1 (en) Making method of npn type transistor
KR100237757B1 (en) Method of forming a device isolation film of semiconductor device
JPH06224209A (en) Vertical transistor and its manufacture
JPS58154266A (en) Manufacture of semiconductor device
JPH01186673A (en) Semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH0786388A (en) Semiconductor device and manufacture thereof
JPS641933B2 (en)
JPS5927524A (en) Fabrication of semiconductor device
JPH01186669A (en) Manufacture of semiconductor device
JPS6072258A (en) Formation of well
JPS63188967A (en) Bipolar transistor and manufacture thereof
JPS6184049A (en) Manufacture of semiconductor device
JPS5834951B2 (en) Manufacturing method of semiconductor device
JPH05206388A (en) Integrated circuit device and its manufacture