JPH0550681B2 - - Google Patents

Info

Publication number
JPH0550681B2
JPH0550681B2 JP59077213A JP7721384A JPH0550681B2 JP H0550681 B2 JPH0550681 B2 JP H0550681B2 JP 59077213 A JP59077213 A JP 59077213A JP 7721384 A JP7721384 A JP 7721384A JP H0550681 B2 JPH0550681 B2 JP H0550681B2
Authority
JP
Japan
Prior art keywords
slit light
target object
dimensional
plane
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59077213A
Other languages
Japanese (ja)
Other versions
JPS60220805A (en
Inventor
Gensuke Okada
Gohei Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59077213A priority Critical patent/JPS60220805A/en
Priority to AT85104269T priority patent/ATE69400T1/en
Priority to DE8585104269T priority patent/DE3584642D1/en
Priority to EP85104269A priority patent/EP0163076B1/en
Priority to US06/721,451 priority patent/US4752964A/en
Priority to CA000478699A priority patent/CA1257682A/en
Publication of JPS60220805A publication Critical patent/JPS60220805A/en
Publication of JPH0550681B2 publication Critical patent/JPH0550681B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • G05B19/4207Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37048Split beam, stripe projection on object, lines detected with cameras
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49011Machine 2-D slices, build 3-D model, laminated object manufacturing LOM

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人物等の立体形状を有する物から立
体像等の立体形状を形成する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for forming a three-dimensional shape such as a three-dimensional image from an object having a three-dimensional shape such as a person.

(従来技術) 従来、立体形状を有する物体から、これを同等
の立体形状を形成するために、倣い工作機械鋳
型、反転型等を用いていた。
(Prior Art) Conventionally, a copying machine tool mold, an inverted mold, etc. have been used to form an object having a three-dimensional shape into an equivalent three-dimensional shape.

しかしながら、工作機械、鋳型等の寸法的制限
により、立体形状を成形できる対象物に制約さ
れ、複雑な形状で凹凸の顕著な対象物体から立体
形状を複製するのは困難であるという問題点を有
していた。また、対象物体が軟物である場合に、
その物体を複製するためには高度な熟練が要求さ
れるとともに芸術的なセンスも要求されるという
問題点があつた。
However, due to dimensional limitations of machine tools, molds, etc., the objects that can be molded into three-dimensional shapes are restricted, and it is difficult to reproduce three-dimensional shapes from objects with complex shapes and noticeable irregularities. Was. In addition, when the target object is a soft object,
The problem was that replicating the object required not only a high degree of skill but also an artistic sense.

立体形状をスリツト光平面により切断して撮影
し、断面輪郭を得る方法として、特公昭53−2580
号明細書に記載されたタイヤの検査に使用する方
法が公知である。この方法によれば、レーザーを
四方から投光して形成したレーザー光平面で切断
して得られる凹部を有するタイヤの断面輪郭線
を、全周が撮影できるように配置された複数のカ
メラで撮影し、それら撮影位置から光平面と実質
的に同一位置に設けられたスクリーン上にその写
真記録を等倍投影することによりタイヤの断面輪
郭を再現して、タイヤ断面の形状、寸法を観察、
測定することができる。この方法では、投影時の
スクリーン位置が撮影時のタイヤ断面位置と厳密
に同一であることが重要であるから、撮影装置の
方をタイヤの周に沿つて移動させながら撮影した
り、測定対象の形状等に合致するように測定の度
に適宜調整することは予定されていない。なお、
この方法は投影した像を視覚的に観察するもので
あるから、同形の立体像を作成するために数値制
御式工作機械に供給する図形情報を得ることはで
きない。
Tokuko Sho 53-2580 was developed as a method to obtain cross-sectional contours by cutting and photographing three-dimensional shapes using a slit light plane.
The method used to test tires is known. According to this method, the cross-sectional outline of a tire with a concave portion obtained by cutting with a laser beam plane formed by projecting a laser from all sides is photographed using multiple cameras arranged so that the entire circumference can be photographed. Then, by projecting the photographic record at the same magnification from the photographing position onto a screen installed at substantially the same position as the optical plane, the cross-sectional contour of the tire is reproduced, and the shape and dimensions of the tire cross-section are observed.
can be measured. In this method, it is important that the screen position at the time of projection be exactly the same as the cross-sectional position of the tire at the time of photography. It is not planned to make appropriate adjustments each time a measurement is made to match the shape, etc. In addition,
Since this method involves visually observing the projected image, it is not possible to obtain graphic information to be supplied to a numerically controlled machine tool in order to create a three-dimensional image of the same shape.

