JPS582457B2 - How to use hand-held equipment - Google Patents
How to use hand-held equipmentInfo
- Publication number
- JPS582457B2 JPS582457B2 JP49076369A JP7636974A JPS582457B2 JP S582457 B2 JPS582457 B2 JP S582457B2 JP 49076369 A JP49076369 A JP 49076369A JP 7636974 A JP7636974 A JP 7636974A JP S582457 B2 JPS582457 B2 JP S582457B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- semiconductor
- substrate
- conductivity type
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Bipolar Integrated Circuits (AREA)
- Logic Circuits (AREA)
Description
【発明の詳細な説明】
本発明は半導体集積回路、さらにくわしくは集積注入論
理回路(IntegratedInjectionLo
gic、以下I2Lと略記する)の特性を向上させると
共に従来のバイポーラ集積回路とコンパチブルにしたこ
とを特徴とする半導体集積回路装置およびその製造方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor integrated circuits, and more particularly to integrated injection logic circuits.
The present invention relates to a semiconductor integrated circuit device and a method for manufacturing the same, characterized in that it has improved characteristics of a GIC (hereinafter abbreviated as I2L) and is compatible with conventional bipolar integrated circuits.
従来I2L(たとえばISSCCDigectofTe
chnicalPapers’72参照)と従来構造の
ICとのコンパチブルな構造は第1図に示すような構造
を特徴としている。Conventional I2L (e.g. ISSCCDiectofTe
The structure that is compatible with the IC of conventional structure (see Chnical Papers '72) is characterized by the structure shown in FIG.
すなわちP型半導体基板1上にN+型低抵抗埋め込み層
2,2′およびP+型分離領域9を不純物拡散によって
形成し、さらにエビタキシャル成長によってN型エピタ
キシャル層3を形成し、次にP+94,4’,4”,4
″およびN層5.5’,5”を順次不純物拡散等によっ
て形成し、絶縁物8に窓開けして電極6,7.7’,7
”などを設けて製作される。That is, N+ type low resistance buried layers 2, 2' and P+ type isolation region 9 are formed on a P type semiconductor substrate 1 by impurity diffusion, an N type epitaxial layer 3 is formed by epitaxial growth, and then P+ 94,4 ',4'',4
'' and N layers 5.5', 5'' are sequentially formed by impurity diffusion, etc., and windows are opened in the insulator 8 to form electrodes 6, 7.7', 7.
” and so on.
従来構造のICでは、5’”はコレクタ接点層、4”’
はベース領域、5”はエミツタ領域である。In an IC with a conventional structure, 5''' is the collector contact layer, and 4''' is the collector contact layer.
is the base area, and 5'' is the emitter area.
またこの構造でのI2Lは横方向PMPトランジスタ(
4はエミツタ、3はベース、4′はコレクタ)と縦形の
逆動作NPNトランジスタ(2′はエミツタ、4’はベ
ース、5はコレクタ)が一体になった構造を特徴として
いる。In addition, I2L in this structure is a lateral PMP transistor (
It is characterized by a structure in which a vertical reverse operation NPN transistor (2' is an emitter, 4' is a base, and 5 is a collector) is integrated (4 is an emitter, 3 is a base, 4' is a collector).
I2Lは次のような動作をする。I2L operates as follows.
N+型低抵抗埋め込み層1を低電位(図が繁雑になるの
で、電極を図示していない。The N+ type low-resistance buried layer 1 is connected to a low potential (electrodes are not shown because the diagram is complicated).
)に、電極6を高電位にするとP層4からN型エピタキ
シャル層3に正孔が注入される。), when the electrode 6 is set at a high potential, holes are injected from the P layer 4 into the N type epitaxial layer 3.
そして一部の正孔はP層4′の電位を高め、こんどはN
型エピタキシャル層3から電子がP+層に注入される。Then, some of the holes increase the potential of the P layer 4', and in turn N
Electrons are injected from the type epitaxial layer 3 into the P+ layer.
ここで、注入された電子は一部P+層内で正孔と再結合
をし、残りはN+層5に到達する。Here, some of the injected electrons recombine with holes within the P+ layer, and the rest reach the N+ layer 5.
しかし第1図に示した従来の構造では以下のごとき欠点
がある。However, the conventional structure shown in FIG. 1 has the following drawbacks.
第1の欠点は、N型エピタキシャル層3とP+層からな
るNP+接合では電子の順方向注入が小さく電極7に取
り出す電流値が小さいことである。The first drawback is that the forward injection of electrons is small in the NP+ junction consisting of the N-type epitaxial layer 3 and the P+ layer, and the current value taken out to the electrode 7 is small.
