JPS615568A - Manufacture of complementary mos integrated circuit - Google Patents

Manufacture of complementary mos integrated circuit

Info

Publication number
JPS615568A
JPS615568A JP59104931A JP10493184A JPS615568A JP S615568 A JPS615568 A JP S615568A JP 59104931 A JP59104931 A JP 59104931A JP 10493184 A JP10493184 A JP 10493184A JP S615568 A JPS615568 A JP S615568A
Authority
JP
Japan
Prior art keywords
oxygen
substrate
donors
integrated circuit
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59104931A
Other languages
Japanese (ja)
Other versions
JPH0244152B2 (en
Inventor
Yoshio Kono
河野 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59104931A priority Critical patent/JPS615568A/en
Publication of JPS615568A publication Critical patent/JPS615568A/en
Publication of JPH0244152B2 publication Critical patent/JPH0244152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To greatly improve the latchup-withstanding capability by a method wherein an N<-> substrate containing a high concentration of oxygen is exposed to a high temperature for the diffusion outward of the contained oxygen and another stage of heat treatment follows for the generation of oxygen donors. CONSTITUTION:When an N<-> substrate 1 containing a high concentration of oxygen is exposed to a high temperature, of 1,150 deg.C for example, the contained oxygen is diffused outward and, when the substrate 1 is exposed to 450 deg.C for dozens of hours, oxygen donors are created. Few oxygen donors are created on the surface of the substrate 1 where oxygen is low in concentration. Oxygen is caused to be diffused outward before the formation of a P well 2. Conventional MOS- producing steps are followed, which terminate when metal is vapor-deposited for an electrode wiring 8. After the lower-temperature heat treatment for the creation of oxygen donors, the electrode wiring 8 is completed. In this design, for the same reason as the formation of an N<-> epitaxial layer on the N<-> substrate 1, the latchup-withstanding capability is enhanced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、N基板を用いた相補型MOS集積回路装置
(0MOSIC)K係わり、酸素ドナを発生させること
によりラッチアップ耐量を増大させる製造方法に関する
ものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a complementary MOS integrated circuit device (0MOSIC) K using an N substrate, and relates to a manufacturing method for increasing latch-up resistance by generating oxygen donors. It is something.

〔従来技術〕[Prior art]

従来、N基板を用いy、=CMOSICは第1図に示す
構造tしている。ここでは、0MOSとして基本的な回
路のインバータ7例にとっている。
Conventionally, a CMOSIC using an N substrate has the structure shown in FIG. Here, seven examples of inverters with basic circuits are taken as 0MOS.

この図において、1はN−基板、2はPウェル、3、s
’、fはP+拡散層、4,4′はN+拡散層、5はゲー
ト酸化膜、6は多結晶シリコン、7はC’VD酸化膜、
8は電極配線、INは入方端、OUTは出力端、■8B
、■DDは電源である。また、7rlはNチャンネルM
OSトランジスタ、Tr 2はPチャンネルMOS)ラ
ンリスクを示す。
In this figure, 1 is N-substrate, 2 is P-well, 3, s
', f are P+ diffusion layers, 4, 4' are N+ diffusion layers, 5 is gate oxide film, 6 is polycrystalline silicon, 7 is C'VD oxide film,
8 is the electrode wiring, IN is the input end, OUT is the output end, ■8B
, ■DD is a power supply. Also, 7rl is N channel M
OS transistor (Tr 2 is P-channel MOS) indicates run risk.

0MOSICは低消費電力で論理振幅が太き(ノイズマ
ージンが大きい等長所を持っており、超LSIではNM
o8K取って置き換わるものと期待されている。
0MOSC has advantages such as low power consumption and large logic amplitude (large noise margin), and in VLSI, NM
It is expected to replace o8K.

ところが、0MOS構造では、寄生サイリスク動作によ
りラッチアップ現象が起き易く、微細化に伴いま丁ま丁
深刻な問題となっている。
However, in the 0MOS structure, a latch-up phenomenon is likely to occur due to parasitic silicon risk operation, and this has become a serious problem with miniaturization.

第1図において、ラッチアンプ発生の原因を説明する。In FIG. 1, the cause of latch amplifier generation will be explained.