また、立体形状の複製を製作するために立体形
状に照射したスリツト光を撮影した画像を利用す
る方法に、特開昭55−153932号明細書記載の方法
がある。この文献に開示された方法は、人物の頭
部等の再生に必要な測定データを非接触測定によ
り短い時間でデータキヤリヤ、透明陽画上に取得
するものであり、人物等を回転させながら、例え
ば1度毎に全周にわたりシルエツトを撮影して現
像した透明陽画を次々にスクリーンに投影し、シ
ルエツトの輪郭を走査要素で倣いながら熱線カツ
ター等で塊状の素材を加工して立体的な人物像を
作成する方法に利用するものである。当該文献記
載の発明は、シルエツトの他に、人物に一定方向
からスリツト光を当てた像を撮影しておき、この
画像をシルエツトの場合と同じようにスクリーン
に投影しこれを倣わせて円形フライスで上記シル
エツトから削り出した人物像の上に追加加工する
ことにより、シルエツトからだけでは十分に再現
できない人物の凹部を正確に再現した人物像とす
るものである。ここに開示された発明では、撮影
装置と投影装置の間の関係を一定に保持すること
が必須であり、また倣い工作機械を使用して投影
画像を直接倣いながら塊状素材から削り出もので
あるから、装置の複雑、構成の困難は避けられな
い。
Further, there is a method described in Japanese Patent Application Laid-open No. 153932/1983, which utilizes an image taken with slit light irradiated onto a three-dimensional shape in order to produce a reproduction of the three-dimensional shape. The method disclosed in this document is to acquire measurement data necessary for reproducing a person's head etc. on a data carrier or a transparency in a short time by non-contact measurement. Each time, a silhouette is photographed all around the body and the developed transparencies are projected onto a screen one after another.The outline of the silhouette is followed by a scanning element and the blocky material is processed with a hot wire cutter, etc. to create a three-dimensional human image. It is used in the method of In addition to the silhouette, the invention described in this document takes an image of a person illuminated with slit light from a certain direction, projects this image onto a screen in the same way as the silhouette, and makes a circular milling machine. By performing additional processing on the human image carved out from the silhouette, the human image can accurately reproduce the concave portions of the person that cannot be sufficiently reproduced from the silhouette alone. In the invention disclosed herein, it is essential to maintain a constant relationship between the photographing device and the projection device, and the projection image is directly copied using a copying machine tool while being machined from a block of material. Therefore, the complexity of the device and the difficulty in its configuration are unavoidable.

また、板状部材から切り出した型板を重ね合わ
せて立体模型を製造する方法の例として、特開昭
57−81283号明細書記載の発明が公知である。該
発明は、垂直に裁断した台紙を張り合わせて地形
の立体模型を製造する方法であつて、図形読み取
り装置により等高線で表現された地形情報を一旦
コンピユータに取り込み、この情報を基に垂直断
面を求め、模型部材裁断装置を制御して垂直断面
模型部材を裁断するものである。該方法では、裁
断装置を制御するための情報は、地形を表現した
等高線情報を垂直断面情報に変換して得られる。
従つて、立体像を得るためには、等高線情報を一
旦コンピユータに取り込んだ上、高度な画像処理
を施す必要がある。
In addition, as an example of a method for manufacturing a three-dimensional model by overlapping templates cut out from plate-shaped members,
The invention described in specification No. 57-81283 is known. The invention is a method for manufacturing a three-dimensional model of topography by pasting together vertically cut mounts, in which topographical information expressed as contour lines is first input into a computer using a figure reading device, and a vertical section is determined based on this information. , the vertical section model member is cut by controlling the model member cutting device. In this method, information for controlling the cutting device is obtained by converting contour line information representing topography into vertical section information.
Therefore, in order to obtain a three-dimensional image, it is necessary to first import contour line information into a computer and then perform advanced image processing.

さらに、従来、立体形状を撮像装置で観測した
結果を利用し、簡単な演算により直接的に制御情
報化して、数値制御式工作機械に供給して型板を
製作する方法は知られていなかつた。
Furthermore, until now, there was no known method of using the results of observing a three-dimensional shape with an imaging device, converting it directly into control information through simple calculations, and supplying it to a numerically controlled machine tool to produce a template. .

(発明の目的) 本発明は上述の従来技術の有する問題点を解決
するためになされたもので、対象物体の形状の複
雑さの如何を問わずまた対象物体の硬度の如何を
問わずに、相互に重ね合わせることにより対象物
体となる立体形状と同等もしくは一定比率の立体
形状を形成するための、型板を製作する立体形状
成形用型板製造装置を提供することを目的とす
る。
(Object of the Invention) The present invention has been made to solve the problems of the above-mentioned prior art. It is an object of the present invention to provide a template manufacturing apparatus for forming a three-dimensional shape, which manufactures templates for forming a three-dimensional shape that is equivalent to or has a fixed ratio of a three-dimensional shape that is a target object by overlapping each other.

また、本発明の目的は、複雑で高価な倣い工作
機械を利用せず、板材を加工するための一般的な
数値制御工作機械を用いて、容易かつ経済的に対
象物体の複製を製作することを可能にする立体形
状成形用型板製造装置を提供しようとするもので
ある。
Another object of the present invention is to easily and economically produce a replica of a target object using a general numerically controlled machine tool for processing plate materials without using a complicated and expensive copying machine tool. The present invention aims to provide a template manufacturing apparatus for three-dimensional shape molding.

さらに、本発明の別の目的は、従来方法におい
て必要とされるような等高線図やソリツドワイヤ
図等の三次元形状情報に高性能のコンピユータを
用いた複雑な処理を施して工作機械用の情報を作
成することなどを不要とし、立体形状を非接触的
に測定した結果に対して単純な演算を施すだけ
で、直接的に型板1枚ずつ制御信号を得て数値制
御式工作機械に供給することができる立体形状成
形用型板製造装置を提供することにある。
Furthermore, another object of the present invention is to create information for machine tools by performing complex processing using a high-performance computer on three-dimensional shape information such as contour diagrams and solid wire diagrams, which is required in conventional methods. By simply performing simple calculations on the results of non-contact measurement of three-dimensional shapes, the system directly obtains control signals for each template and supplies them to numerically controlled machine tools. An object of the present invention is to provide a template manufacturing device for three-dimensional shape molding.

