JPS58219704A - Manufacture of permanent magnet having high coercive force and high maximum energy product - Google Patents

Manufacture of permanent magnet having high coercive force and high maximum energy product

Info

Publication number
JPS58219704A
JPS58219704A JP57102117A JP10211782A JPS58219704A JP S58219704 A JPS58219704 A JP S58219704A JP 57102117 A JP57102117 A JP 57102117A JP 10211782 A JP10211782 A JP 10211782A JP S58219704 A JPS58219704 A JP S58219704A
Authority
JP
Japan
Prior art keywords
alloy
coercive force
maximum energy
rare earth
energy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57102117A
Other languages
Japanese (ja)
Other versions
JPS6117126B2 (en
Inventor
Muneaki Watanabe
宗明 渡辺
Akira Mochizuki
晃 望月
Tetsuo Yamaguchi
哲郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57102117A priority Critical patent/JPS58219704A/en
Publication of JPS58219704A publication Critical patent/JPS58219704A/en
Publication of JPS6117126B2 publication Critical patent/JPS6117126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PURPOSE:To form a permanent magnet having a high coercive force and a high maximum energy product, by properly selecting the composition of an R2Co17 alloy, and subjecting the same to a heat treatment under specific conditions. CONSTITUTION:An R2Co17 alloy (wherein R is Y or a rare earth metal) is formed having a composition consisting essentially of 24.0-26.0wt% at least one of Y and a rare earth element, 5.0-25.0wt% Fe, 2.0-15.0wt% Cu, 0.1-1.5wt% Ni, 1.0-5.5wt% at least one of Zr and Hf, and the balance of Co and unavoidable impurities. This R2Co17 alloy is repeatedly subjected to such a treatment in an inert gas atmosphere that the alloy is heated to the temperature range of 750-900 deg.C at a heating rate not lower than 100 deg.C per hour and maintained at the temperature for 1-30min and is then continuously cooled down below 400 deg.C at a rate of 0.3-5 deg.C per minute. The alloy may contain 0.005-0.500% P.

Description

【発明の詳細な説明】 この発明は、希土類金属永久磁石として知られているR
Co5  型合金(以下、RはYまたは希土類元素とす
る)のもつ保磁力(1I(C)と同等の高保磁力を有す
るとともに、R2Co17型合金自体の持つ最大エネル
ギー積(BHmax)が大きいという特性をも保持した
R2CoB型希土類金属永久磁石の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION This invention is based on the R
Co5 type alloy (hereinafter R is Y or rare earth element) has a high coercive force equivalent to 1I (C), and R2Co17 type alloy itself has a large maximum energy product (BHmax). The present invention relates to a method for manufacturing an R2CoB type rare earth metal permanent magnet that also holds the following characteristics.

従来、必要に応じてFe、 Cu、 Ni、 Mnなど
の遷移金属のうちの1種または2種以上を結晶異方性を
損なわない範囲で含有し、さらにYまたは希土類元素の
うちの1種以上の所定量を含むとともに、残りがCoか
らなる成分組成であるRCo型金属間化合物で構成され
た希土類金属永久磁石が、各種メーター類、磁気記録体
、あるいはネックレスやイヤリング等の装身具類を中心
に広く使用されていた。そして、これらの希土類金属永
久磁石のうちで、代表的なものとしてR2017型金属
間化合物で構成されたものや、R2co 5型金属間化
合物で構成されたものが一般に知・られている。
Conventionally, it contains one or more of transition metals such as Fe, Cu, Ni, Mn, etc. as necessary within a range that does not impair crystal anisotropy, and further contains one or more of Y or rare earth elements. Rare earth metal permanent magnets composed of RCo type intermetallic compounds containing a predetermined amount of Co and the remainder being Co are used mainly in various meters, magnetic recording bodies, and accessories such as necklaces and earrings. It was widely used. Among these rare earth metal permanent magnets, those made of R2017 type intermetallic compound and those made of R2co 5 type intermetallic compound are generally known.

しかしながら、前者のR2ot7型合金合金久磁石は高
い残留磁束密度(Br)、すなわち高い最大エネルギー
積をもつ反面、保磁力が低く、一方、後者のRCoB型
合金の永久磁石、は高い保磁力をもつという特性をそれ
ぞれ有するものであるため、実際の使用にあたっては、
各磁石それぞれの特性を生かした使い分けをしなければ
ならないというのが現状である。
However, while the former R2ot7 type alloy permanent magnet has a high residual magnetic flux density (Br), that is, a high maximum energy product, it has a low coercive force, whereas the latter RCoB type alloy permanent magnet has a high coercive force. Each of them has the following characteristics, so in actual use,
The current situation is that each magnet must be used appropriately, taking advantage of its respective characteristics.