もし、出力端OUTから■の雑音電流が入った場合には
、PチャンネルのドレインであるP 拡散層3′からホ
ールが注入さn、横型寄生PNPトランジリスかオン状
態となり、Pフェル2内にコンフタ電流(ホール)が流
れ、Pシェル2の電位が上昇する。この時、Pシェル2
の、電位が拡散ポテンシャルより高くなると、Nチャン
ネルMOS)ランリスタTrl のソースは順バイアス
となり、縦型寄生NPN )ランリスタがオン状態とな
り、N−基板1にフレフタ電流(電子ンが流入し、N−
基板1の電位が降下してPチャンネルMOS)ランジス
タ丁r2のソース(P拡散層3)側か順バイアスとなり
、積属寄生PNP)ランリスタがオン状態となってPフ
ェル2!ICホールを注入する。このように正帰還がか
へり、電源を切らないと電源VD、 −V、、間に異常
電流が流れ続け、最後にはICも破壊してしまう。
If a noise current of ■ enters from the output terminal OUT, holes are injected from the P diffusion layer 3', which is the drain of the P channel, and the lateral parasitic PNP transistor turns on, causing a comverter in the P fer 2. A current (hole) flows and the potential of the P shell 2 increases. At this time, P shell 2
When the potential of N-channel MOS) becomes higher than the diffusion potential, the source of the N-channel MOS) run lister Trl becomes forward biased, the vertical parasitic NPN) run lister is turned on, and a flefter current (electrons flow into the N- substrate 1, causing an N-
The potential of the substrate 1 drops, and the source (P diffusion layer 3) side of the P-channel MOS transistor (R2) becomes forward biased, and the parasitic PNP) run resistor turns on, causing the P-channel MOS transistor (R2) to become forward biased. Inject IC holes. In this way, if the positive feedback is not turned off and the power is not turned off, abnormal current will continue to flow between the power supplies VD, -V, and eventually destroy the IC.

一方、出力端00丁Vceの雑音電流が入つに場合には
、N−7−ヤンネルMOSトランジスタTrlのドレイ
ンであるN 拡散層4′から電子が注入されN−基板1
に電子が入ることKより、上記と同じ理由でラッチアン
プが起きる。ラッチアンプ耐量の増大法として上記の原
理から、構盤寄生PNPトランジスタと縦型寄生NPN
)ランリスタの電流増幅率を低下させる方法があるが、
微細化に伴いこの方法には限界かあることは周知の事実
である。一方、Pシェル2あるいはN−基板1の電位の
変動を抑制する方法としては、例えば第1図に示すよう
忙、ソースであるN 拡散層4の近くに電位を安定化さ
せるためKN  拡散層4と逆導電禿のP 拡散層3′
′を設げてN 拡散層4と共通に連結する(共通フンタ
フトン方法が採用されている。
On the other hand, when a noise current of 00 Vce enters the output terminal, electrons are injected from the N diffusion layer 4', which is the drain of the N-7 channel MOS transistor Trl, and the N-substrate 1
Since electrons enter K, a latch amplifier occurs for the same reason as above. As a method of increasing the latch amplifier withstand capability, based on the above principle, the structural parasitic PNP transistor and the vertical parasitic NPN
) There is a method to reduce the current amplification factor of the run lister, but
It is a well-known fact that this method has its limits as miniaturization progresses. On the other hand, as a method of suppressing fluctuations in the potential of the P shell 2 or the N− substrate 1, for example, as shown in FIG. and reverse conductive P diffusion layer 3'
' is provided and commonly connected to the N diffusion layer 4 (a common method is adopted).