(発明の構成) 本発明によれば上述の目的を達成するために、 立体形状を有する対象物から立体形状を有する
複製を作成するために用いる型板を製作する立体
形状成形用型板製造装置であつて、 前記対象物体の水平方向に一定角度の広がり角
を有するスリツト光を照射するスリツト光照射手
段と、 前記スリツト光照射手段により形成されるスリ
ツト光平面を、前記対象物体の水平方向における
同一水平面上の全周をスリツト光で照射させる全
周照射手段と、 前記全周照射手段の対象物体への垂直位置を可
動させる垂直位置可動手段と、 前記全周照射手段及び垂直位置可動手段により
対象物体に照射されたスリツト光による同一水平
面上における対象物体の表面の光像を連続的に撮
像する二次元撮像手段と、前記二次元撮像手段
を、前記全周照射手段に追従して移動させ、かつ
該二次元撮像手段を、前記スリツト光平面上の1
点を通る該平面の垂直面内において、撮像の光軸
が前記1点を通り撮像位置が該1点からの距離を
一定に保つように移動させる撮像位置可変手段
と、 前記二次元撮像手段により得られる光像の軌跡
形状と前記スリツト光照射手段及び前記二次元撮
像手段との幾何学的関係から、前記水平面に関す
る前記対象物体表面の断面形状を計測する断面計
測手段と、 前記計測された対象物体表面の断面形状に基づ
いて、前記スリツト光の直径に一定比率の肉厚を
有する薄板で、前記断面形状に同一もしくは相似
の形状の型板を作成する型板形成手段と、 合備えることを特徴とする立体形状成形用型板製
造装置であつて、これにより製作された型板を相
互に重ね合わせることにより立体形状の複製を成
形することが容易にできる。
(Structure of the Invention) According to the present invention, in order to achieve the above-mentioned object, there is provided a three-dimensional shape molding template manufacturing apparatus for manufacturing a template used to create a three-dimensional replica from a three-dimensional object. slit light irradiation means for irradiating slit light having a spread angle of a certain angle in the horizontal direction of the target object, and a slit light plane formed by the slit light irradiation means in the horizontal direction of the target object. All-round irradiation means for irradiating the entire circumference on the same horizontal plane with slit light; Vertical position moving means for moving the vertical position of the all-round irradiation means with respect to the target object; By the all-round irradiation means and the vertical position moving means. a two-dimensional imaging means for continuously capturing optical images of the surface of the target object on the same horizontal plane by slit light irradiated onto the target object; and the two-dimensional imaging means is moved to follow the entire circumference irradiation means. , and the two-dimensional imaging means is positioned at one point on the slit light plane.
an imaging position variable means for moving the imaging position in a vertical plane of the plane passing through the point so that the optical axis of the imaging passes through the one point and the imaging position maintains a constant distance from the one point; and the two-dimensional imaging means. cross-sectional measuring means for measuring the cross-sectional shape of the surface of the target object with respect to the horizontal plane from the geometric relationship between the locus shape of the obtained light image and the slit light irradiation means and the two-dimensional imaging means; Template forming means for creating a template with a thin plate having a wall thickness at a constant ratio to the diameter of the slit light and having a shape identical to or similar to the cross-sectional shape based on the cross-sectional shape of the object surface; This apparatus is characterized by a three-dimensional shape molding template manufacturing apparatus, and by overlapping the templates produced thereby, it is possible to easily mold a three-dimensional replica.

(実施例) 以下、本発明の一実施例を添付図面により説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1a図及び第1b図は実施例の構成の一部を
示す図で、説明を容易にするために人物の顔を簡
略化したモデル1を対象物体とした。そして、モ
デル1に対する座標軸を設定して、以後に説明す
るスリツト光の照射位置及び光像の撮像装置の位
置の基準とする。座標軸はモデル1の底面中心を
原点Gとし、第1a図の立面図において原点Gか
ら水平の方向をX軸、原点から垂直の方向をY
軸、第1b図の正面図において、対象物体である
モデル1の垂直中心線をZ軸としている。
FIGS. 1a and 1b are diagrams showing a part of the configuration of the embodiment, and for ease of explanation, a model 1, which is a simplified human face, is used as a target object. Then, coordinate axes for the model 1 are set and used as a reference for the slit light irradiation position and the position of the optical image pickup device, which will be described later. The coordinate axes are the origin G at the center of the bottom of model 1, the horizontal direction from the origin G in the elevation view of Figure 1a is the X axis, and the vertical direction from the origin is the Y axis.
In the front view of FIG. 1b, the vertical center line of the model 1, which is the target object, is the Z axis.

スリツト光照射装置2は、発光源4例えばレー
ザから対象物体たるモデル1に厚み△h(例えば
0.5mm)のスリツト光2′を照射する。スリツト光
照射装置2はZ軸に下した垂線を中心線とし、絞
り、凹面鏡乃至光学的レンズ系により拡がり角度
(θ)の厚み△hのスリツト光2′を対象物体に照
射する。このスリツト光平面をX−Y軸系平面と
し、Z軸の原点Z0を対象物体の最下端に置く。
A slit light irradiation device 2 is configured to apply a light emitting source 4, for example, a laser, to a model 1, which is a target object, at a thickness Δh (for example,
0.5mm) slit light 2' is irradiated. The slit light irradiation device 2 uses a diaphragm, a concave mirror, or an optical lens system to irradiate a target object with a slit light 2' having a spread angle (θ) and a thickness Δh, with the center line being a perpendicular to the Z-axis. This slit light plane is defined as an X-Y axis system plane, and the origin Z0 of the Z axis is placed at the lowest end of the object.