(いわゆる注入効率が小さいため。(This is because the so-called injection efficiency is low.
)第2の欠点は、P+層4′に注入されたキャリアはP
+層4′が表面部から不純物拡散されているため内部ド
リフト電界が逆方向でありキャリア拡散速度が減速され
ることである。) The second drawback is that the carriers injected into the P+ layer 4' are
Since impurities are diffused into the + layer 4' from the surface, the internal drift electric field is in the opposite direction, and the carrier diffusion rate is slowed down.
第3の欠点はP+層4’に注入される正孔がP+層4の
側壁部分からの注入のみであって、底面部分からの注入
が有効に使用されていない点である。The third drawback is that the holes injected into the P+ layer 4' are only injected from the sidewall portion of the P+ layer 4, and the injection from the bottom portion is not effectively used.
このため、第1図の如き従来ICと単に組み合わせただ
けではI2Lの特性が十分に生かしきれない欠点がある
。For this reason, there is a drawback that the characteristics of I2L cannot be fully utilized by simply combining it with a conventional IC as shown in FIG.
本発明の目的は、第1図に示した半導体装置の構造に関
する上記第1および第3の欠点を解決し、電流増幅率が
大きく、無効電力の少ないI2Lの構造と、従来ICと
もコンパチブルである半導体集積回路装置を提供するこ
とにある。An object of the present invention is to solve the first and third drawbacks regarding the structure of the semiconductor device shown in FIG. An object of the present invention is to provide a semiconductor integrated circuit device.
上記の目的を達成するために、本発明はエネルギバンド
の考察を加えI2Lを形成する所の全部あるいは一部の
半導体層中に基板と反対導電型の半導体領域を局在させ
て、第1および第3の欠点を解決し電流増幅率の大きく
することを可能としたものである。In order to achieve the above object, the present invention considers the energy band and localizes a semiconductor region of a conductivity type opposite to that of the substrate in all or a part of the semiconductor layer where I2L is formed. This solves the third drawback and makes it possible to increase the current amplification factor.
以下本発明を実施例によって詳しく説明する。The present invention will be explained in detail below with reference to Examples.
第2図は本発明による半導体装置を形成する一工程を示
す図である。FIG. 2 is a diagram showing one step of forming a semiconductor device according to the present invention.
第2図aに示すように、まずP型半導体基板1上に適当
な方法で薄い二酸化けい素層、ちつ化けい素層、酸化ア
ルミニウムなど所望の特性を有する絶縁物マスクを被着
し、半導体表面上の所望の所にN+型低抵抗埋め込み層
2,2′を不純物拡散等によって形成し、さらにエビタ
キシャル成長によってN型エピタキシャル層3を形成す
る。As shown in FIG. 2a, first, an insulator mask having desired characteristics such as a thin silicon dioxide layer, silicon dioxide layer, or aluminum oxide layer is deposited on the P-type semiconductor substrate 1 by an appropriate method. N+ type low resistance buried layers 2, 2' are formed at desired locations on the semiconductor surface by impurity diffusion, etc., and an N type epitaxial layer 3 is further formed by epitaxial growth.
該構成体上に所望の所に二酸化けい素層などの絶縁物8
をマスクとして付着して、P型不純物拡散を行ない、P
+型分離層領域9を形成するか該マスクを使用しN型エ
ピタキシャル層3を半分ほどエッチングして穴あけし、
適当な方法で酸化を行ない絶縁物を形成するかして分離
層領域9を形成したものを第2図bに示す。An insulator 8 such as a silicon dioxide layer is placed on the structure at a desired location.
is deposited as a mask, P-type impurity is diffused, and P-type impurity is diffused.
Form a + type separation layer region 9 or use the mask to etch about half of the N type epitaxial layer 3 to make a hole;
FIG. 2b shows a structure in which isolation layer regions 9 are formed by oxidizing and forming an insulator by a suitable method.
次に、第2図Cに示すように再び二酸化けい素などの絶
縁物マスク8を用いて、P層4.4’,4”,4″を拡
散などによって形成する。Next, as shown in FIG. 2C, P layers 4.4', 4'', 4'' are formed by diffusion or the like again using an insulating mask 8 made of silicon dioxide or the like.
第2図dに示すように二酸化けい素層をクロムなどの導
電物マスク1.1を用いて窓開し、クロム層をしやへい
電位にし、リンなどのN型不純物元素のイオン打込を行
ない(リンの場合、加速エネルギー500KeVで0.