第1図ではPチャンネルMOS)ランリスタTr2のソ
ース側、すなわちP 拡散層3側では共通コンタクトを
使用していないが、一般的にはラッチ7ツプを防ぐkめ
に共通コンタクトが採用されている。しかしながら、例
えばスタティックRAMのようK、メモリサイズを小さ
くてるためKは共通コンタクトが取れず、第1図のよう
な構造になることも多く・う7チア7プ耐量が低゛原因
とな      1つている。また、Pシェル2および
N−基板1の電位の変動を防ぐために−P’7エル2の
濃度およびN−基板1の濃度を上げることもラッチアッ
プを防止する手段であるが、N−基板1の不純物濃度を
上昇させると、Pシェル2の不純物濃度を上げる必安が
生じ、しぎいtlL vTnの制御か非常に困難である
。この欠点を補うπめに、第2図忙示すよ5K、高濃度
基板9上KN−エピタキシャル層10を形成する方法が
あるが、エピタキシャル成長1RVC生ずるオートドー
ピングによってしきい値VTIIがばらつき、まに1価
格の上昇あるいはエピタキシャル成長に伴う欠陥の発生
があるなどの欠点があつに0 〔発明の概要〕 この発明は、上記のような従来のものの欠点ケ除去する
ためKなされたもので、エピタキシャル層を形成するこ
となく、Nll基板の濃度を上げ、かつ、半導体表面は
低濃度のままとし、しきい値vTヨの制御が容易でラン
チアンプ耐量を大幅に増大することができる相補型MO
S集積回路を提供することを目的としている。以下この
発明の一実施例を図面について説明する。
In Figure 1, a common contact is not used on the source side of the P-channel MOS (MOS) run lister Tr2, that is, on the P diffusion layer 3 side, but generally a common contact is used to prevent latch failure. . However, for example, in static RAM, K cannot make common contact because the memory size is small, and the structure often becomes like the one shown in Figure 1. One of the reasons is that the chip resistance is low. There is. In addition, increasing the concentration of -P'7 L2 and the concentration of N-substrate 1 in order to prevent fluctuations in the potentials of P shell 2 and N-substrate 1 is also a means to prevent latch-up, but N-substrate 1 If the impurity concentration of P shell 2 is increased, it becomes necessary to increase the impurity concentration of P shell 2, and it is very difficult to control the threshold tlLvTn. To compensate for this drawback, there is a method of forming a 5K, KN-epitaxial layer 10 on a highly doped substrate 9, as shown in Figure 2, but the threshold value VTII varies due to autodoping caused by epitaxial growth 1RVC, and [Summary of the Invention] This invention has been made to eliminate the drawbacks of the conventional method as described above, and is a method for forming an epitaxial layer. Complementary MO can increase the concentration of the Nll substrate and leave the semiconductor surface at a low concentration without causing any damage, and the threshold value vT can be easily controlled and the launch amplifier withstand capability can be greatly increased.
The purpose is to provide S integrated circuits. An embodiment of the present invention will be described below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

高濃度酸素を含むN−基板、例えば20Ω傭で1、8 
x 10”am−” (DM板YKm、例えば1150
℃で熱処理すると酸素は外方拡散され、菖3図(a)の
(イ)、(a)K示すような酸素濃度プロファイルとな
る。こf′Lを低温、例えば450℃で十数時間ないし
数十時間熱処理を施丁と1〜3XIO” x−”の酸素
ドナが発生するが、N−基板1の表面では酸素が少ない
kめはとんど酸素ドナが発生しておらず、2O2cmJ
/C相当する不純物濃度になっている。こttyt(第
3図(b)の(イ)、(ロ)忙示す。
N-substrate containing high concentration of oxygen, e.g. 1,8 at 20Ω
x 10"am-" (DM board YKm, e.g. 1150
When the heat treatment is performed at .degree. C., oxygen is diffused outward, resulting in an oxygen concentration profile as shown in FIG. When this f′L is heat-treated at a low temperature, for example, 450° C., for more than 10 to several tens of hours, oxygen donors of 1 to 3 There is almost no oxygen donor generated, and 2O2cmJ
The impurity concentration is equivalent to /C. (Fig. 3(b), (a) and (b) are busy).

このことは1.トランジスタを通常の70−と全く同じ
方法で形成することかできることを意味している。文だ
し、酸素ドナは500〜550℃以上で短時間に消滅す
るか、温度さえ上げなければ安定である。つまり、酸素
ドナを発生させる熱処理は、できるだけ後工程、例えば
電極配線直前忙行い、その後は400℃以上の熱処理に
さらされることがないように丁べきであるが7、通常、
電極形成のための金属蒸着後のプロセスツー−は上記を
満足しているため、特に問題となることがない。
This is 1. This means that the transistor can be formed in exactly the same way as a normal 70-. As the text suggests, oxygen donors disappear in a short time at temperatures above 500 to 550°C, or are stable unless the temperature is raised. In other words, the heat treatment to generate oxygen donors should be carried out as quickly as possible in subsequent processes, for example, immediately before electrode wiring, and thereafter should not be exposed to heat treatment at temperatures above 400°C7.
Since the process after metal vapor deposition for electrode formation satisfies the above requirements, there is no particular problem.

具体的には、Pウェル2を形成する以前に酸素を外方拡
散させ、その後電極配線B用の金属蒸着。
Specifically, before forming the P-well 2, oxygen is diffused outward, and then the metal for the electrode wiring B is vapor-deposited.

までは通常のMOSプロセスを行う。その後、低温熱処
理にて酸素ドナを発生させた後、金属蒸着を行い、パタ
ーニングして電極配置!i!8を形成後バツシベーショ
ン工程を行う。この時、N−基板1の裏面の最浅゛面は
酸素ドナは発生しておらず、高゛抵抗となっているため
裏面研磨する必要がある。
Up to this point, normal MOS processes are performed. After that, we generate oxygen donors through low-temperature heat treatment, then perform metal vapor deposition, patterning, and electrode placement! i! After forming 8, a bathivation process is performed. At this time, since no oxygen donors are generated on the shallowest surface of the back surface of the N-substrate 1 and the resistance is high, it is necessary to polish the back surface.