このようなことから、これまで、使用目的によって別種
の磁石を使い分けなければならないという上述のような
問題を解決し、永久磁石の適用分野を飛躍的に拡大する
ことを目ざして、高保磁力を有するとともに高最大エネ
ルギー積をも兼ね備えた永久磁石を作り出すための研究
が種々なされてきた。その1つとして、R2Co17型
合金の高保磁〜 力比を狙ってぐれに多段熱処理や等温熱処理等を施す方
法も試みられたが、この方法によれば、R2Co17型
合金の保持力を高めることが可能である反面、残留磁束
密度が低下するという傾向が現われ、したがって最大エ
ネルギー積が低下してしまって、結局は所望の特性を実
現できないものであった。
For this reason, we aim to solve the above-mentioned problem of having to use different types of magnets depending on the purpose of use, and to dramatically expand the field of application of permanent magnets. Various studies have been conducted to create permanent magnets that also have a high maximum energy product. As one of the methods, attempts have been made to subject R2Co17 type alloy to a high coercive force ratio by subjecting it to multi-stage heat treatment or isothermal heat treatment. However, there is a tendency for the residual magnetic flux density to decrease, resulting in a decrease in the maximum energy product, making it impossible to achieve the desired characteristics.

本発明者等は、上述のような観点から、高保磁力を有す
るとともに高最大エネルギー積をも兼ね備えた永久磁石
を確実に製造すべく、まず、上述のようにR2Co、、
型合金を熱処理すると最大エネルギー積が最下する原因
について検討を加えたところ、R2C017型合金を高
温で長時間保持すると該合金中に格子欠陥の発生が見ら
れる等の報告がなされていることからも、この長時間の
高温保持による格子欠陥の発生が角型性を劣化させ、R
2Co、7型合金の残留磁束密度の低下を引き起こすも
のであるとの結論を得た。そこで、R2Co、7型合金
の保磁力を向上させる熱処理を施すにあたって、合金の
格子欠陥の発生を抑える手段を見出すことに着目して、
さらに研究を重ねた結果、 R2Co、□型合金の組成
を特定成分組成範囲に限定するとともに、これに特定条
件の熱処理を施すと、IR2co、7型合金のもつ高最
大エネルギー・積(残留磁束密度)を保持した状態でR
CO,、型合金のもつ保持力と同等の高い保磁力を有す
る永久磁石が得られるとの知見を得るに至ったのである
From the above-mentioned viewpoint, the present inventors first developed R2Co,...
When we investigated the cause of the lowest maximum energy product when heat-treating a type alloy, we discovered that it has been reported that lattice defects are observed in the R2C017 type alloy when it is held at high temperatures for a long time. Also, the occurrence of lattice defects due to this long-term high-temperature holding deteriorates the squareness, resulting in R
It was concluded that this causes a decrease in the residual magnetic flux density of the 2Co, type 7 alloy. Therefore, when performing heat treatment to improve the coercive force of R2Co, type 7 alloy, we focused on finding a means to suppress the occurrence of lattice defects in the alloy.
As a result of further research, we found that by limiting the composition of R2Co, □ type alloy to a specific composition range and applying heat treatment under specific conditions, the high maximum energy/product (residual flux density) of IR2Co, 7 type alloy ) while holding R
It was discovered that a permanent magnet with a coercive force as high as that of a CO, type alloy can be obtained.