73μ,1000KeVで1.3μの深さまで打込むこ
とができる。As shown in Figure 2d, the silicon dioxide layer is opened using a conductive mask 1.1 such as chromium, the chromium layer is brought to a low potential, and N-type impurity elements such as phosphorus are ion-implanted. (In the case of phosphorus, the acceleration energy is 500 KeV and 0.
It is possible to implant to a depth of 1.3μ at 73μ and 1000KeV.
)N型打込層10を前記4.4’,4”などのP層の一
部に隣接するように形成し、その後600〜900℃で
アニリングを行なう。) An N-type implant layer 10 is formed adjacent to a portion of the P layer, such as 4.4', 4'', and then annealed at 600-900°C.
次に、第2図eに示すように再び二酸化けい素などの絶
縁物マスク8を用いて、N層5.5’,5”,5″を拡
散などに娶って形成する。Next, as shown in FIG. 2e, N layers 5.5', 5'', 5'' are formed by diffusion or the like again using an insulating mask 8 made of silicon dioxide or the like.
第2図fに示すように、所望の所に穴あけされた絶縁物
マスク8を用いて電極6,7.7’,7”(図が繁雑に
なるのでN+型低抵抗埋め込み層2,2’およびP+型
分離層領域9の接続電極は図示していない。As shown in FIG. 2f, the electrodes 6, 7.7', 7'' (N+ type low-resistance buried layers 2, 2', since the diagram is complicated) are made using the insulator mask 8 with holes drilled at desired locations. Also, connection electrodes of the P+ type separation layer region 9 are not shown.
)を設ければ従来構造のICとコンパチブルで特性が改
善されたI2Lが形成される。), it is possible to form an I2L that is compatible with ICs of conventional structure and has improved characteristics.
第3図は本発明による半導体装置を形成する別工程を示
す図である。FIG. 3 is a diagram showing another process for forming a semiconductor device according to the present invention.
第2図C工程終了後、第3図aに示すように二酸化けい
素などの絶縁物マスク8を用いて、N層5.5’,5”
,5”’を拡散などによって形成する。After completing step C in FIG. 2, as shown in FIG. 3a, using an insulator mask 8 such as silicon dioxide,
, 5''' are formed by diffusion or the like.
第3図bに示すように、二酸化けい素層をクロムなどの
導電物マスク11を用いて窓開し、クロム層をしやへい
電位にし、リンなどのN型不純物元素のイオン打込を行
ないN型打込層10をP層の一部に隣接するように形成
し、その後600〜900’Cでアニリングを行なう。As shown in FIG. 3b, the silicon dioxide layer is opened using a conductive mask 11 such as chromium, the chromium layer is brought to a low potential, and N-type impurity elements such as phosphorus are ion-implanted. An N-type implant layer 10 is formed adjacent to a portion of the P layer, followed by annealing at 600-900'C.
第3図Cに示すように、所望の所に穴あけされた絶縁物
マスク8を用いて電極6,7.7’,7”を設ければ前
記構造と同様のICが形成される。As shown in FIG. 3C, an IC having the same structure as described above can be formed by providing electrodes 6, 7.7', 7'' using an insulator mask 8 with holes drilled at desired locations.
本構造の特徴は低抵抗のN型打込層10が高抵抗のN形
層3の中に浮いた形で埋め込まれていて、かつP型層4
.4’,4”と接している点にある。The feature of this structure is that a low-resistance N-type implantation layer 10 is embedded in a floating form in a high-resistance N-type layer 3, and a P-type layer 4
.. It is at the point where it touches 4', 4''.
このような構造にしたことによる理由を次に説明する。The reason for having such a structure will be explained below.
第2図fと第3図Cの一点鎖点の円で囲まれた領域のエ
ネルギーバンド図を第4図aに示す。The energy band diagram of the region surrounded by the dot-dash dot circles in FIG. 2f and FIG. 3C is shown in FIG. 4a.
同図は実線で示してある横方向PNPトランジスタ(エ
ミツタは4、ベースは3、コレクタは4′である。In the same figure, a lateral PNP transistor (emitter is 4, base is 3, and collector is 4') is shown as a solid line.
)と一点鎖点て示してある縦方向PNダイオード(アノ
ードは4、カソードは10である。) and the vertical PN diodes (4 for the anode and 10 for the cathode) are shown in dot-dash dots.
)のバンドと点線で示してあるフエルミ・レベルを示す
。) and the Fermi level indicated by the dotted line.
従来構造(第1図)の電極6に流れる電流Icは式(1
)で表わせる。The current Ic flowing through the electrode 6 of the conventional structure (Fig. 1) is expressed by the formula (1
) can be expressed as
■c=IPL+■nL+■PV+■nV(1)ここで、
IPLとInLはそれぞれ横方向PNPトランジスタに
おけるベース側への注入を正孔電流(第4図aの3)と
エミツタ側への注入電子電流(第4図aの1)でありI
PVとInVはそれぞれ縦方向ダイオード(第1図にお
いて、アノードは4、カソードは3である。■c=IPL+■nL+■PV+■nV (1) Here,
IPL and InL are respectively the hole current (3 in Figure 4a) injected into the base side of a lateral PNP transistor and the electron current injected into the emitter side (1 in Figure 4a), and I
PV and InV are respectively vertical diodes (in FIG. 1, the anode is 4 and the cathode is 3).
)におけるカソード側への注入正孔電流(第4図aの3
)とアノード側への注入電子電流(第4図aの1)であ
る。) injected hole current to the cathode side (3 in Figure 4a)
) and the injected electron current to the anode side (1 in Fig. 4a).
P層4の不純物濃度はn層3の濃度より大きいため、式
(1)は式(2)のごとく近似することができる。Since the impurity concentration of the P layer 4 is higher than that of the n layer 3, equation (1) can be approximated as shown in equation (2).
Ic=IpL+Ipy(2)
本構造(第2図fと第3図f)の電極6に流れる電流I
Nは式(3)で表わせる。Ic=IpL+Ipy (2) Current I flowing through the electrode 6 of this structure (Fig. 2 f and Fig. 3 f)
N can be expressed by equation (3).
IN=IPL+InL+■PV+InV(3)ここで、
IPLとInLは前記したものであり、I’PVとIn
Vはそれぞれ縦方向ダイオード(第2図fと第3図fに
おいて、アノードは4、カソードは10である。IN=IPL+InL+■PV+InV (3) Here,
IPL and InL are as described above, and I'PV and InL are
V is each a vertical diode (in FIGS. 2f and 3f, the anode is 4 and the cathode is 10).
)におけるカソード側への注入正孔電流(第4図aの2
)とアノード側への注入電子電流(第4図aの1)であ
る。) injected hole current to the cathode side (2 in Figure 4a)
) and the injected electron current to the anode side (1 in Fig. 4a).
n層3の不純物濃度はn層10の濃度より小さいため、
IPV>IPV’が成立する。Since the impurity concentration of the n-layer 3 is lower than the concentration of the n-layer 10,
IPV>IPV' holds true.
よって式(3)は式(4)のように近似することができ
る。Therefore, equation (3) can be approximated as equation (4).
IN=PL(4)
PNPトランジスタの注入効率γC(従来構造)とγN
(本構造)は式(5)のように簡単化できる。IN=PL (4) PNP transistor injection efficiency γC (conventional structure) and γN
(This structure) can be simplified as shown in equation (5).
上記の説明より、本構造は従来構造より有効注入効率は
向上した。From the above explanation, the effective injection efficiency of this structure is improved compared to the conventional structure.
γN>γc;P層4からの注入電流はN層10の存在の
ため、横方向PNPトランジスタに流れ電流はほとんど
正孔電流となり、従来構造より有効注入効率が向上する
。γN>γc; Due to the presence of the N layer 10, the current injected from the P layer 4 flows through the lateral PNP transistor, and most of the current becomes a hole current, improving the effective injection efficiency compared to the conventional structure.
)さらに、N層10をP層4,4’,4”と隣接させた
めに生じる長所は下記する縦方向NPNトランジスタの
逆電流増幅率の向上にも貢献するものである。) Further, the advantage of having the N layer 10 adjacent to the P layers 4, 4', 4'' also contributes to improving the reverse current amplification factor of the vertical NPN transistor described below.
第2図fと第3図Cの円で囲まれた領域のエネルギバン
ド図を第4図bに示す。The energy band diagram of the area enclosed by the circles in FIG. 2f and FIG. 3C is shown in FIG. 4b.
同図の一点領点て示したものは、従来構造の同じ領域の
エネルギバンドである。The dotted area in the figure is the energy band in the same region of the conventional structure.
N
従来構造のN層2’に流れる電流■■は式(6)で表わ
せる。N The current flowing through the N layer 2' of the conventional structure can be expressed by equation (6).
ここで、■■と■■はそれぞれ縦方向
NPN トランジスタ(エミツタは3、ベースは4′、
コレクタは5である。Here, ■■ and ■■ are vertical NPN transistors (emitter is 3, base is 4',
The collector is 5.
)のエミツタ側への注入正孔電流(第4図bの3)とベ
ース側への注入電子電流(第4図bの1)である。) are the hole current injected to the emitter side (3 in FIG. 4b) and the electron current injected to the base side (1 in FIG. 4b).