以上の方法によれば、N−基板1上KN−エピタキシャ
ル層ン形成したと同じ理由でラッチアップ耐量が大きく
なり、かつ、安価で安定しに相補型MOS集積回路を作
ることができる。
According to the above method, the latch-up resistance is increased for the same reason as the formation of the KN-epitaxial layer on the N-substrate 1, and a complementary MOS integrated circuit can be manufactured stably at low cost.

第4図はこの発明による相補型MOS集積回路の断面図
を示し、11は酸素ドナを発生させKN基板であり、そ
の他は第1図と同じである。
FIG. 4 shows a cross-sectional view of a complementary MOS integrated circuit according to the present invention, in which reference numeral 11 is a KN substrate that generates oxygen donors, and the other features are the same as in FIG. 1.

なお、上記実施例では、PチャンネルR%08)ランジ
スタ用にはNウェルを形成していないが、Nウェルを形
成しても同じ効果があることはもちろんのことである。
In the above embodiment, an N-well is not formed for the P-channel R%08) transistor, but it goes without saying that the same effect can be obtained even if an N-well is formed.

また、上記実施例では1、P7−c−ル形成前に酸素の
外方拡散を行っているが、通常、ウェル形成時には高温
に長時間保持さn、酸素か十分外方拡散さjることもあ
るため、低温熱処理のみで上記の目的を達することもあ
る。
In addition, in the above embodiment, 1. Outward diffusion of oxygen is performed before forming the P7-c-hole, but normally, when forming the well, the well is kept at a high temperature for a long time, and the oxygen is sufficiently outwardly diffused. Therefore, the above objective may be achieved by low-temperature heat treatment alone.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、高濃度酸素を含むN
−基板を高温にて酸素を外方に拡散する工程と、450
℃近辺で長時間熱処理して酸素ドナな発生させる工程を
有するので、N−基板上KN−エピタキシャル層を形成
し瓦のと同じとなり、N−基板の内部のみ選択的に不純
物が高濃度にできるため、ランチアップ耐量が大きく、
大きなプロセスの変更を伴うことな(、CMOSIC!
作ることができる利点がある。
As explained above, the present invention is directed to N containing highly concentrated oxygen.
- Diffusion of oxygen outward from the substrate at high temperature;
Since it involves a process of heat treatment at around ℃ for a long time to generate oxygen donors, a KN-epitaxial layer is formed on the N-substrate, similar to that of a roof tile, and impurities can be selectively concentrated only inside the N-substrate. Therefore, the launch-up resistance is large,
It does not involve major process changes (CMOSIC!
There are advantages that can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のCMOS集積回路の断面図、第2図k”
XN  基板KN−エピタキシャル層を形成しイ に従来のCMOS集積回路の断面図、第3図(a)。 (b)は酸素濃度と酸素ドナの発生分布をそれぞれ示す
図で、各(イン図はN−基板の断面図、各(ロ)図は酸
素濃度と酸素ドナ量のプロファイルを示し。 ゛第4図はこの発明の一実施例忙よる相補型MOS集積
回路の断面図である。 図中、1はN−基板、2はPウェル、s 、 s’、 
s:はP+拡散層、4,4′はN+拡散層、5はゲート
酸化膜、6は多結晶シリコン、1はCVD酸化膜、8は
電極配線、11はN基板である。 なお、図中の同一符号は同一または相当部分を示す・ 代理人 大岩増雄   (外2名λ 第1図 ト ! ? 亀 第3図 (a) (イ)            (ロ)手続補正書(自
発) 昭和 6% 7月26日 1、事件の表示   特願昭59−104931号2、
発明の名称  相補型MOSII4積回路の製造方法3
、補正をする者 、5.補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第6頁2行の「20Ω(至)で」の次(こ
、「、酸素濃度が」を挿入する。 “ (2)同じく第6壓18行の「400℃」を、「450
℃」と補正する。 以上 ゛               〜 汽
Figure 1 is a cross-sectional view of a conventional CMOS integrated circuit, Figure 2 is a cross-sectional view of a conventional CMOS integrated circuit.
FIG. 3(a) is a sectional view of a conventional CMOS integrated circuit on which an epitaxial layer is formed. (b) is a diagram showing the oxygen concentration and the distribution of oxygen donor generation, each (in) is a cross-sectional view of the N-substrate, and each (b) is a diagram showing the oxygen concentration and the oxygen donor amount profile. The figure is a cross-sectional view of a complementary MOS integrated circuit according to an embodiment of the present invention. In the figure, 1 is an N-substrate, 2 is a P-well, s, s',
s: is a P+ diffusion layer, 4 and 4' are N+ diffusion layers, 5 is a gate oxide film, 6 is polycrystalline silicon, 1 is a CVD oxide film, 8 is an electrode wiring, and 11 is an N substrate. In addition, the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa (2 others λ Figure 1 To!? Turtle Figure 3 (a) (a) (b) Procedural amendment (voluntary) Showa 6% July 26th 1, Incident Display Patent Application No. 104931/1982 2,
Title of the invention Manufacturing method 3 of complementary MOSII quadruple product circuit
, the person making the correction, 5. Column 6 of Detailed Description of the Invention in the Specification Subject to Amendment, Contents of Amendment (1) Insert ``, oxygen concentration'' next to ``at 20 Ω (to)'' on page 6, line 2 of the specification. “ (2) Similarly, “400℃” in line 18 of the 6th kan is changed to “450℃”.
℃”. That's all~