したがって、この発明は、上記知見にもとづいてなされ
たものであって、Yおよび希土類元素のうちの1種以上
:24.0〜26.0%、Fe:5.0〜25.0 %
、 Cu: 2.0〜15.0%、 Nl: 0.1〜
1.5%、 ZrおよびHfのうちの1種または2種二
10〜55%を含有するか、あるいは、さらにP : 
0.005〜0500%を含み、残りがCoと不可避不
純物からなる成分組成(以上重量%)のR2Co、ヮ型
合金を750〜900℃の温度範囲にまで毎時100℃
以上の昇温速度で昇温して1〜30分間保持し、ついで
0.3〜b で連続的に冷却するという処理を、不活性ガス雰囲気中
で繰返すことによって高保磁力および高最大エネルギー
積を備えた永久磁石を製造することに特徴を有するもの
である。
Therefore, this invention was made based on the above findings, and includes one or more of Y and rare earth elements: 24.0 to 26.0%, Fe: 5.0 to 25.0%.
, Cu: 2.0~15.0%, Nl: 0.1~
1.5%, one or two of Zr and Hf and 10-55%, or further P:
0.005~0500% and the rest is Co and unavoidable impurities (wt%) R2Co, ヮ type alloy is heated to a temperature range of 750~900℃ at 100℃ per hour.
A high coercive force and a high maximum energy product can be achieved by repeating the process of raising the temperature at the above heating rate, holding it for 1 to 30 minutes, and then cooling it continuously at 0.3 to b in an inert gas atmosphere. It is characterized in that it manufactures a permanent magnet with.

つぎに、この発明の永久磁石の製造方法において、合金
の成分組成範囲および熱処理条件を上記のとおりに限定
した理由を説明する。なお、本明細書における「%」は
「重量%」を意味するものとする。
Next, the reason why the composition range of the alloy and the heat treatment conditions are limited as described above in the method for manufacturing a permanent magnet of the present invention will be explained. In addition, "%" in this specification shall mean "weight %."

A)合金の成分組成範囲 (a)  Yまたは希土類元素 Yまたは希土類元素はCoとともに金属間化合物を形成
してすぐれた磁気特性を実現する元素であるが、Yおよ
び希土類元素のうちの1種以上の合計量が24.0%未
満では所望の磁気特性を確保することができず、一方2
6.0%を越えて含有させると保持力が低下するように
なることがら、その含有量を240〜26.0%と定め
た。
A) Composition range of alloy (a) Y or rare earth element Y or rare earth element is an element that forms an intermetallic compound with Co to achieve excellent magnetic properties, but one or more of Y and rare earth elements If the total amount of 2 is less than 24.0%, desired magnetic properties cannot be secured;
If the content exceeds 6.0%, the holding power will decrease, so the content was set at 240 to 26.0%.

(bl  Fe Fe成分には残留磁束密度(Br)を改善する作用がち
るが、その含有量が50%未満では前記作用に所望の効
果が得られず、一方25.0 %を越えて含有させると
保磁力(iHc)が低下するようになることから、その
含有量を5.0〜25.0%と定めた。
(bl Fe The Fe component has the effect of improving the residual magnetic flux density (Br), but if its content is less than 50%, the desired effect cannot be obtained in this effect; on the other hand, if it is contained in excess of 25.0%, Since this results in a decrease in coercive force (iHc), the content was determined to be 5.0 to 25.0%.

(C)Cu CU成分には保磁力(iHc )を向上させる作用があ
るが、その含有量が2.0%未満では所望の高保磁力を
確保することができず、一方15.0 %を越えて含有
させると、残留磁束密度が低下するようになることから
、その含有量を2.0〜150係と定めた。
(C) Cu The CU component has the effect of improving coercive force (iHc), but if its content is less than 2.0%, the desired high coercive force cannot be secured, while if it exceeds 15.0%. If it is contained, the residual magnetic flux density will decrease, so the content is set to be between 2.0 and 150.

(d)  Ni N1成分には磁石の角型性を改善し、これによって最大
エネルギー積(BHmax)を向上させる作用があるが
、その含有量が01%未満では前記作用に所望の効果が
得られず、一方15ヂを越えて含有させると保磁力の低
下を招くようになることから、その含有量を01〜1.
5 %と定めた。
(d) Ni The N1 component has the effect of improving the squareness of the magnet and thereby increasing the maximum energy product (BHmax), but if its content is less than 0.1%, the desired effect cannot be obtained. On the other hand, if the content exceeds 15 degrees, the coercive force will decrease, so the content should be set at 01 to 1.
It was set at 5%.

(e)  ZrおよびHf これらの成分には、保磁力を向上させるとともに、高最
大エネルギー積を確保する作用があるが、その含有量が
]O係未満では前記作用に所望の効果が得られず、一方
55係を越えて含有させると残留磁束密度が低下するよ
うになることがら、その含有量を1.0〜55係と定め
た。
(e) Zr and Hf These components have the effect of improving the coercive force and ensuring a high maximum energy product, but if their content is less than the ]O coefficient, the desired effect cannot be obtained. On the other hand, if the content exceeds 55 parts, the residual magnetic flux density decreases, so the content was set at 1.0 to 55 parts.