本構造のN層2’に流れる電流■■は式(7)で表わせ
る。The current flowing through the N layer 2' of this structure can be expressed by equation (7).
NPNトランジスタのエミツタ側への注入正孔電流(第
4図bの2)をベース側への注入電子電流(第4図bの
1)である。The hole current injected to the emitter side (2 in FIG. 4b) of the NPN transistor is the electron current injected to the base side (1 in FIG. 4b).
上記したごとく、N層2′の不純物濃はP層4.4’,
4”の濃度より高いし、P層4.4’,4”の濃度はN
層3より高い。As mentioned above, the impurity concentration of the N layer 2' is P layer 4.4',
The concentration of P layer 4.4', 4'' is higher than that of N
Higher than layer 3.
このために、式(8)が成立する。For this reason, equation (8) holds true.
NPNトランジスタの逆注入効率γ■(従来構造)とγ
■(本構造)は式(9)で表わせる。Reverse injection efficiency γ■ (conventional structure) and γ of NPN transistor
(2) (This structure) can be expressed by equation (9).
式(8)と(9)より、本構造は従来構造より逆注入効
率は向上した。From equations (8) and (9), this structure has improved back injection efficiency compared to the conventional structure.
(γ■>γ■;エミッタ側への注入正孔電流はN層10
の存在のため、縦力向NPNトランジスタに流れる電流
はほとんど注入電子電流となり、従来構造より逆電流増
幅率が向上する。(γ■>γ■; The hole current injected to the emitter side is N layer 10
Due to the existence of , most of the current flowing through the longitudinal NPN transistor becomes an injection electron current, and the reverse current amplification factor is improved compared to the conventional structure.
)なお、N層3中に埋め込まれているN+層10は多数
キャリアで結合されているからN層10はN+埋め込み
層2に隣接する必要もなくしかもN層の厚みは任意であ
り単にP層4.4’,4“に隣接するだけで、外部電極
に直接接続しなくても特性に何ら影響を与えない。) Note that since the N+ layer 10 embedded in the N layer 3 is bonded by majority carriers, the N layer 10 does not need to be adjacent to the N+ buried layer 2, and the thickness of the N layer is arbitrary, and it is simply a P layer. 4.4', 4'', it does not affect the characteristics at all even if it is not directly connected to the external electrode.
したがって■2L回路で用いる従来トランジスタの逆動
作特性の電流増幅率がいちじるしく改善され(たとえば
β■2程度がβ■20程度に1桁以上が改善される)回
路の動作が安定になる。Therefore, the current amplification factor of the reverse operation characteristic of the conventional transistor used in the 2L circuit is significantly improved (for example, about β2 is improved by more than one order of magnitude to about β20), and the operation of the circuit becomes stable.
ゆえに従来■2Lの横方向PNPトランジスタと縦方向
逆NPNhランジスタの電流増幅率が双方とも改善され
たために各トランジスタのベース・エミツク間で消費さ
れる無効電力がいちじるしく改善され電力利用効率が従
来I2Lに比べて向上し、より低消費電力■2Lを実現
できる。Therefore, since the current amplification factors of the conventional 2L horizontal PNP transistor and vertical inverted NPNh transistor have both been improved, the reactive power consumed between the base and emitter of each transistor has been significantly improved, and the power usage efficiency has improved compared to the conventional I2L. It is improved compared to the previous model and can achieve lower power consumption of 2L.
第5図は従来構造ICと■2Lを使用した装置の回路接
続の1実施例であり、Q1乃至Q6はトランジスタ、R
1乃至R3は抵抗である。Figure 5 shows an example of circuit connection of a device using a conventional structure IC and ■2L, Q1 to Q6 are transistors, R
1 to R3 are resistances.
Aは入力回路(従来構造IC)部であり、Bは■2Lの
部分で、Cは■2Lの出力から外部の信号レベルへ変換
する出力回路(従来構造IC)部を示す。A is an input circuit (conventional structure IC) section, B is a 2L section, and C is an output circuit (conventional structure IC) section that converts the output of 2L to an external signal level.
このような構成が チップ状で可能であり従来のすべて
のICやLSIとまったくコンパチブルとすることがで
きる。Such a configuration is possible in chip form and is completely compatible with all conventional ICs and LSIs.
なお、前記工程において、P型基板の代りにN型基板を
用いるときは、上記PとNとがすべて入れ代ることにな
る。In addition, in the above process, when an N-type substrate is used instead of a P-type substrate, all of the above-mentioned P and N are replaced.
以上、説明した如く、本発明の構造は従来の構造法に比
べて次の点で有利である。As described above, the structure of the present invention has the following advantages over conventional structure methods.
(1)I2Lの電力利用効率向上がいちじるしくよく動
作が安定である。(1) The power usage efficiency of I2L is significantly improved and the operation is stable.
(2)従来構造のバイポーラICとのコンパチブルな構
成がとれる。(2) A configuration compatible with bipolar ICs of conventional structure can be achieved.
(3)シたがって従来ICと■2Lとの任意相互接続も
可能となる。(3) Therefore, arbitrary interconnection between the conventional IC and the 2L becomes possible.
(4)■チップで、多機能の大きぼなバイポーラLSI
の構成が安易である。(4) ■Multifunctional large bipolar LSI chip
The configuration is easy.
(5)また本半導体装置を形成するために要するイオン
打込工程は比較的簡単で、工程数の増加も僅かであり、
歩留低下はほとんど問題にならない。(5) Furthermore, the ion implantation process required to form the present semiconductor device is relatively simple, and the increase in the number of processes is small;
Yield loss is hardly a problem.
よって本発明によれば従来実現し得なかったバイボーラ
LSIの製作を可能にし工業上得られる利益はきわめて
大きい。Therefore, according to the present invention, it is possible to manufacture a bibolar LSI, which has not been possible in the past, and the industrial benefits are extremely large.
第1図は、従来の12Lを示す断面図、第2図は本発明
による半導体装置の一実施例の構造と製作方法を説明す
る図、第3図は別実施例の上記と同様な図、第4図a,
bは本発明の一実施例を説明するためのエネルギーバン
ド図、第5図は従来構造ICとI2Lを使用した半導体
装置の等価回路図である。
第1、第2および第3図において、1はP型半導体基板
、2,2’はN+型低抵抗埋め込み層、3はN型エピタ
キシャル層、4,4’,4”,4”’はP(P+)層、
5.5’,5”,5”′はN(N+)層、6と7.7’
,7”,7″′は電極、8は絶縁物、9は(P+型)分
離層領域、10はN型打込層である。
第4図aは注入領域のエネルギバンド図で、1は注入電
子電流、2,3は注入正孔電流であり、同図bは縦方向
NPNトランジスタのエネルギバンド図で、1は注入電
子電流、2,3は注入正孔電流である。
第5図において、Aは入力回路、BはI2L,Cは出力
回路である。FIG. 1 is a sectional view showing a conventional 12L, FIG. 2 is a diagram illustrating the structure and manufacturing method of one embodiment of a semiconductor device according to the present invention, and FIG. 3 is a diagram similar to the above of another embodiment. Figure 4a,
b is an energy band diagram for explaining one embodiment of the present invention, and FIG. 5 is an equivalent circuit diagram of a semiconductor device using a conventional structure IC and I2L. 1, 2, and 3, 1 is a P-type semiconductor substrate, 2 and 2' are N+ type low-resistance buried layers, 3 is an N-type epitaxial layer, and 4, 4', 4", and 4"' are P-type semiconductor substrates. (P+) layer,
5.5', 5", 5"' are N (N+) layers, 6 and 7.7'
, 7'', 7''' are electrodes, 8 is an insulator, 9 is a (P+ type) isolation layer region, and 10 is an N type implantation layer. Figure 4a is an energy band diagram of the injection region, where 1 is the injected electron current, 2 and 3 are the injected hole currents, and Figure 4b is the energy band diagram of a vertical NPN transistor, where 1 is the injected electron current, 2 and 3 are injected hole currents. In FIG. 5, A is an input circuit, B is an I2L, and C is an output circuit.
Claims (1)
導体チップ上に共存せしめた半導体集積回路装置におい
て、半導体基板表面部の所望の所に基板とは反対導電型
の複数個の第1半導体層を設け、第1半導体層を含む半
導体基板表面上に基板とは反対導電型の第2半導体層を
設け、第2半導体層を基板と同じ導電型の複数個の第3
半導体層または絶縁物によって複数の領域に分離し、上
記分離された第2半導体層領域の所望の所に表面部分よ
り下方向に基板と同じ導電型の複数個の第4半導体層を
設け、第4半導体層および第2半導体層の所望の所に基
板と反対導電型の第5半導体層を設けることにより、上
記分離された少くとも1つの第2半導体層領域に、第4
半導体層をベース、該第4半導体層内に設けられた第5
半導体層をエミツタとするバイポーラ集積回路が構成さ
れ、上記分離された他の少くとも1つの第2半導体層領
域に、2つの第4半導体層を横形トランジスタのエミツ
タ、コレクタとし、該コレクタとなる第4半導体層およ
び該第4半導体層内に設けられた第5半導体層を縦形の
逆動作トランジスタのベース、コレクタとする集積注入
論理回路が構成され、上記集積注入論理回路が構成され
ている部分の第4半導体層下には、基板と反対導電型で
低抵抗の第6半導体層が存在し、上記第1半導体層の不
純物濃度のピーク位置が基板と第2半導体層の界面領域
にあり、上記第6半導体層の不純物濃度のピーク位置が
第1半導体層の不純物濃度のピーク位置より上側にある
ことを特徴とする半導体集積回路装置。 2 上記低抵抗の第6半導体層は上記第1半導体層から
離れて存在することを特徴とする特許請求の範囲第1項
記載の半導体集積回路装置。 3 半導基板表面部に、基板とは反対導電型の不純物拡
散を行って複数個の第1半導体層を形成する工程と、半
導体基板表面上に基板と反対導電型の第2半導体層をエ
ビタキシャル成長により形成する工程と、第2半導体層
を基板と同一導電型の第3半導体層または絶縁物によっ
て複数の領域に分離する工程と、上記分離された第2半
導体層領域の所望の所に表面部分より下方向に基板と同
一導電型の第4半導体層を形成する工程と、第4半導体
層および第2半導体層の所望の所に基板と反対導電型の
第5半導体層を形成する工程とを有し、上記分離された
少なくとも1つの第2半導体層領域に、第4半導体層を
ベース、該第4半導体層内に設けられた第5半導体層を
エミツタとするバイポーラ集積回路を形成し、上記分離
された他の少くとも1つの第2半導体層領域に2つの第
4半導体層を横形トランジスタのエミツタ、コレクタと
し、該コレクタとなる第4半導体層および該第4半導体
層内に設けられた第5半導体層を縦形逆動体トランジス
タのベース、コレクタとする集積注入論理回路を形成し
てなる半導体集積回路装置の製造方法において、上記集
積注入論理回路が形成される第2半導体層領域の所望の
所にイオン打込みを行なって基板と反対導電型の低抵抗
の第6半導体層を形成し、該第6半導体層の少なくとも
1部が第4半導体層の下側に存在するように形成する工
程を有することを特徴とする半導体集積回路装置の製造
方法。[Claims] 1. In a semiconductor integrated circuit device in which a bipolar integrated circuit and an integrated injection logic circuit coexist on one semiconductor chip, a plurality of conductivity types opposite to that of the substrate are provided at desired locations on the surface of the semiconductor substrate. A plurality of first semiconductor layers are provided, a second semiconductor layer of a conductivity type opposite to that of the substrate is provided on the surface of the semiconductor substrate including the first semiconductor layer, and a plurality of third semiconductor layers of the same conductivity type as the substrate are formed.
The second semiconductor layer is separated into a plurality of regions by a semiconductor layer or an insulator, and a plurality of fourth semiconductor layers having the same conductivity type as the substrate are provided at desired locations below the surface portion of the separated second semiconductor layer region. By providing a fifth semiconductor layer of a conductivity type opposite to that of the substrate at a desired location of the fourth semiconductor layer and the second semiconductor layer, the fourth semiconductor layer is provided in at least one separated second semiconductor layer region.
a semiconductor layer as a base, a fifth semiconductor layer provided within the fourth semiconductor layer;
A bipolar integrated circuit having a semiconductor layer as an emitter is constructed, and in at least one of the other separated second semiconductor layer regions, two fourth semiconductor layers are used as an emitter and a collector of a lateral transistor, and a fourth semiconductor layer is provided as an emitter and a collector of a lateral transistor. An integrated injection logic circuit is constructed in which a fourth semiconductor layer and a fifth semiconductor layer provided in the fourth semiconductor layer are used as the base and collector of a vertical reverse operation transistor, and A sixth semiconductor layer having a conductivity type opposite to that of the substrate and having low resistance is present under the fourth semiconductor layer, and the impurity concentration peak position of the first semiconductor layer is in the interface region between the substrate and the second semiconductor layer, and A semiconductor integrated circuit device characterized in that a peak position of impurity concentration in the sixth semiconductor layer is above a peak position of impurity concentration in the first semiconductor layer. 2. The semiconductor integrated circuit device according to claim 1, wherein the low-resistance sixth semiconductor layer is located apart from the first semiconductor layer. 3 A process of forming a plurality of first semiconductor layers by diffusing impurities of a conductivity type opposite to that of the substrate on the surface of the semiconductor substrate, and forming a second semiconductor layer of a conductivity type opposite to that of the substrate on the surface of the semiconductor substrate. a step of forming the second semiconductor layer by taxial growth; a step of separating the second semiconductor layer into a plurality of regions using a third semiconductor layer or an insulator having the same conductivity type as the substrate; A step of forming a fourth semiconductor layer of the same conductivity type as the substrate below the surface portion, and a step of forming a fifth semiconductor layer of the opposite conductivity type to the substrate at desired locations of the fourth semiconductor layer and the second semiconductor layer. and a bipolar integrated circuit having a fourth semiconductor layer as a base and a fifth semiconductor layer provided in the fourth semiconductor layer as an emitter is formed in the at least one separated second semiconductor layer region. , two fourth semiconductor layers are used as an emitter and a collector of a lateral transistor in at least one other separated second semiconductor layer region, and a fourth semiconductor layer serving as the collector and a fourth semiconductor layer provided in the fourth semiconductor layer are provided. A method for manufacturing a semiconductor integrated circuit device in which an integrated implanted logic circuit is formed using a fifth semiconductor layer as a base and a collector of a vertical inverse dynamic body transistor, wherein a desired second semiconductor layer region in which the integrated implanted logic circuit is formed is provided. forming a low-resistance sixth semiconductor layer of a conductivity type opposite to that of the substrate by performing ion implantation, and forming at least a portion of the sixth semiconductor layer under the fourth semiconductor layer; A method for manufacturing a semiconductor integrated circuit device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49076369A JPS582457B2 (en) | 1974-07-05 | 1974-07-05 | How to use hand-held equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49076369A JPS582457B2 (en) | 1974-07-05 | 1974-07-05 | How to use hand-held equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58143872A Division JPS5963756A (en) | 1983-08-08 | 1983-08-08 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS516487A JPS516487A (en) | 1976-01-20 |
JPS582457B2 true JPS582457B2 (en) | 1983-01-17 |
Family
ID=13603418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49076369A Expired JPS582457B2 (en) | 1974-07-05 | 1974-07-05 | How to use hand-held equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS582457B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52141587A (en) * | 1976-05-20 | 1977-11-25 | Matsushita Electric Ind Co Ltd | Semiconductor device and its process |
JPS5339092A (en) * | 1976-08-25 | 1978-04-10 | Mitsubishi Electric Corp | Semiconductor integrated circuit device |
JPS5338276A (en) * | 1976-09-20 | 1978-04-08 | Toshiba Corp | Semiconductor device |
JPS5385182A (en) * | 1977-01-05 | 1978-07-27 | Hitachi Ltd | Iil type semiconductor device |
JPS5618460A (en) * | 1979-07-23 | 1981-02-21 | Toshiba Corp | Semiconductor integrated circuit |
JPS5748651U (en) * | 1980-09-02 | 1982-03-18 | ||
JPS5658870U (en) * | 1980-10-02 | 1981-05-20 | ||
JPS5963756A (en) * | 1983-08-08 | 1984-04-11 | Hitachi Ltd | Semiconductor integrated circuit device |
-
1974
- 1974-07-05 JP JP49076369A patent/JPS582457B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS516487A (en) | 1976-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6590273B2 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JPS582457B2 (en) | How to use hand-held equipment | |
US3760239A (en) | Coaxial inverted geometry transistor having buried emitter | |
JP3128808B2 (en) | Semiconductor device | |
JPH03502987A (en) | Semiconductor device with integrated circuit having vertical transistors | |
JPH0258865A (en) | Semiconductor device | |
JPS5963756A (en) | Semiconductor integrated circuit device | |
JPS6258678A (en) | Transistor | |
JPH10189755A (en) | Semiconductor device and its manufacturing method | |
JPS6359262B2 (en) | ||
JPS63175463A (en) | Manufacture of bipolar mos integrated circuit | |
JPH031544A (en) | Lateral transistor | |
JPS59149045A (en) | Semiconductor device | |
JP3128818B2 (en) | Semiconductor integrated circuit | |
JPH0338747B2 (en) | ||
JPH0263156A (en) | Semiconductor integrated circuit device | |
JPH0474478A (en) | Diode | |
JPH0574791A (en) | Semiconductor device | |
JPS61102074A (en) | Series diode | |
JPS6329585A (en) | Semiconductor integrated circuit device | |
JPS61150231A (en) | Semiconductor device | |
JPH0578944B2 (en) | ||
JPH0547780A (en) | Semiconductor device | |
JPS63204637A (en) | Semiconductor junction capacitance element | |
JPH0262046A (en) | Semiconductor device |