JPS58201006A - Detector of three-dimensional shape - Google Patents

Detector of three-dimensional shape

Info

Publication number
JPS58201006A
JPS58201006A JP8399882A JP8399882A JPS58201006A JP S58201006 A JPS58201006 A JP S58201006A JP 8399882 A JP8399882 A JP 8399882A JP 8399882 A JP8399882 A JP 8399882A JP S58201006 A JPS58201006 A JP S58201006A
Authority
JP
Japan
Prior art keywords
light
dimensional shape
detection
light spot
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8399882A
Other languages
Japanese (ja)
Other versions
JPH0156682B2 (en
Inventor
Kazuo Yamaguchi
和夫 山口
Akio Osaki
大崎 昭雄
Nobuhiko Aoki
信彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8399882A priority Critical patent/JPS58201006A/en
Publication of JPS58201006A publication Critical patent/JPS58201006A/en
Publication of JPH0156682B2 publication Critical patent/JPH0156682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To shorten detecting time and to improve detecting performance by branching the reflected light of a laser beam from the surface of a material into two systems and detecting the three-dimensional shape of the subject from the ratio of electric signals of both systems. CONSTITUTION:The titled detector is constituted by a laser light source 10, a polarizer 12, a sweeping oscillator 13, focusing lenses 14, 18, 19, an image formation lens 15, a half mirror 17, an optical point position detecting filter 17, a photoelectric converter 20, 21, a divider 24, a processing part 26, a three-dimensional display 27, and a pulse generator 28. In said configuration, a laser beam is diffracted by the polarizer 12, the optical path of the image formation lens 15 which is reflected by the surface of the object is divided into two optical pathes by the half mirror 16 and these are detected as electric signals Z, X respectively. The divider 24 finds Z/X, the processing part 26 outputs each light cutting line signal and the display 27 displays the three-dimensional shape of the object.

Description

【発明の詳細な説明】 、′ 本発明は、プリント基板面上のはんだ何面検査または厚
膜モジュールの搭載部品・パターン間の接続検査等のよ
うに、検査対象の明暗情報のみでは検査をすることがで
きない立体形状を高速で検出するための立体形状検出装
置に関するものである。
[Detailed Description of the Invention] ,' The present invention performs inspection using only the brightness information of the inspection target, such as inspection of solder surfaces on a printed circuit board or connection inspection between components and patterns mounted on a thick film module. The present invention relates to a three-dimensional shape detection device for detecting three-dimensional shapes that cannot be detected at high speed.

まず、従来例を図に従って説明する。First, a conventional example will be explained according to the drawings.

第1図は、従来の立体形状検出装置の一例のブロック図
、第2図は、その被検出立体形状の一例の部分斜視図、
第3図は、同光切断線のテレビジョンカメラによる画像
信号図、第4図は、同被検出立体形状の他の例の部分斜
視図である。
FIG. 1 is a block diagram of an example of a conventional three-dimensional shape detection device, and FIG. 2 is a partial perspective view of an example of the three-dimensional shape to be detected.
FIG. 3 is an image signal diagram of the same optical cutting line taken by a television camera, and FIG. 4 is a partial perspective view of another example of the same three-dimensional shape to be detected.

この従来装置は、プリント基板PRT上の搭載部品Pの
はんだ付部分に対し、白色光の光源1からスリット2.
集光レンズ3を通して平面状のスリット光SLTを照射
し、第2図に示すように、その部品Pのリード線りとラ
ンドRとの間のはんだ付部S付近に対する投影光線を斜
め横上方に設置されたテレビジョンカメラ5(結像レン
ズ4経由)で撮像する。
This conventional device uses a light source 1 of white light to pass a slit 2.
A planar slit light SLT is irradiated through the condensing lens 3, and the projected light beam is directed diagonally horizontally upward toward the vicinity of the soldering part S between the lead wire and the land R of the component P, as shown in Fig. 2. An image is captured by an installed television camera 5 (via an imaging lens 4).

その投影光線の光切断線O8Lは、上記はんだ付部S付
近の上記スリット光S L Tが照射されている部分の
断面の輪郭形状を示すので、試料テーブル6をX軸方向
に移動することにより、リード線りの各部における立体
形状(はんだ何形状)を順次に検出して全体の当該立体
形状を識別することができる。
The optical cutting line O8L of the projected light beam indicates the contour shape of the cross section of the part near the soldering part S that is irradiated with the slit light SLT, so by moving the sample table 6 in the X-axis direction, By sequentially detecting the three-dimensional shape (the shape of the solder) in each part of the lead wire, the overall three-dimensional shape can be identified.

テレビジョンカメラ5で撮像した画面は、第3図に示す
ように、光線断線O8Lの部分の輝度が高く、テレビジ
ョンカメラ5の水平走査方向H8CNが下から」二であ
るので(第3図において、上下方向の分解能を高くして
検出精度を向上するため)、その各光切断線OS Lの
形状は、それごとに当該各画面全体について最明点まで
の全位置C時間)データを求めることによって初めて得
られる。
As shown in FIG. 3, the screen imaged by the television camera 5 has high brightness at the portion of the light beam break O8L, and the horizontal scanning direction H8CN of the television camera 5 is "2" from the bottom (in FIG. 3). , in order to increase the resolution in the vertical direction and improve the detection accuracy), the shape of each optical cutting line OSL is determined by calculating the data for the entire position (C time) up to the brightest point for each screen. can be obtained for the first time.

しだがって、1本の光切断線O8Lを検出するだけでも
相当な走査時間を要するので、全体形状を検出するには
非常な長時間を要する。例えば。
Therefore, it takes a considerable amount of scanning time just to detect one optical cutting line O8L, so it takes a very long time to detect the entire shape. for example.

走査時間が1走査線当り20m5とすると、1つの物体
面を256X256画素、8ビット階調で3次元像を得
るには、20m5X256″−i5秒の時間を必要とし
、実用上の大きな制約となる。
If the scanning time is 20 m5 per scanning line, obtaining a three-dimensional image of one object plane with 256 x 256 pixels and 8-bit gradation requires a time of 20 m5 x 256'' - i5 seconds, which is a major practical limitation. .

更に、対象物体が軸対称の場合には、光点走査を軸対称
の方向と一致させ、これと直交する一方向からの検出を
物体の半分まで行えば、その物体形状を問題なく検出で
きるが、複雑形状で軸対称でない物体の場合または軸対
称であっても1つの物体形状の場合には、物体の全面に
ついて検出を行う必要がある。
Furthermore, if the target object is axially symmetrical, the shape of the object can be detected without any problem by aligning the light spot scanning with the axially symmetrical direction and performing detection from one direction perpendicular to this up to half of the object. In the case of an object having a complex shape and not axially symmetrical, or in the case of a single object shape even if it is axially symmetrical, it is necessary to detect the entire surface of the object.

例えば、第4図に示すような凹凸のある物体については
、その凸部CVXによって影となる検出方向の反対側の
部分の検出ができない。これを解決するには、この物体
を水平面上で1800回転をして同一方向から再検出す
るか、または反対側にも同様な検出手段を設けなければ
ならない。しかしながら、前者の場合は、検出(検査)
時間が更に増大し、後者の場合は、物理的に検出手段の
配置が困難であったり、コストの大幅な増加となったり
して実用上の問題であった。
For example, in the case of an uneven object as shown in FIG. 4, the portion on the opposite side of the detection direction that is shadowed by the convex portion CVX cannot be detected. To solve this problem, the object must be rotated 1800 times on a horizontal plane and detected again from the same direction, or a similar detection means must be provided on the opposite side. However, in the former case, detection (inspection)
The time required is further increased, and in the latter case, it is difficult to physically arrange the detection means, and the cost is significantly increased, which is a practical problem.

本発明の目的は、上記した従来技術の欠点をなくし、検
出時間、検出性能を向上させ、かつ、経済的な立体形状
検出装置を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, improve detection time and detection performance, and provide an economical three-dimensional shape detection device.

本発明の特徴は、超音波励振振動が加えられた光偏光器
を通しだレーザビームを物体表面上に照射して直線状に
光点走査をし、この光点の物体表面上の軌跡の光線を参
照光と位置検出光とに分路し、その各光強度について光
電変換を行った各電気信号の比を求め、これを当該光切
断線信号として順次に物体表面上の他の位置についても
得ることにより、その物体の立体形状を検出しうるよう
に構成した立体形状検出装置にある。
The feature of the present invention is that a laser beam to which ultrasonic excitation vibration is applied and passed through an optical polarizer is irradiated onto the object surface to scan a light spot in a straight line, and the light beam of the trajectory of this light spot on the object surface is is shunted into a reference light and a position detection light, and the ratio of each electrical signal subjected to photoelectric conversion is calculated for each light intensity, and this is used as the light cutting line signal to sequentially apply it to other positions on the object surface. There is provided a three-dimensional shape detection device configured to detect the three-dimensional shape of an object by obtaining the three-dimensional shape of the object.

以下1本発明の実施例を図に基づいて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第5図は、本発明に係る立体形状検出装置の一実施例の
ブロック図、第6図は、その光切断線による立体形状図
である。
FIG. 5 is a block diagram of an embodiment of the three-dimensional shape detecting device according to the present invention, and FIG. 6 is a three-dimensional shape diagram using optical cutting lines.

ここで、10は、レーザ走査部に係るレーザ光源、11
は、同絞り用レンズ、12は、同光偏向器、13は、同
掃引発振器、14は、同集光レンズ、15は、光電検出
部に係る結像レンズ、16は、同ハーフミラ−117は
、同光点位置検出フィルタ、18.19は、同集光レン
ズ、20゜21は、同光電変換器、22.23は、同増
幅器、24は、画像データ入力部に係る割算器、25は
、同A−DCアナログ−ディジタル)変換器、26は、
処理部、27は、表示部に係る3次元ディスプレイ、2
8は、試料移動部に係るパルス発生器、21j:、同パ
ルスモータ、30は、同試料テーブル(例えば、XYテ
ーブル)である。
Here, 10 is a laser light source related to the laser scanning section, 11
12 is the same aperture lens, 12 is the same optical deflector, 13 is the same sweep oscillator, 14 is the same condensing lens, 15 is the imaging lens related to the photoelectric detection section, 16 is the same half mirror 117 is , the same light spot position detection filter, 18.19 the same condensing lens, 20°21 the same photoelectric converter, 22.23 the same amplifier, 24 the divider related to the image data input section, 25 is the same A-DC analog-to-digital) converter, 26 is,
The processing unit 27 is a three-dimensional display related to the display unit, 2
8 is a pulse generator related to the sample moving unit; 21j is the same pulse motor; 30 is the same sample table (for example, an XY table).

まず、レーザ光源10からのレーザビームは、絞シ用レ
ンズ11によって適当な大きさのスポット状のビームに
絞り込まれ、光偏向器12に入射される。
First, a laser beam from a laser light source 10 is focused by an aperture lens 11 into a spot-shaped beam of an appropriate size, and is incident on an optical deflector 12 .

光偏向器12は、掃引発振器13からの高周波電気信号
を圧電振動子で変換して発生した超音波(掃引発振器1
3の掃引信号周波数と同一の周波数のもの)の励振振動
によ#)、その音響光学媒体の屈折率が周期的に変化し
て入射されたレーザビームを回折させる。その回折角は
上記超音波の周波数に比例するので、光偏向が可能とな
る。
The optical deflector 12 converts the high frequency electrical signal from the sweep oscillator 13 using a piezoelectric vibrator to generate an ultrasonic wave (sweep oscillator 1
The refractive index of the acousto-optic medium changes periodically due to the excitation vibration of the same frequency as the sweep signal frequency of #3), causing the incident laser beam to diffract. Since the diffraction angle is proportional to the frequency of the ultrasonic wave, light deflection is possible.

すなわち、このように回折されたレーザビームが集光レ
ンズ14を通して立体形状の検出対象の物体Qの表面上
に投影されると、その部分について直線状(X軸方向)
に光点走査が行われることになる。
That is, when the laser beam diffracted in this way is projected onto the surface of the three-dimensional object Q to be detected through the condensing lens 14, the laser beam is projected in a straight line (in the X-axis direction) for that part.
Light spot scanning will be performed.

この光点走査の軌跡の検出は、上記光点走査方向(X軸
方向)と直交する方向に設けられた結像レンズ15の光
路をハーフミラ−16で2分し、その一方には光点位置
によって透過率が変化する光点位置検出フィルタ17を
挿入し、他方には何も挿入せず直接に、それぞれ、集光
レンズ18゜19を通して光電変換器20.21(例え
ば、ホトマルチプライヤによるもの)の出力を増幅器2
2.23で所望のレベルに増幅した光点強度を比較する
ことによって行う。
The detection of the locus of this light spot scanning is carried out by dividing the optical path of the imaging lens 15, which is provided in a direction perpendicular to the light spot scanning direction (X-axis direction), into two by a half mirror 16; A light spot position detection filter 17 whose transmittance changes according to ) output to amplifier 2
This is done by comparing the light spot intensities amplified to the desired level in step 2.23.

まず、光点位置検出フィルタ17が挿入された光路から
の光点強度は1例えば、物体Qの表面上に投影された各
光点位置の高さに比例して位置検出フィルタ17の透過
率が変化するようにしておくことにより、物体Qの表面
上の高さ方向の位置情報を含む位置検出光信号に対応す
る検出電気信号Zとして検出される。このようなフィル
タは、例えば、上下方向に厚さの異方る光学ガラスから
なるもの、または平面ガラスに所定の透過率の塗料等を
上下方向で厚さを変えてコーティングしたもの等で実現
することができる。
First, the light spot intensity from the optical path in which the light spot position detection filter 17 is inserted is 1. For example, the transmittance of the position detection filter 17 is proportional to the height of each light spot position projected on the surface of the object Q. By making it change, it is detected as a detection electric signal Z corresponding to a position detection optical signal containing position information in the height direction on the surface of the object Q. Such a filter can be realized, for example, by using optical glass that has different thicknesses in the vertical direction, or by coating flat glass with paint or the like having a predetermined transmittance by varying the thickness in the vertical direction. be able to.

なお、何も挿入されない光路側の増幅器23からの出力
電気信号Xは、光点走査方向の各位置における光点強度
に対応する無処理のものである。
Note that the output electrical signal X from the amplifier 23 on the optical path side into which nothing is inserted is an unprocessed signal corresponding to the light spot intensity at each position in the light spot scanning direction.

これらの各信号Z、Xは対象物の表面状態または光源の
光量変化等に応じて変化するので、その信号比Z/Xを
とって上記状態、変化に対する補償、正規化をすること
により、検出性能を向上するようにしている。
Since each of these signals Z and X changes depending on the surface condition of the object or changes in the light intensity of the light source, the signal ratio Z/X is taken to compensate for and normalize the above conditions and changes, and detection We are trying to improve performance.

すなわち、上記信号Z、Xの比Z/X (光切断線信号
)を割算器24で光点走査の1周期ごとに求め、これを
A−D変換器25でディジタル値に変換して処理部26
に入力する。
That is, the ratio Z/X (optical section line signal) of the above-mentioned signals Z and Part 26
Enter.

処理部26は、1つの光切断線信号の入力ごとにパルス
発生器28を制御してパルスモータ29を駆動し、当該
光切断線と垂直方向(y軸方向)に試験テーブル30を
移動する。
The processing unit 26 controls the pulse generator 28 to drive the pulse motor 29 every time one optical cutting line signal is input, and moves the test table 30 in the direction perpendicular to the optical cutting line (y-axis direction).

上述の各動作を順次に行い、3次元ディスプレイ27は
、処理部26からの各光切断線信号による情報(データ
)により、当該立体形状を第6図に示すように立体的に
表示することができる。
The above operations are performed in sequence, and the three-dimensional display 27 is able to three-dimensionally display the three-dimensional shape as shown in FIG. can.

上記実施例は、光点走査方向と直交する方向から検出す
るようにしているが、必ずしも直交に限らず他の方向か
らの検出を妨げるものではなく、また、1方向に限らす
2方向以上からも検出することができる。
In the above embodiment, detection is performed from a direction perpendicular to the light spot scanning direction, but it is not necessarily perpendicular and does not prevent detection from other directions. can also be detected.

第7図は1本発明に係る立体形状検出装置の他の実施例
の主要部のブロック図であって、凸部(9) CVXに対して相互に影となる反対の2方向からの検出
を可能としだものである。
FIG. 7 is a block diagram of the main parts of another embodiment of the three-dimensional shape detection device according to the present invention, in which a convex portion (9) is detected from two opposite directions that shadow each other with respect to the CVX. It is possible.

この実施例は、立体形状の検出対象の物体Qの凸部CV
Xに対して相互に影となる反対の2方向に各光電検出部
22A、23A(第5図の実施で結像レンズ15.ハー
フミラ−161位置位置検出フィルタ1フに集光レンズ
18,191光電変換器20.21および増幅器22.
23に対応するもの)を設け、レーザ走査部10A(第
5図の実施例でレーザ光源10.絞シ用しンズ11.光
偏向器12.掃引発振器13.集光レンズ14に対応す
るもの)による光切断線を検出し、その各信号Z、Xを
割算器24に対して物体の頂点の前後に分けてスイッチ
24a、24bで切替え入力するようにしたもので、全
体の立体形状の検出が可能となるものである。
In this embodiment, a convex portion CV of a three-dimensional object Q to be detected is
Each photoelectric detection unit 22A, 23A is placed in two opposite directions that shadow each other with respect to Transducer 20.21 and amplifier 22.
23), and a laser scanning unit 10A (corresponding to the laser light source 10, aperture lens 11, optical deflector 12, sweep oscillator 13, and condenser lens 14 in the embodiment shown in FIG. 5). Detects the optical cutting line of the object, and divides the respective signals Z and is possible.

上記各実施例において、その光偏向器は例えば掃引周波
数15 kH2程度で光点走査をすることができるので
、光切断線の検出時間は約70μS/本でアシ、前述の
従来例の20m5/本に対しく10) て約300倍もの高速化が可能となり、その検出性能は
大幅に向上する。
In each of the above embodiments, the optical deflector is capable of scanning a light spot at a sweep frequency of about 15 kHz, for example, so the detection time of the optical cutting line is about 70 μS/line, compared to 20 m5/line of the conventional example described above. On the other hand, 10) it becomes possible to increase the speed by about 300 times, and the detection performance is greatly improved.

なお、複数個の光電検出部を設けた場合には、上述のよ
うに複雑な凹凸形状をもつ立体形状の検出が可能となり
、ロボットの視覚認識や、白黒の濃淡画像では検査でき
ない立体形状検査の自動化などに対しても適用すること
ができる。
In addition, when multiple photoelectric detectors are installed, it becomes possible to detect 3D shapes with complex unevenness as described above, which is useful for visual recognition of robots and 3D shape inspection that cannot be performed with black and white gradation images. It can also be applied to automation, etc.

以上、詳細に説明したように1本発明によれば、検出時
間を大幅に向上し、また検出性能も向上した経済的な立
体形状検出装置を実施することができ、その効果は顕著
である。
As described above in detail, according to the present invention, it is possible to implement an economical three-dimensional shape detection device that significantly improves detection time and also improves detection performance, and its effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の立体形状検出装置の一例のブロック図
、第2図は、その被検出立体形状の一例の部分斜視図、
第3図は、同光切断線のテレビジョンカメラによる画像
信号図、第4図は、同被検出立体形状の他の例の部分斜
視図、第5図は1本発明に係る立体形状検出装置の一実
施例のブロック図、第6図は、その光切断線による立体
形状図。 第7図は、同他の実施例の主要部のブロック図で(11
) ある。 10・・・レーザ光源、11・・・絞り用レンズ、12
・・・光偏向器、13・・・掃引発振器、14・・・集
光レンズ、15・・・結像レンズ、16・・・ハーフミ
ラ−117・・・光点位置検出フィルタ、18.19・
・・集光レンズ、20.21・・・光電変換器、22.
23・・・増幅器、24・・・割算器、25・・・A−
D変換器、26・・・処理装置、27・・・3次元ディ
スプレイ、28・・・パルス発生器、29・・・パルス
モータ、30・・・試料テーブル、IOA・・・レーザ
走査部、22A、23A、・・・光電変換部b 24 
a # 24 b・・・スイッチ。 代理人 弁理士 福田幸作 (ほか1名) (12) 第1閃 第3図 #斗圀
FIG. 1 is a block diagram of an example of a conventional three-dimensional shape detection device, and FIG. 2 is a partial perspective view of an example of the three-dimensional shape to be detected.
Fig. 3 is an image signal diagram of the same optical cutting line taken by a television camera, Fig. 4 is a partial perspective view of another example of the same three-dimensional shape to be detected, and Fig. 5 is a three-dimensional shape detection device according to the present invention. FIG. 6 is a block diagram of an embodiment of the present invention, and FIG. 6 is a three-dimensional shape diagram of the embodiment. FIG. 7 is a block diagram of the main parts of another embodiment (11
) be. 10... Laser light source, 11... Aperture lens, 12
... Optical deflector, 13 ... Sweep oscillator, 14 ... Condenser lens, 15 ... Image forming lens, 16 ... Half mirror 117 ... Light spot position detection filter, 18.19.
...Condensing lens, 20.21...Photoelectric converter, 22.
23...Amplifier, 24...Divider, 25...A-
D converter, 26... Processing device, 27... Three-dimensional display, 28... Pulse generator, 29... Pulse motor, 30... Sample table, IOA... Laser scanning unit, 22A , 23A, . . . photoelectric conversion section b 24
a #24 b...Switch. Agent Patent attorney Kosaku Fukuda (and 1 other person) (12) 1st Sen Figure 3 #Dokuni

Claims (1)

【特許請求の範囲】 1、超音波励振振動が加えられた光偏向器を通したレー
ザビームを立体形状の検出をすべき物体の表面上に照射
して当該部分について直線状に光点走査をするレーザ走
査部と、当該物体表面上からの反射光を2系統に分路し
、その一方から当該物体の高さ方向の光点位置に応じて
光強度を変化せしめて得た位置検出光および同他方から
無処理で直接に得だ参照光それぞれに対応する電気信号
を得る光電検出部と、上記位置検出光・参照光に対応す
る電気信号の比を求め、これを光切断線信号として当該
ディジタル信号の変換・出力をする画像データ入力部と
、上記ディジタル信号の処理・分析その他各部に対する
所要の制御を行う処理部と、その制御によって各光切断
線信号ごとに光点走査方向と直交する方向に上記物体を
順次に移動せしめる試料移動部と、上記処理部からの各
光切断線信号に基づいて当該物体の立体形状清報を表示
する表示部とから構成したことを特徴とする立体形状検
出装置。 2、特許請求の範囲第1項記載のものにおいて。 光点走査方向に対して直交する2方向または交差する複
数方向それぞれについて光電検出部を設けて構成した立
体形状検出装置。
[Claims] 1. A laser beam to which ultrasonic excitation vibration is applied and passed through an optical deflector is irradiated onto the surface of an object whose three-dimensional shape is to be detected, and a light spot is scanned in a straight line on the relevant part. A position detection light and a position detection light obtained by branching the reflected light from the surface of the object into two systems and changing the light intensity from one of them according to the position of the light spot in the height direction of the object. A photoelectric detection unit obtains electrical signals corresponding to each of the reference lights directly without any processing from the other side, and calculates the ratio of the electrical signals corresponding to the position detection light and reference light, and uses this as a light cutting line signal for the corresponding one. An image data input section that converts and outputs digital signals, a processing section that processes and analyzes the digital signals, and performs necessary control over each section; A three-dimensional shape comprising: a sample moving unit that sequentially moves the object in the direction; and a display unit that displays information on the three-dimensional shape of the object based on each optical cutting line signal from the processing unit. Detection device. 2. In the item described in claim 1. A three-dimensional shape detection device configured by providing photoelectric detection sections in each of two directions perpendicular to the light spot scanning direction or in a plurality of directions intersecting the light spot scanning direction.
JP8399882A 1982-05-20 1982-05-20 Detector of three-dimensional shape Granted JPS58201006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8399882A JPS58201006A (en) 1982-05-20 1982-05-20 Detector of three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8399882A JPS58201006A (en) 1982-05-20 1982-05-20 Detector of three-dimensional shape

Publications (2)

Publication Number Publication Date
JPS58201006A true JPS58201006A (en) 1983-11-22
JPH0156682B2 JPH0156682B2 (en) 1989-12-01

Family

ID=13818196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8399882A Granted JPS58201006A (en) 1982-05-20 1982-05-20 Detector of three-dimensional shape

Country Status (1)

Country Link
JP (1) JPS58201006A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196608A (en) * 1984-03-21 1985-10-05 Tomohiko Akuta Automatic measuring method of three-dimensional configuration
JPS60209105A (en) * 1984-04-02 1985-10-21 Sanpa Kogyo Kk Displacement measuring instrument
JPS60219504A (en) * 1984-04-12 1985-11-02 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Measuring device for height of circuit element on substrate
JPS60220805A (en) * 1984-04-17 1985-11-05 Kawasaki Heavy Ind Ltd Device for forming solid shape
JPS6197505A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Shape detector
JPH02156107A (en) * 1988-12-08 1990-06-15 Kunio Yamashita Visual inspection device for soldered part of printed circuit board
JPH03154802A (en) * 1989-11-10 1991-07-02 Matsushita Electric Ind Co Ltd Instrument and method for measuring lead of electronic component
JP2007033048A (en) * 2005-07-22 2007-02-08 Ricoh Co Ltd Solder bonding determination method, soldering inspection method, soldering inspection device, soldering inspection program, and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873161A (en) * 1971-12-20 1973-10-02
JPS5230799A (en) * 1975-09-04 1977-03-08 Sumitomo Chem Co Ltd Method for production of porous carbon
JPS5636004A (en) * 1979-09-03 1981-04-09 Hitachi Ltd Detecting method of configuration and apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873161A (en) * 1971-12-20 1973-10-02
JPS5230799A (en) * 1975-09-04 1977-03-08 Sumitomo Chem Co Ltd Method for production of porous carbon
JPS5636004A (en) * 1979-09-03 1981-04-09 Hitachi Ltd Detecting method of configuration and apparatus thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196608A (en) * 1984-03-21 1985-10-05 Tomohiko Akuta Automatic measuring method of three-dimensional configuration
JPS60209105A (en) * 1984-04-02 1985-10-21 Sanpa Kogyo Kk Displacement measuring instrument
JPS60219504A (en) * 1984-04-12 1985-11-02 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Measuring device for height of circuit element on substrate
JPS60220805A (en) * 1984-04-17 1985-11-05 Kawasaki Heavy Ind Ltd Device for forming solid shape
JPH0550681B2 (en) * 1984-04-17 1993-07-29 Kawasaki Heavy Ind Ltd
JPS6197505A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Shape detector
JPH0550682B2 (en) * 1984-10-19 1993-07-29 Hitachi Ltd
JPH02156107A (en) * 1988-12-08 1990-06-15 Kunio Yamashita Visual inspection device for soldered part of printed circuit board
JPH03154802A (en) * 1989-11-10 1991-07-02 Matsushita Electric Ind Co Ltd Instrument and method for measuring lead of electronic component
JP2007033048A (en) * 2005-07-22 2007-02-08 Ricoh Co Ltd Solder bonding determination method, soldering inspection method, soldering inspection device, soldering inspection program, and recording medium

Also Published As

Publication number Publication date
JPH0156682B2 (en) 1989-12-01

Similar Documents

Publication Publication Date Title
EP0563829B1 (en) Device for inspecting printed cream solder
US6229913B1 (en) Apparatus and methods for determining the three-dimensional shape of an object using active illumination and relative blurring in two-images due to defocus
US5991040A (en) Optical distance sensor
US6459493B1 (en) Apparatus for measuring surface form
JP2651093B2 (en) Shape detection method and device
JPS6188107A (en) Wafer inspection device
JPH08193816A (en) Method and apparatus for automatic focusing as well as method and apparatus for detecting three-dimensional shape
US5101442A (en) Three-dimensional imaging technique using sharp gradient of illumination
JP3105702B2 (en) Optical defect inspection equipment
JPS5860593A (en) Method and device for detecting shape
JPS58201006A (en) Detector of three-dimensional shape
JPH0719825A (en) Substrate inspection apparatus
US4079421A (en) Image scanning system
JP2001349710A (en) Three-dimensional measuring device
JPH095046A (en) Three-dimensional shape measuring apparatus
JP2987540B2 (en) 3D scanner
JPH04221705A (en) Visual inspection device
JPH0560529A (en) Height measuring device
JPS6355641B2 (en)
JPH02268207A (en) Shape recognizing apparatus
JPH04289409A (en) Substrate inspecting method
JP2839059B2 (en) 3D shape measuring device
JPS61205808A (en) Shape detection apparatus
JPH10185515A (en) Coil position detector
JPH03111707A (en) Detecting method of shape of object