(f)P −ゞし□□□ P成分には、磁石製造工程における焼結時に、比較的低
い焼結温度で磁石構成成分との間に共晶を形成し、液相
を生ずる作用があるので、焼結温度を低くしなければな
らない場合に必要に応じて含有させる元素であるが、そ
の含有量が0005%未満では液相の発生量が少なくて
低温度における焼結を達成することができず、一方、0
.500 %を越えて含有させると飽和磁束密度および
保磁力が低下するようになることから、その含有量を0
.005〜0500%と定めた。
(f) P - ゞし□□□ The P component has the effect of forming a eutectic with the magnet constituents at a relatively low sintering temperature and producing a liquid phase during sintering in the magnet manufacturing process. Therefore, it is an element that is included as necessary when the sintering temperature must be lowered, but if the content is less than 0005%, the amount of liquid phase generated is small and it is difficult to achieve sintering at a low temperature. Not possible, on the other hand, 0
.. If the content exceeds 500%, the saturation magnetic flux density and coercive force will decrease, so the content should be reduced to 0.
.. It was set as 005-0500%.

B)熱処理条件 (a)  加熱温度 750℃未満の加熱温度では、公知のR2C0I□型合
金のもつ特性と同等の特性、すなわち高最大エネルギー
積を有するものの保磁力が低いという特性しか得られず
、一方、900℃を越えた加熱温度にすると残留磁束密
度が低下するようになることから、加熱温度を750〜
900℃と定めた。
B) Heat treatment conditions (a) Heating temperature At a heating temperature of less than 750°C, only the properties equivalent to those of the known R2C0I□ type alloy, that is, the property of having a high maximum energy product but a low coercive force, can be obtained. On the other hand, if the heating temperature exceeds 900℃, the residual magnetic flux density will decrease, so the heating temperature should be set to 750℃ or higher.
The temperature was set at 900°C.

(bl  保持時間 保持時間は原則的には短かい方が好ましいものであ冬が
、1分未満では所望の高保持力を確保する、ことができ
ず、一方30分を越える保持時間になると格子欠陥の発
生によるものと思われる残留磁束密度の低下が起こるよ
うになることから、保持時間を1〜30分と定めた。
(bl Retention time In principle, shorter retention times are preferable. However, if the retention time is less than 1 minute, it will not be possible to secure the desired high retention force, while if the retention time exceeds 30 minutes, the lattice The holding time was set to 1 to 30 minutes because the residual magnetic flux density began to decrease, which was thought to be due to the occurrence of defects.

(C)  昇温速度 毎時100℃未満の昇温速度では所望の高い残留磁束密
度を確保することができなくなるので、昇温速度を毎時
10.0℃以上と定めた。
(C) Temperature Raising Rate Since a desired high residual magnetic flux density cannot be secured at a heating rate of less than 100°C per hour, the heating rate was set at 10.0°C or more per hour.

い)冷却速度 冷却速度は熱処理の繰返し回数と密接な関係があり、冷
却速度の小さいものは繰返し回数が少なくて済む傾向が
ある。
b) Cooling rate The cooling rate is closely related to the number of repetitions of heat treatment, and those with a low cooling rate tend to require fewer repetitions.

しかし、毎分03℃未満の冷却速度では所望の高残留磁
束密度を確保することができず、一方、毎分5℃を越え
る冷却速度では如何に熱処理を繰返しても十分な保磁力
を得るに至ら々いことから、冷却速度を03〜5℃7m
mと定めた。
However, at a cooling rate of less than 0.3°C per minute, it is not possible to secure the desired high residual magnetic flux density, while at a cooling rate of more than 5°C per minute, no matter how many heat treatments are repeated, sufficient coercive force cannot be obtained. Due to the inconvenience, the cooling rate was set to 03~5℃7m.
It was determined as m.

(e)  冷却終了温度 03〜b い温度域にまで冷却を行なうと磁気特性に何らの影響も
現われないが、この冷却終了温度を400℃を越えた高
い温度とすると保持力に低下傾向が現われるようになる
ことから、冷却終了温度の上限値を400℃と定めた。
(e) Cooling end temperature 03~b If cooling is performed to a low temperature range, no effect will appear on the magnetic properties, but if this cooling end temperature is set to a high temperature exceeding 400°C, there will be a tendency for the holding force to decrease. Therefore, the upper limit of the cooling end temperature was set at 400°C.