Claims (1)

【特許請求の範囲】[Claims] 高濃度酸素を含むN^−基板を高温にて酸素を外方拡散
する工程と、少なくともPウェルを設け、前記N^−基
板中にPチャンネルのMOSトランジスタを、また、前
記Pウェル内にNチャンネルのMOSトランジスタを形
成する工程と、450℃近辺で長時間熱処理して酸素ド
ナを発生させる工程とを含むことを特徴とする相補型M
OS集積回路の製造方法。
A step of outwardly diffusing oxygen from an N^-substrate containing a high concentration of oxygen at high temperature, providing at least a P-well, a P-channel MOS transistor in the N^-substrate, and an N-well in the P-well. A complementary type M characterized by including a step of forming a channel MOS transistor and a step of generating oxygen donors by heat treatment at around 450° C. for a long time.
A method for manufacturing an OS integrated circuit.
JP59104931A 1984-05-22 1984-05-22 Manufacture of complementary mos integrated circuit Granted JPS615568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104931A JPS615568A (en) 1984-05-22 1984-05-22 Manufacture of complementary mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104931A JPS615568A (en) 1984-05-22 1984-05-22 Manufacture of complementary mos integrated circuit

Publications (2)

Publication Number Publication Date
JPS615568A true JPS615568A (en) 1986-01-11
JPH0244152B2 JPH0244152B2 (en) 1990-10-02

Family

ID=14393839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104931A Granted JPS615568A (en) 1984-05-22 1984-05-22 Manufacture of complementary mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS615568A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834959A (en) * 1981-08-25 1983-03-01 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPS58143563A (en) * 1982-02-22 1983-08-26 Hitachi Ltd Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834959A (en) * 1981-08-25 1983-03-01 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPS58143563A (en) * 1982-02-22 1983-08-26 Hitachi Ltd Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JPH0244152B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
JP2953482B2 (en) CMOS integrated circuit
US6198139B1 (en) Complementary MOS device
KR100253372B1 (en) Semiconductor device and fabricating method thereof
JPS615568A (en) Manufacture of complementary mos integrated circuit
JPS6197858A (en) Latch-up preventer for cmos transistor
JPS59130462A (en) Complementary type metal oxide semiconductor memory
JPH0241910B2 (en)
JPS604596B2 (en) Method of manufacturing complementary MOS integrated circuit
JPH08298313A (en) Restore circuit of semiconductor memory and its structure
JP3006134B2 (en) Static semiconductor memory device
JPH03246967A (en) Semiconductor device
KR100233142B1 (en) Manufacturing method of semiconductor device
JP3333485B2 (en) Method for manufacturing semiconductor device
JPS59181658A (en) Semiconductor device
JPS60143658A (en) Complementary insulated gate field effect transistor integrated circuit
JPH01305560A (en) Complementary mos transistor
WO1991016728A1 (en) Substrate structure of a semiconductor device
JPS60143664A (en) Semiconductor memory integrated circuit
JP2002222814A (en) Semiconductor device and manufacturing method therefor
JPH0613561A (en) Semiconductor device and manufacture thereof
JPS6254460A (en) Semiconductor device
JPS59205751A (en) Semiconductor integrated circuit device
JPH03120752A (en) Semiconductor device and manufacture thereof
JPS6376361A (en) Complementary semiconductor device
JPS61208863A (en) Cmos semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees