JPH095046A - Three-dimensional shape measuring apparatus - Google Patents

Three-dimensional shape measuring apparatus

Info

Publication number
JPH095046A
JPH095046A JP7176931A JP17693195A JPH095046A JP H095046 A JPH095046 A JP H095046A JP 7176931 A JP7176931 A JP 7176931A JP 17693195 A JP17693195 A JP 17693195A JP H095046 A JPH095046 A JP H095046A
Authority
JP
Japan
Prior art keywords
confocal scanning
image
dimensional shape
optical system
focus position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7176931A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ishihara
満宏 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP7176931A priority Critical patent/JPH095046A/en
Publication of JPH095046A publication Critical patent/JPH095046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE: To provide an apparatus to measure a three-dimensional shape at a high speed and high precision by image processing in which an occluding edge problem does not occur, of which transverse resolution function for an original image is not deteriorated, by which processing is carried out easily, and which has a sufficient speed for in-line use and has constant image focusing magnification against the change of focus point. CONSTITUTION: The three-dimensional shape measuring apparatus is composed of a confocal scanning image-pickup system 3 consisting of a confocal scanning optical system 1 and a photoelectric sensor 2 to carry out photoelectric transduction of the image obtained by the system 1, a focus point changing means 4 for the confocal scanning image-pickup system 3, and an image processing apparatus 6 to calculate the three-dimensional shape of an object by calculating the convergence position of each point of images at precision exceeding the gap of focus points of images based on density information of a plurality of images with different focus points obtained by the confocal scanning image- pickup system 3 and the focus point changing means 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体の3次元的な形状
を光学的に測定する立体形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring device for optically measuring the three-dimensional shape of an object.

【0002】[0002]

【従来の技術】従来より焦点位置に着目した光学的立体
形状測定方法として特開平3−63507号公報又は論
文[1]「Shape from focus sys
temfor rough surfaces」、Pr
oceedings ofthe Image Und
erstanding、1992年、S.K.Naye
rに記載されたものが知られている(以下この方法をS
hape FromFocus法、略してSFF法と呼
ぶことにする)。SFF法は物体表面にテクスチャーパ
ターンを投影し、z軸ステージの操作により、焦点位置
を変えた複数の画像を撮像し、得られたそれぞれの画像
の局所領域毎にその局所領域内のコントラスト情報から
合焦測度を求め、画像間の対応する局所領域毎に合焦位
置(合焦測度の最大位置)を内挿演算により求める処理
を画像全体にわたって行うことで物体の立体形状を計測
する方法であり、微小物体の高精度な立体形状計測方法
として知られている。
2. Description of the Related Art Conventionally, as an optical three-dimensional shape measuring method focusing on a focus position, Japanese Patent Application Laid-Open No. 3-63507 or paper [1] "Shape from focus system" has been used.
temfor rough surfaces ", Pr
ocedings of the Image Und
erstanding, 1992, S.M. K. Naye
The one described in r is known (hereinafter, this method will be referred to as S
(Hope From Focus method, abbreviated as SFF method). In the SFF method, a texture pattern is projected on the object surface, a plurality of images with different focal positions are taken by operating the z-axis stage, and for each local region of each obtained image, the contrast information in the local region is used. This is a method for measuring the three-dimensional shape of an object by performing a process of obtaining a focus measure and obtaining a focus position (maximum position of the focus measure) by interpolation calculation for each corresponding local area between images over the entire image. , Is known as a highly accurate three-dimensional shape measuring method for a minute object.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのSF
F法にはいくつかの問題がある。(1)図7に示すよう
な急峻な立体エッジが存在する場合、その下の部分のエ
ッジ近傍の領域では計測ができない。この領域では、撮
像系の焦点がこの位置にあっていても上側のエッジのボ
ケが重畳するためにコントラスト変化が確認できない。
(以下この問題をオクルーディングエッジの問題と呼
ぶ)。(2)横分解能が低い(横分解能とは高さ方向を
z方向とした場合のxy方向の分解能である)。合焦測
度であるコントラスト情報を得るためにはテクスチャー
が十分含まれる大きさの局所領域が必要となるため元の
画像に比べ平滑化の効果が生じ、それによって横分解能
が低下してしまう。(3)処理が複雑である。局所領域
内のコントラスト情報から合焦測度を求めるの計算には
微分処理と局所和の処理又はヒストグラムの分散値を求
める処理が必要であり、ソフト処理ではこの部分に非常
に時間がかかるため処理回路を製作する必要がある。ま
た微分や局所和を行うサイズとして、その最適な値は物
体によって異なるので、物体毎に選択が必要となる。
However, this SF
The F method has some problems. (1) When a steep solid edge as shown in FIG. 7 exists, measurement cannot be performed in the area near the edge below the solid edge. In this region, even if the focus of the image pickup system is located at this position, the blurring of the upper edge is superposed, and therefore the change in contrast cannot be confirmed.
(Hereafter, this problem is called the occluding edge problem). (2) The lateral resolution is low (the lateral resolution is the resolution in the xy directions when the height direction is the z direction). In order to obtain the contrast information, which is a focus measure, a local area having a size enough to include texture is required, so that a smoothing effect is produced as compared with the original image, and the lateral resolution is reduced. (3) The processing is complicated. The calculation of obtaining the focusing measure from the contrast information in the local area requires the differential processing and the processing of the local sum or the processing of obtaining the variance value of the histogram. In software processing, this portion takes a very long time, so the processing circuit Need to be manufactured. Further, as the size for differentiating or performing the local sum, the optimum value thereof differs depending on the object, so it is necessary to select it for each object.

【0004】その他に実用上以下の2つの問題がある。
(4)従来行われているz軸ステージ操作による焦点位
置の移動方法は制御が煩わしく、インライン計測で必要
となる高速応答には対応が難しい。(5)焦点位置が変
化した場合の結像倍率変化の問題が考慮されていないの
で計測精度が低下する。
In addition, there are the following two problems in practical use.
(4) The conventional method of moving the focus position by operating the z-axis stage is cumbersome to control, and it is difficult to cope with the high-speed response required for in-line measurement. (5) Since the problem of the change of the imaging magnification when the focus position is changed is not taken into consideration, the measurement accuracy is lowered.

【0005】そこで本発明は、オクルーディングエッジ
の問題がなく、元の画像に対して横分解能が低下するこ
となく、処理が容易で、インラインでの使用に耐えうる
速度で、かつ焦点位置変化に対して結像倍率の変化しな
い立体形状測定装置を提供することを目的とする。
Therefore, according to the present invention, there is no problem of an occluding edge, the horizontal resolution is not deteriorated with respect to the original image, the processing is easy, the speed can withstand in-line use, and the focus position changes. On the other hand, it is an object of the present invention to provide a three-dimensional shape measuring device in which the imaging magnification does not change.

【0006】[0006]

【課題を解決するための手段】目的達成のために本発明
では、共焦点走査光学系と共焦点走査光学系により得ら
れる2次元光学像を光電変換する光電センサとより構成
された共焦点走査撮像系と、前記共焦点走査光学系の焦
点位置をする焦点位置変化手段と、前記共焦点走査撮像
系と前記焦点位置変化手段とにより得られた焦点位置の
異なる複数の画像を取り込み、焦点位置の変化に対応し
て変化する画像各点の濃度値から、取り込まれた画像の
焦点位置間隔を超える精度で、濃度値の最大値を与える
焦点位置を内挿処理を用いて画像各点毎に推定し、推定
した焦点位置をその点の高さとする処理を実行する画像
処理装置とから構成する。
In order to achieve the object, according to the present invention, a confocal scanning optical system includes a confocal scanning optical system and a photoelectric sensor for photoelectrically converting a two-dimensional optical image obtained by the confocal scanning optical system. An image pickup system, a focus position changing means for setting a focus position of the confocal scanning optical system, and a plurality of images having different focus positions obtained by the confocal scanning image pickup system and the focus position changing means From the density value of each image point that changes according to the change of the, the focus position that gives the maximum density value with accuracy that exceeds the focus position interval of the captured image The image processing apparatus is configured to perform processing for estimating and estimating the estimated focus position as the height of the point.

【0007】また焦点位置変化手段は、互いに厚さが異
なる複数の平行平板形の透明体か又は互いに屈折率が異
なる複数の平行平板形の透明体を、物体と共焦点走査光
学系の共焦点結像面間の光路に順次挿入するように構成
し、共焦点走査光学系は、物体側にテレセントリックと
なるように構成する。
Further, the focal position changing means uses a plurality of parallel plate type transparent bodies having different thicknesses or a plurality of parallel plate type transparent bodies having different refractive indexes from each other and the confocal point of the confocal scanning optical system. The confocal scanning optical system is configured to be sequentially inserted into the optical path between the image planes, and the confocal scanning optical system is configured to be telecentric on the object side.

【0008】[0008]

【作用】このように装置を構成することにより以下のよ
うな作用が得られる。(1)共焦点走査撮像系はスポッ
ト光の走査により画像を構成するため、ある点の濃度値
は他の点のボケに影響を受けることがなくなり、オクル
ーディングエッジの問題は発生しなくなる。(2)共焦
点走査撮像系が構成する画像の各点の濃度値は合焦位置
に近いほど高い値となる。これはSFF法の合焦測度が
持つ性質そのものであるから合焦測度の計算には濃度値
をそのまま用いればよく、合焦測度の計算は必要なくな
る。このため局所領域の設定も必要なく、ある点の高さ
は画像それぞれのその点のみの濃度値から決定されるこ
とから横分解能の低下は発生しなくなる。(3)(2)
と同様に合焦測度を求める必要ないため、微分も局所和
もヒストグラムの分散値も求める必要が無くなり処理回
路が簡略化される。また処理のサイズの選択に煩わされ
ることもなくなる。(4)焦点位置の移動は平行平板形
の透明体の挿入による光路長の変化により達成されるた
めz軸ステージ移動の必要がなく、高速の画像入力が可
能となる。(5)共焦点走査光学系がテレセントリック
だから結像倍率変化は発生しなくなる。
By configuring the device in this way, the following actions are obtained. (1) Since the confocal scanning imaging system forms an image by scanning spot light, the density value at a certain point is not affected by the blurring at another point, and the problem of occluding edge does not occur. (2) The density value of each point of the image formed by the confocal scanning imaging system becomes higher as it approaches the in-focus position. Since this is the property itself of the focusing measure of the SFF method, the density value may be used as it is for the calculation of the focusing measure, and the calculation of the focusing measure is not necessary. Therefore, it is not necessary to set the local area, and the height of a certain point is determined from the density value of only that point of each image, so that the horizontal resolution does not decrease. (3) (2)
Similarly, since it is not necessary to obtain the focusing measure, it is not necessary to obtain the differentiation, the local sum, and the variance value of the histogram, and the processing circuit is simplified. Further, there is no need to be bothered to select the processing size. (4) Since the movement of the focal position is achieved by the change in the optical path length due to the insertion of the parallel plate type transparent body, it is not necessary to move the z-axis stage, and high-speed image input is possible. (5) Since the confocal scanning optical system is telecentric, the change in imaging magnification does not occur.

【0009】[0009]

【実施例】本発明の実施例を説明するのに先立ち共焦点
走査光学系についての一般的な説明をする。まず共焦点
光学系について述べる。図2に共焦点光学系の基本構成
を示す。ピンホール201を通して射出された照明光は
対物レンズ202により集光され焦点面203に収束す
る。この位置に物体表面204がある場合、物体の反射
光は照明光と全く逆の過程でピンホール201に収束
し、対物レンズ202に入射した反射光のほとんどがピ
ンホール201を通過する。しかし、物体表面204が
焦点面203から離れると反射光の収束点もピンホール
201から離れることになりピンホール201を通過す
る光量は減少する。このときピンホール201を通過す
る光強度|V(z)|2は照明光の波数をk、対物レン
ズ202のNAをsinθ,反射光の収束点とピンホー
ル201の距離をzとすれば|V(z)|=|sin
kz(1−cosθ)|/|kz(1−cosθ)|に
より与えられることが知られており(論文[2]「De
pth responseof confocal o
ptical microscopes」、OPTIC
S LETTERS、Vol.11、No.12、19
86年、T.R.Corle他参照)、照明光の波長を
550nm、NAが0.1の場合、図4のような光強度
変化となる。このように共焦点光学系ではピンホール2
01を通過する反射光量により物体表面204の位置を
判定することが可能であり、また照明光はスポットとし
て物体に照射されるため物体上の他の点からの光の影響
がない。すなわち他点のボケは発生しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments of the present invention, a general description will be given of a confocal scanning optical system. First, the confocal optical system will be described. FIG. 2 shows the basic configuration of the confocal optical system. The illumination light emitted through the pinhole 201 is condensed by the objective lens 202 and converges on the focal plane 203. When the object surface 204 is located at this position, the reflected light of the object converges on the pinhole 201 in the completely opposite process to the illumination light, and most of the reflected light incident on the objective lens 202 passes through the pinhole 201. However, when the object surface 204 moves away from the focal plane 203, the convergent point of the reflected light also moves away from the pinhole 201, and the amount of light passing through the pinhole 201 decreases. At this time, if the light intensity | V (z) | 2 passing through the pinhole 201 is k, the wave number of the illumination light is k, the NA of the objective lens 202 is sin θ, and the distance between the converging point of the reflected light and the pinhole 201 is z | V (z) | = | sin
kz (1-cosθ) | / | kz (1-cosθ) | is known (Paper [2] “De
pth response of confocal o
optical microscopes ", OPTIC
S LETTERS, Vol. 11, No. 12, 19
1986, T. R. (See Corle et al.), When the wavelength of the illumination light is 550 nm and the NA is 0.1, the light intensity changes as shown in FIG. Thus, in the confocal optical system, the pinhole 2
The position of the object surface 204 can be determined by the amount of reflected light passing through 01, and since the illumination light is applied to the object as a spot, there is no influence of light from other points on the object. That is, blurring at other points does not occur.

【0010】次に共焦点走査光学系について述べる。共
焦点走査光学系は、前記の共焦点光学系を2次元的に走
査することで2次元的な光学像を得る光学系であり、図
3にその一例を示している。図3には共焦点走査光学系
とともに共焦点走査光学系により得られる2次元的な光
学像を光電変換する光電センサ2も同時に記載してあ
り、全体として共焦点走査撮像系を構成している。光源
101からでた光はコンデンサレンズ102により集光
されNipkow disk103に照射される。Ni
pkow disk103は螺旋状に多数のピンホール
が設けられた円盤であり、円盤上の多数のピンホール
は、対物レンズ105との組み合わせでそれぞれが共焦
点光学系をなしている。各ピンホール間は互いに光が干
渉しあうことがないように十分な距離がとってある。こ
のNipkow disk103をモータ104により
高速で回転させると共焦点光学系の2次元走査がなされ
ることになる。Nipkow disk103上のピン
ホールを通過した物体5からの反射光はハーフミラー1
07で反射し、レンズ108によりエリア形の光電セン
サ2へ導かれる。この部分は光電センサ2にNipko
w disk103上のピンホールが結像する光学配置
となっており、光電センサ2にはピンホールを通過する
光の強度に応じた画像が形成される。
Next, the confocal scanning optical system will be described. The confocal scanning optical system is an optical system that obtains a two-dimensional optical image by scanning the confocal optical system two-dimensionally, and an example thereof is shown in FIG. FIG. 3 also shows a photoelectric sensor 2 that photoelectrically converts a two-dimensional optical image obtained by the confocal scanning optical system together with the confocal scanning optical system, and constitutes a confocal scanning imaging system as a whole. . The light emitted from the light source 101 is condensed by the condenser lens 102 and applied to the Nipkow disk 103. Ni
The pkow disk 103 is a disk in which a large number of pinholes are spirally provided, and the large number of pinholes on the disk each form a confocal optical system in combination with the objective lens 105. A sufficient distance is provided between the pinholes so that lights do not interfere with each other. When the Nipkow disk 103 is rotated at a high speed by the motor 104, the confocal optical system is two-dimensionally scanned. The reflected light from the object 5 that has passed through the pinhole on the Nipkow disk 103 is reflected by the half mirror 1.
It is reflected at 07 and guided to the area type photoelectric sensor 2 by the lens 108. This part is the photoelectric sensor 2 Nipko
The optical arrangement is such that a pinhole on the w disk 103 forms an image, and an image corresponding to the intensity of light passing through the pinhole is formed on the photoelectric sensor 2.

【0011】続いて本発明の一実施例を図1から図6を
用いて説明する。図1に本発明の一実施例の構成を示
す。共焦点走査光学系1により得られた2次元光学像は
光電センサ2により電気的な映像信号となる(共焦点走
査光学系1と光電センサ2から構成されるこの映像信号
生成部を共焦点走査撮像系3と呼ぶ)。共焦点走査撮像
系3は先に詳述した図3に示す構成となっている。図3
での共焦点走査撮像系3はNipkow disk10
3を回転させて走査する構成ものであるが、本発明で
は、より一般的な、レーザービームを回転ミラーやガル
バノミラーまたはAO素子を用いて走査する構成にして
もよく、また速度的に許容される場合にはxyテーブル
により物体5を移動させる構成にしてもよい。図2に示
す共焦点光学系と光学的に同等の光学系を2次元的に走
査して画像を得るものであればどのような構成であって
もよい。
Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG. 1 shows the configuration of one embodiment of the present invention. The two-dimensional optical image obtained by the confocal scanning optical system 1 becomes an electric video signal by the photoelectric sensor 2 (this video signal generating unit composed of the confocal scanning optical system 1 and the photoelectric sensor 2 is confocal scanned. (Imaging system 3). The confocal scanning imaging system 3 has the configuration shown in FIG. 3 described in detail above. FIG.
The confocal scanning image pickup system 3 is a Nipkow disk10.
3 is rotated and scanned, but in the present invention, a more general structure in which a laser beam is scanned using a rotating mirror, a galvanometer mirror or an AO element may be used. In this case, the object 5 may be moved by the xy table. Any configuration may be used as long as an image is obtained by two-dimensionally scanning an optical system that is optically equivalent to the confocal optical system shown in FIG.

【0012】図3における対物レンズ105を挟むNi
pkow disk103と物体5間の光路には図1の
ように焦点位置変化手段4が設けられ焦点位置を変化さ
せることが出来るようになっている。この焦点位置変化
手段4と共焦点走査撮像系3とにより得られる焦点位置
の異なる複数の画像(例えばz1,z2,z3の焦点位
置で得られた物体5の3枚の画像)は画像処理装置6に
入力され、これらの画像から物体5の立体形状が画像処
理装置6により演算される。
Ni sandwiching the objective lens 105 in FIG.
The optical path between the pkow disk 103 and the object 5 is provided with a focal position changing means 4 as shown in FIG. 1 so that the focal position can be changed. A plurality of images with different focal positions (for example, three images of the object 5 obtained at the focal positions of z1, z2, and z3) obtained by the focal position changing means 4 and the confocal scanning imaging system 3 are image processing devices. 6 and the three-dimensional shape of the object 5 is calculated by the image processing device 6 from these images.

【0013】次に焦点位置の異なる複数の画像から物体
5の立体形状を求める方法を述べる。それぞれの画像の
物体5上の同一位置を表す点の濃度を焦点位置座標(z
座標)上に並べればこれは図4に示した連続波形を離散
化したものとなる。離散化の一例を図4に点線で示して
いる。z座標と光強度(画像では濃度)の関係は前記の
モデル|V(z)|2で正確に表せるため、離散的な情
報からcenterlobeのピーク位置(以下ピーク
位置とする)つまり合焦位置を精度よく推定できる。例
えばcenter lobeの形状によく似た関数であ
るガウス関数を用いればピーク位置は解析的に求めるこ
とができて、離散値の最大値v1とその前後のどちらか
1点v2の計2点の値からピーク位置pは次のように表
されるp=p1+(1+a2(v2−v1))/2。こ
こにp1はv1のz座標であり,aはlobeの広がり
を示すパラメーターで照明の波長と対物レンズ105の
N.A.で決まる定数である。ピーク位置の演算方法は
これだけではなく3点以上の点を用いてもよいし、2次
関数などの他の似た形状の関数を用いてもよい。もちろ
んモデル式|V(z)|2を直接用いることもできる。
他にもモーメントを用いた演算などが可能である。これ
らの演算処理のより高速化のために、演算結果を事前に
LUTに格納しておき、その結果を参照するようにする
こともできる。求めた合焦位置は物体のその点の高さを
示しているから、上記の演算を画像中の全ての点に対し
て実行することで物体5の立体形状を求めることができ
る。
Next, a method for obtaining the three-dimensional shape of the object 5 from a plurality of images having different focal positions will be described. The densities of the points representing the same position on the object 5 in the respective images are taken as the focus position coordinates (z
If they are arranged on the (coordinates), this will be a discretization of the continuous waveform shown in FIG. An example of discretization is shown by a dotted line in FIG. Since the relationship between the z coordinate and the light intensity (density in the image) can be accurately expressed by the model | V (z) | 2 described above, the peak position of the center lobe (hereinafter referred to as the peak position), that is, the in-focus position is calculated from the discrete information. Can be accurately estimated. For example, if a Gaussian function, which is a function very similar to the shape of a center lobe, is used, the peak position can be obtained analytically, and the maximum value v1 of discrete values and one value v2 before or after the maximum value of two values in total. Therefore, the peak position p is expressed as follows: p = p1 + (1 + a2 (v2-v1)) / 2. Here, p1 is the z coordinate of v1, and a is a parameter indicating the spread of lobe, and the wavelength of illumination and the N.V. A. Is a constant determined by. The peak position calculation method is not limited to this, and three or more points may be used, or a function having another similar shape such as a quadratic function may be used. Of course, the model formula | V (z) | 2 can also be used directly.
Besides, calculation using moment is possible. In order to speed up these arithmetic processes, the arithmetic result may be stored in the LUT in advance and the result may be referred to. Since the obtained in-focus position indicates the height of that point of the object, the three-dimensional shape of the object 5 can be obtained by executing the above calculation for all the points in the image.

【0014】この演算過程をSFF法の立体形状演算過
程と比較してみる。(1)まずSFF法で必須であった
合焦測度演算(コントラスト評価)が全く必要ない
(2)内挿演算において、SFF法では物体の表面状態
によりモデル式の形状パラメータが変化するためピーク
位置演算のためには少なくとも3点が必要であり、また
合焦測度とモデル式との関係が明らかでないため合焦測
度演算方法も実験により選択の必要があるが、本発明で
用いている共焦点光学系は論文[2]によればモデル式
が正確に判っており物体5の表面状態や傾きが異なって
もその形状パラメータが変化しないことから、本発明で
はピーク位置がより精度よくかつより効率的に(最低2
点から)求められるものである。
This calculation process will be compared with the solid shape calculation process of the SFF method. (1) First, the focus measure calculation (contrast evaluation), which was indispensable in the SFF method, is not required at all. (2) In the interpolation calculation, the peak position because the shape parameter of the model formula changes depending on the surface state of the object in the SFF method. At least three points are required for the calculation, and since the relationship between the focus measure and the model formula is not clear, it is necessary to select the focus measure calculation method by experiment. According to the paper [2], the model formula of the optical system is accurately known, and the shape parameter does not change even if the surface state and the inclination of the object 5 are different. Therefore, in the present invention, the peak position is more accurate and more efficient. (At least 2
It is what is required.

【0015】次に焦点位置変化手段4の構成を図5に示
す。互いに厚さが異なる複数の平行平板形の透明体40
2が回転板401の円周上に並べられている(透明体4
02の材料としては光学ガラスや光学用樹脂、液体、液
晶などを用いることができる)。この円周がちょうど共
焦点走査光学系1の光軸と垂直に交わるように(共焦点
走査光学系1の光路に透明体402が挿入されるよう
に)回転板401が配置されている。モータ403によ
り回転板401を高速に回転させると、共焦点走査光学
系1の光路に挿入される透明体402の厚さが高速に変
化することになる。透明体402の厚さが変化すると光
路長の変化にともなって焦点位置が変化するから、結
局、焦点位置が高速に変化することになる。回転板40
1の回転速度と共焦点走査撮像系3の撮像速度との同期
をセンサ404を用いてとることにより、共焦点走査撮
像系3の撮像速度(リアルタイム)で焦点位置の異なる
画像を得ることが可能となる。光路長の変化手段として
互いに厚さの異なる複数の平行平板形の透明体402を
用いたが、互いに屈折率の異なる複数の平行平板形の透
明体402でも同様のことが可能である。またこの実施
例の他にも、例えば共焦点走査光学系1の対物レンズ1
05を非球面レンズなどの特殊な光学素子によって簡単
な構造とすれば、音叉などの加振動手段により直接対物
レンズ105を動かすことで高速な焦点位置を変化させ
ることも可能である。
Next, the structure of the focus position changing means 4 is shown in FIG. A plurality of parallel plate-shaped transparent bodies 40 having different thicknesses
2 are arranged on the circumference of the rotary plate 401 (transparent body 4
As the material of 02, optical glass, optical resin, liquid, liquid crystal, etc. can be used). The rotating plate 401 is arranged so that this circumference exactly intersects the optical axis of the confocal scanning optical system 1 perpendicularly (so that the transparent body 402 is inserted in the optical path of the confocal scanning optical system 1). When the rotating plate 401 is rotated at high speed by the motor 403, the thickness of the transparent body 402 inserted in the optical path of the confocal scanning optical system 1 changes at high speed. When the thickness of the transparent body 402 changes, the focus position changes with the change of the optical path length, so that the focus position changes at high speed. Rotating plate 40
By synchronizing the rotation speed of No. 1 and the imaging speed of the confocal scanning imaging system 3 by using the sensor 404, it is possible to obtain images with different focus positions at the imaging speed (real time) of the confocal scanning imaging system 3. Becomes Although a plurality of parallel plate type transparent bodies 402 having different thicknesses are used as the means for changing the optical path length, the same can be applied to a plurality of parallel plate type transparent bodies 402 having different refractive indexes. In addition to this embodiment, for example, the objective lens 1 of the confocal scanning optical system 1
If 05 has a simple structure with a special optical element such as an aspherical lens, it is possible to change the focus position at high speed by directly moving the objective lens 105 by vibrating means such as a tuning fork.

【0016】図3では、対物レンズ105を一般的な結
像レンズで示しているが、一般的な結像レンズでは、焦
点位置の異なる画像それぞれの倍率は互いに異るため、
一般的な結像レンズを用いる場合、正確にはこの倍率変
化を考慮した高さ計測演算をする必要がある。そこで対
物レンズ105を物体側にテレセントリックなレンズ
(図6に示すように対物レンズ602の後側焦点に開き
しぼり601がある構造)とすることにより、主光線が
光軸に平行となることから、焦点位置が異なってもそれ
ぞれの画像で倍率が変化が無いようになる。
In FIG. 3, the objective lens 105 is shown as a general image forming lens. However, in the general image forming lens, the magnifications of images having different focal positions are different from each other, and
When using a general imaging lens, it is necessary to accurately perform the height measurement calculation in consideration of this change in magnification. Therefore, by making the objective lens 105 a telecentric lens on the object side (a structure in which an aperture 601 is opened at the rear focal point of the objective lens 602 as shown in FIG. 6), the chief ray becomes parallel to the optical axis, Even if the focal position is different, the magnification does not change in each image.

【発明の効果】以上のように構成することによりオクル
ーディングエッジの問題がなく、元の画像に対して横分
解能が低下することなく、処理が容易で、インラインで
の使用に耐えうる速度で、かつ焦点位置変化に対して結
像倍率の変化しない立体形状測定が可能となる。この装
置によりLSIの実装時の検査、例えばTABのインナ
ーリードのハガレやフォーミング異常の検査、ボンディ
ングワイヤのループ高さ検査、バンプ形状検査などのイ
ンライン検査が可能となる。
With the above structure, there is no problem of occluding edges, the horizontal resolution does not deteriorate with respect to the original image, the processing is easy, and the speed is high enough to be used inline. In addition, it is possible to measure the three-dimensional shape in which the imaging magnification does not change with respect to the change in the focus position. This device enables in-line inspection such as LSI mounting inspection, for example, inspection of TAB inner leads for peeling or forming abnormality, bonding wire loop height inspection, and bump shape inspection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示した図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】共焦点光学系の基本構成を示した図である。FIG. 2 is a diagram showing a basic configuration of a confocal optical system.

【図3】本発明の共焦点走査撮像系の一例を示した図で
ある。
FIG. 3 is a diagram showing an example of a confocal scanning imaging system of the present invention.

【図4】像側の焦点位置と光強度との関係を示した図で
ある。
FIG. 4 is a diagram showing a relationship between a focal position on the image side and light intensity.

【図5】本発明の焦点位置変化の手段の一例を示した図
である。
FIG. 5 is a diagram showing an example of a focus position changing means of the present invention.

【図6】テレセントリックな共焦点光学系を示した図で
ある。
FIG. 6 is a diagram showing a telecentric confocal optical system.

【図7】オクルーディングエッジを説明するための図で
ある。
FIG. 7 is a diagram for explaining an occluding edge.

【符号の説明】[Explanation of symbols]

1 共焦点走査光学系 2 光電センサ 3 共焦点走査撮像系 4 焦点位置変化手段 5 物体 6 画像処理装置 DESCRIPTION OF SYMBOLS 1 Confocal scanning optical system 2 Photoelectric sensor 3 Confocal scanning imaging system 4 Focus position changing means 5 Object 6 Image processing device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体の立体形状を光学的に測定する装置
において、共焦点走査光学系と共焦点走査光学系により
得られる2次元光学像を光電変換する光電センサとより
構成された共焦点走査撮像系と、前記共焦点走査光学系
の焦点位置を変える焦点位置変化手段と、前記共焦点走
査撮像系と前記焦点位置変化手段とにより得られた焦点
位置の異なる複数の画像を取り込み、焦点位置の変化に
対応して変化する画像各点の濃度値から、濃度値の最大
値を与える焦点位置を内挿処理を用いて、取り込まれた
画像の焦点位置間隔を超える精度で画像各点毎に推定
し、推定した焦点位置をその点の高さとする処理を実行
する画像処理装置とから構成されることを特徴とする立
体形状測定装置。
1. A device for optically measuring a three-dimensional shape of an object, which comprises a confocal scanning optical system and a confocal scanning device which photoelectrically converts a two-dimensional optical image obtained by the confocal scanning optical system. An image pickup system, a focus position changing unit that changes the focus position of the confocal scanning optical system, and a plurality of images having different focus positions obtained by the confocal scanning image pickup system and the focus position changing unit are captured. The focus position that gives the maximum density value is calculated from the density value of each image point that changes according to the change of A three-dimensional shape measuring apparatus, comprising: an image processing apparatus that performs processing of estimating and estimating the estimated focus position as the height of the point.
【請求項2】 焦点位置変化手段は、互いに厚さが異な
る複数の平行平板形の透明体か又は互いに屈折率が異な
る複数の平行平板形の透明体を、物体と共焦点走査光学
系の共焦点結像面間の光路に順次挿入するものであるこ
とを特徴とする請求項1記載の立体形状測定装置。
2. The focus position changing means comprises a plurality of parallel plate-shaped transparent bodies having different thicknesses or a plurality of parallel plate-shaped transparent bodies having different refractive indexes, which are used for the object and the confocal scanning optical system. The three-dimensional shape measuring apparatus according to claim 1, wherein the three-dimensional shape measuring apparatus is one that is sequentially inserted in an optical path between focal image formation planes.
【請求項3】 共焦点走査光学系は、物体側にテレセン
トリックであることを特徴とする請求項1又は2に記載
の立体形状測定装置。
3. The three-dimensional shape measuring apparatus according to claim 1, wherein the confocal scanning optical system is telecentric on the object side.
JP7176931A 1995-06-21 1995-06-21 Three-dimensional shape measuring apparatus Pending JPH095046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7176931A JPH095046A (en) 1995-06-21 1995-06-21 Three-dimensional shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7176931A JPH095046A (en) 1995-06-21 1995-06-21 Three-dimensional shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPH095046A true JPH095046A (en) 1997-01-10

Family

ID=16022253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7176931A Pending JPH095046A (en) 1995-06-21 1995-06-21 Three-dimensional shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPH095046A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264266A (en) * 2000-03-14 2001-09-26 Olympus Optical Co Ltd Substrate inspecting device
WO2002068903A1 (en) * 2001-02-28 2002-09-06 Olympus Optical Co., Ltd. Confocal microscope, optical height measuring method, and automatic focusing method
JP2003145969A (en) * 2001-11-16 2003-05-21 Toppan Printing Co Ltd Print with scratch hiding layer
JP2010249794A (en) * 2009-03-26 2010-11-04 Kyocera Corp Object distance measuring device
JP2011150062A (en) * 2010-01-20 2011-08-04 Hitachi High-Technologies Corp Flat panel display (fpd) module mounting device
JP2013190624A (en) * 2012-03-14 2013-09-26 Takaoka Electric Mfg Co Ltd Focus position changing device and confocal optical device using the same
JP2018155646A (en) * 2017-03-17 2018-10-04 三菱ケミカル株式会社 Surface measuring device and surface measurement method
JP2019168280A (en) * 2018-03-22 2019-10-03 東レエンジニアリング株式会社 Void inspection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264266A (en) * 2000-03-14 2001-09-26 Olympus Optical Co Ltd Substrate inspecting device
WO2002068903A1 (en) * 2001-02-28 2002-09-06 Olympus Optical Co., Ltd. Confocal microscope, optical height measuring method, and automatic focusing method
JP2003145969A (en) * 2001-11-16 2003-05-21 Toppan Printing Co Ltd Print with scratch hiding layer
JP2010249794A (en) * 2009-03-26 2010-11-04 Kyocera Corp Object distance measuring device
JP2011150062A (en) * 2010-01-20 2011-08-04 Hitachi High-Technologies Corp Flat panel display (fpd) module mounting device
JP2013190624A (en) * 2012-03-14 2013-09-26 Takaoka Electric Mfg Co Ltd Focus position changing device and confocal optical device using the same
US9435982B2 (en) 2012-03-14 2016-09-06 Takaoka Toko Co., Ltd. Focus position changing apparatus and confocal optical apparatus using the same
JP2018155646A (en) * 2017-03-17 2018-10-04 三菱ケミカル株式会社 Surface measuring device and surface measurement method
JP2019168280A (en) * 2018-03-22 2019-10-03 東レエンジニアリング株式会社 Void inspection device

Similar Documents

Publication Publication Date Title
JP2946466B2 (en) Microscopy method and apparatus
JP6503221B2 (en) Three-dimensional information acquisition apparatus and three-dimensional information acquisition method
US10754139B2 (en) Three-dimensional position information acquiring method and three-dimensional position information acquiring apparatus
KR20100019455A (en) Single-lens, single-aperture, single-sensor 3-d imaging device
US5208451A (en) Method and apparatus for automated focusing of an interferometric optical system
JPH06505096A (en) light sensor
Ishihara et al. High-speed surface measurement using a non-scanning multiple-beam confocal microscope
JP2963990B1 (en) Distance measuring device and method, image restoring device and method
JP3306858B2 (en) 3D shape measuring device
TWI500963B (en) An image capturing device and method
JPH095046A (en) Three-dimensional shape measuring apparatus
JP3509088B2 (en) Optical device for three-dimensional shape measurement
JPH1068616A (en) Shape measuring equipment
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP4100553B2 (en) Simultaneous measurement apparatus and method for dynamic shape and dynamic position
CN117491285A (en) Image definition focusing-based method and device
JP2004125708A (en) Apparatus and method for measuring three dimensional shape
JP3180091B2 (en) Non-contact dimension measurement method by laser autofocus
JP2000097633A (en) Device for detecting mark location and method for detecting mark location using the device
JP3101582B2 (en) Position detecting apparatus and method using oblique optical axis optical system
JPH0784187A (en) Pupil projection optical system
KR100463095B1 (en) Position detection method and device using edge scattered light
JP3275407B2 (en) Micro size measuring device
JP2000234916A (en) Light beam form measuring apparatus and alignment measuring apparatus
Bitte et al. 3D surface inspection with a DMD based sensor