つぎに、この発明の永久磁石の製造方法を、実施例によ
り比較例と対比しながら説明する。
Next, the method for manufacturing a permanent magnet of the present invention will be explained using Examples and comparing with Comparative Examples.

実施例 まず、通常の高周波溶解法により所定組成の合金溶湯(
但し、P成分を含有しない状態〕を調整し、通常の方法
にてインゴットとした後、これをショークラッシャーお
よびパルペライザーによって粗粉砕し、ついで振動ミル
中で粉砕して、平均粒径的4μmの微粉末を得た。この
微粉末、およびこの微粉末にさらに所定量のP粉末を配
合して混合した原料粉末の各々を、lO〜15 KOe
の磁場中にて約2トン/cnlの圧力で横磁場成形し、
密度、約61/cntをもった圧粉体(5,OmmX 
25+++mx25.mm)としてから、これを高純度
アルゴン気流中で、温度:1200℃にて2時間保持し
て焼結するとともに溶体化した後□、アルゴンガス中に
て冷却することによって、それぞれ第1表に示される最
終成分組成をもった合金■〜[相]を得た。なお、第1
表中の※印は、成分含有量が本発明の方法で対象とする
合金のそれから外れていることを示したものである。
Example First, a molten alloy of a predetermined composition (
However, after adjusting the state in which the P component is not contained] and making an ingot by the usual method, it is coarsely crushed using a show crusher and a pulperizer, and then crushed in a vibration mill to obtain fine particles with an average particle size of 4 μm. A powder was obtained. Each of this fine powder and a raw material powder obtained by further blending and mixing a predetermined amount of P powder with this fine powder was heated to 10 to 15 KOe.
Transverse magnetic field forming at a pressure of about 2 tons/cnl in a magnetic field of
Green compact with a density of approximately 61/cnt (5, Omm
25+++mx25. mm), then held in a high-purity argon stream at a temperature of 1200°C for 2 hours to sinter and solutionize it, and then cooled in argon gas to obtain the products shown in Table 1. Alloys 1 to [phase] having the final component composition shown were obtained. In addition, the first
The * mark in the table indicates that the component content deviates from that of the alloy targeted by the method of the present invention.

そして、これに引続いて、上記各□成分組成を有する合
金■〜[相]のそれぞれに、高純度アルゴン雰囲気中に
て、第2表に示されるような条件で熱処理を施すことに
よって希土類金属(Yも含む)永久磁石を得た。なお、
第2表中の※印は、合金の成分組成および熱処理条件の
いずれかが本発明方法における範囲から外れていること
を示すものである。
Subsequently, each of the alloys ■ to [phase] having the above-mentioned component compositions is heat-treated in a high-purity argon atmosphere under the conditions shown in Table 2 to form rare earth metals. A permanent magnet (including Y) was obtained. In addition,
The * mark in Table 2 indicates that either the alloy composition or the heat treatment conditions are outside the range of the method of the present invention.

ついで、このようにして得られた磁石の残留磁束密度(
Br ) 、保磁力(iHc ) 、および最大エネル
ギー積(BHmax)を測定し、この測定結果を、公知
のR2Co1’7型合金磁石およびRCo5型合金磁石
のそれとともに第2表に併せて示した。
Next, the residual magnetic flux density (
Br), coercive force (iHc), and maximum energy product (BHmax) were measured, and the measurement results are shown in Table 2 together with those of the known R2Co1'7 type alloy magnet and RCo5 type alloy magnet.

第2表に示される結果から、本発明方法1〜37によっ
て得られる磁石は、いずれも従来のR2Co17型合金
磁石と同等の高最大エネルギー積と、従来のRCoB型
合金合金磁石等の高保磁力とを兼ね備えているのに対し
て、比較法38〜55に見られるように、合金の成分組
成および熱処理条件のうちのいずれかが本発明方法の範
囲から外れたものは、得られる磁石の残留磁束密度1保
磁力。
From the results shown in Table 2, the magnets obtained by methods 1 to 37 of the present invention all have a high maximum energy product equivalent to the conventional R2Co17 type alloy magnet, and a high coercive force such as the conventional RCoB type alloy magnet. On the other hand, as seen in Comparative Methods 38 to 55, when any of the alloy composition and heat treatment conditions are out of the range of the method of the present invention, the residual magnetic flux of the resulting magnet is Density 1 Coercive force.

および最大エネルギー積のうちの少なくともいずれかの
特性が劣っていることが明らかである。
It is clear that the characteristics of at least one of the maximum energy product and the maximum energy product are inferior.

」二連のように、この発明によればR2Co、□型合全
磁石自体のもつ高最大エネルギー積を保持した状態で、
これにRCo5型合金磁石と同等の高保磁力を付与した
R2C0+7型合金の永久磁石を得ることができ、原料
価格の高い希土類元素の一含有割合が高いためにコスト
高とならざるを得ないRCO,型合金磁石よりも磁気特
性のすぐれた永久磁石を低コストのもとに提供すること
が可能となるので、従来、RCoB型合金磁石とR2C
o、型合金磁石とを使い分けていた応用分野を、R2C
ol 7型合金磁石のみ −の適用でカバーすることが
できるうえ、高最大エネルギー積と高保磁力の両特性を
兼ね備えていることから新しい応用分野を切り開くこと
ができるなど、工業上有用な効果がもたらされるのであ
る。
According to this invention, while maintaining the high maximum energy product of the R2Co, □ type combined magnet itself,
It is possible to obtain a permanent magnet of the R2C0+7 type alloy which has a high coercive force equivalent to that of the RCo5 type alloy magnet. Since it is possible to provide permanent magnets with better magnetic properties than type alloy magnets at a lower cost, conventionally RCoB type alloy magnets and R2C type alloy magnets have been used.
R2C
ol 7 type alloy magnets only - can be applied, and since it has both the characteristics of high maximum energy product and high coercive force, it can open up new application fields and bring industrially useful effects. It is possible.

手続補正書輸発) 昭和57年7月15日 特許庁長官 若 杉 和 夫   殿 1、事件の表示 特願昭57−102117 5 2、発明の名称 高保磁力・高最大エネルギー積を有する永久磁石の製造
法 3、補正をする者 4、代 理 人 自   発 (1)  明細書、第17頁第16行と同第17行との
間に下記文章を挿入する。
Procedural Amendment (Imported) July 15, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Indication of Case Patent Application 1982-102117 5 2, Title of Invention Permanent magnet having high coercive force and high maximum energy product Manufacturing method 3, person making amendment 4, agent voluntarily (1) The following sentence is inserted between page 17, line 16 and line 17 of the specification.

Claims (1)

【特許請求の範囲】 (1)  ’yおよび希土類元素のうちの1種以上。 24.0〜26.0 %、 Fe: 5.0〜25.0
%、 Cu2.0〜15.0 %、 Ni: 0.1〜
15%’、 ZrおよびHf−のうちの1種または2種
:1.0〜55チを含有し、残りがCOと不可避不純物
からなる成分組成(以上重量係)のR2Co1□型合金
(但し、RlYまたは希土類元素)を750〜900℃
の温度範囲にまで毎時100℃以上の昇温速度で昇温し
て1〜30分間保持し、ついで03〜b ℃以下にまで連続的に冷却するという処理を、不活性ガ
ス雰囲気中で繰返すことを特徴とする、高保磁力および
高最大エネルギー積を有する永久磁石の製造方法。 (2)Yおよび希土類元素のうちの1種以上:24.0
〜26.0 %、 Fe: 5.0〜25.0 %、 
Cu:2、 O〜15.0 % + N1: 0.1〜
1.5%、 ZrおよびHfのうちの1種または2種:
10〜5.5係を含有するとともに、P :0.005
〜0.500%をも含み、残シがCoと不可避不純物か
らなる成分組成(以上重量%)のR2Co1□型合金(
但し、RAMまたは希土類元素)を750〜900℃の
温度範囲にまで毎時100℃以上の昇温速度で昇温し1
1〜30分間保持し、ついで03〜b ℃以下にまで連続的に冷却するという処理を、不活性ガ
ス雰囲気中で繰返すことを特徴とする、高保磁力および
高最大エネルギー積を有する永久磁石の製造方法。
[Scope of Claims] (1) One or more of 'y and rare earth elements. 24.0~26.0%, Fe: 5.0~25.0
%, Cu2.0~15.0%, Ni: 0.1~
15%', one or two of Zr and Hf-: 1.0 to 55%, and the remainder is CO and inevitable impurities (weight ratio) R2Co1□ type alloy (however, RlY or rare earth elements) at 750-900℃
The process of raising the temperature at a rate of 100°C or more per hour to a temperature range of 100°C or more, holding it for 1 to 30 minutes, and then continuously cooling it to below 03°C to 03°C is repeated in an inert gas atmosphere. A method for producing a permanent magnet having a high coercive force and a high maximum energy product, characterized by: (2) One or more of Y and rare earth elements: 24.0
~26.0%, Fe: 5.0~25.0%,
Cu: 2, O~15.0% + N1: 0.1~
1.5%, one or two of Zr and Hf:
Contains a ratio of 10 to 5.5, and P: 0.005
R2Co1□ type alloy (with a composition (weight %) containing up to 0.500% and the remainder consisting of Co and unavoidable impurities)
However, if the temperature of RAM or rare earth elements) is increased to a temperature range of 750 to 900 degrees Celsius at a rate of 100 degrees Celsius or more per hour,
Production of a permanent magnet having a high coercive force and a high maximum energy product, characterized by repeating a process of holding for 1 to 30 minutes and then continuously cooling to below 03 to b°C in an inert gas atmosphere. Method.
JP57102117A 1982-06-16 1982-06-16 Manufacture of permanent magnet having high coercive force and high maximum energy product Granted JPS58219704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57102117A JPS58219704A (en) 1982-06-16 1982-06-16 Manufacture of permanent magnet having high coercive force and high maximum energy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102117A JPS58219704A (en) 1982-06-16 1982-06-16 Manufacture of permanent magnet having high coercive force and high maximum energy product

Publications (2)

Publication Number Publication Date
JPS58219704A true JPS58219704A (en) 1983-12-21
JPS6117126B2 JPS6117126B2 (en) 1986-05-06

Family

ID=14318851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102117A Granted JPS58219704A (en) 1982-06-16 1982-06-16 Manufacture of permanent magnet having high coercive force and high maximum energy product

Country Status (1)

Country Link
JP (1) JPS58219704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015683A1 (en) * 1990-05-16 1991-11-21 Schramberg Magnetfab Rare earth-iron-copper-cobalt alloy for permanent magnet - ŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸ resistant to corrosion, high temp. and high opposite magnetic field

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102595A (en) * 1976-02-25 1977-08-27 Hitachi Metals Ltd Method of manufacturing rare earth cobalt magnet
JPS56150153A (en) * 1980-04-18 1981-11-20 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS56156735A (en) * 1980-04-30 1981-12-03 Tdk Corp Permanent magnet alloy
JPS5729565A (en) * 1980-07-30 1982-02-17 Namiki Precision Jewel Co Ltd Preparation of permanent magnet alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102595A (en) * 1976-02-25 1977-08-27 Hitachi Metals Ltd Method of manufacturing rare earth cobalt magnet
JPS56150153A (en) * 1980-04-18 1981-11-20 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS56156735A (en) * 1980-04-30 1981-12-03 Tdk Corp Permanent magnet alloy
JPS5729565A (en) * 1980-07-30 1982-02-17 Namiki Precision Jewel Co Ltd Preparation of permanent magnet alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015683A1 (en) * 1990-05-16 1991-11-21 Schramberg Magnetfab Rare earth-iron-copper-cobalt alloy for permanent magnet - ŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸ resistant to corrosion, high temp. and high opposite magnetic field

Also Published As

Publication number Publication date
JPS6117126B2 (en) 1986-05-06

Similar Documents

Publication Publication Date Title
JP2904667B2 (en) Rare earth permanent magnet alloy
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JPH07509103A (en) Magnetic materials and their manufacturing methods
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH01219143A (en) Sintered permanent magnet material and its production
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPS58219704A (en) Manufacture of permanent magnet having high coercive force and high maximum energy product
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH0146575B2 (en)
JPH07138672A (en) Production of rare earth permanent magnet
JPH0146574B2 (en)
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JP2753431B2 (en) Sintered permanent magnet
JPS62122106A (en) Sintered permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPH06108190A (en) Rare earth permanent magnet alloy
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JP3562597B2 (en) Raw material alloy for producing rare earth magnet powder
JPS59153859A (en) Magnet alloy
JPS59154004A (en) Manufacture of permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH04107244A (en) Rare earth magnet material and its manufacture
JPH04216601A (en) Material of permanent magnet, manufacture thereof and bonded magnet
JP3353461B2 (en) Raw material alloy for manufacturing rare earth magnet powder