二次元撮像装置であるITVカメラ3は、スリ
ツト光平面に対して直交し、かつ、前記スリツト
光照射装置2によつてその運動が妨げられること
がないような平面内に配置する必要がある。すな
わち、ITVカメラはこのような平面と前記X−
Y軸系平面との交線上の1点Gから、一定の半径
Rとなるように設けた円弧状の案内装置8aに配
置され、案内装置に沿つてITVカメラは可動で
き光軸が交線上の1点Gと一致する。
The ITV camera 3, which is a two-dimensional imaging device, must be placed in a plane that is perpendicular to the slit light plane and whose movement is not hindered by the slit light irradiation device 2. In other words, the ITV camera is connected to such a plane and the X-
The ITV camera is placed on an arc-shaped guide device 8a that has a constant radius R from a point G on the line of intersection with the Y-axis plane, and the ITV camera can move along the guide device. Matches 1 point G.

そして、スリツト光照射装置2のビーム光2′
とITVカメラ3の光軸とはZ軸を通るX−Y軸
系平面に対して角度βを有し、この角度βは案内
装置8aにより対象物体であるモデル1の凹凸に
対応させて可変できる。
Then, the beam light 2' of the slit light irradiation device 2 is
The optical axis of the ITV camera 3 has an angle β with respect to the X-Y axis plane passing through the Z axis, and this angle β can be varied by the guide device 8a in accordance with the unevenness of the model 1, which is the target object. .

また、ITVカメラ3の視野角はαである。ス
リツト光照射装置2及びITVカメラ3が配され
た案内装置8aは案内柱7内を摺動案内される架
台8に固定され、該架台8はボールネジ軸5に螺
合するボールナツト6に固定されている。ボール
ネジ軸5にはステツプモータ(図示しない)が接
続され、該ステツプモータはスリツト光の厚み△
hの高さだけボールナツト6、即ち架台8を段階
的に上下に駆動する。
Further, the viewing angle of the ITV camera 3 is α. A guide device 8a in which a slit light irradiation device 2 and an ITV camera 3 are arranged is fixed to a pedestal 8 that is slidably guided within a guide column 7, and the pedestal 8 is fixed to a ball nut 6 that is screwed onto a ball screw shaft 5. There is. A step motor (not shown) is connected to the ball screw shaft 5, and the step motor adjusts the thickness of the slit light △
The ball nut 6, ie, the frame 8, is driven up and down stepwise by a height of h.

対象物体であるモデル1の外周全周をスリツト
光2′で照射し(全周照射手段)、且つ2次元撮像
装置であるITVカメラ3をこれに対応してその
外周全周を撮像する。この実施例では、それぞれ
複数個のスリツト光照射装置2と2次元撮像装置
3とを対象物体を囲んで配置している。この場
合、対象物体であるモデル1のZ軸に対する
ITVカメラ3との距離を等距離に配置し、ITV
カメラ3の光学的倍率を等しくすると、それぞれ
のITVカメラ3の対象物体であるモデル1のス
リツト光2′による光像を直接比較し、光像の計
測データーの処理をすることができる。
The entire outer circumference of the model 1, which is a target object, is irradiated with slit light 2' (all-round irradiation means), and the ITV camera 3, which is a two-dimensional imaging device, images the entire outer circumference accordingly. In this embodiment, a plurality of slit light irradiation devices 2 and two-dimensional imaging devices 3 are arranged surrounding the target object. In this case, with respect to the Z axis of model 1, which is the target object,
Place the ITV camera 3 at the same distance, and
When the optical magnifications of the cameras 3 are made equal, it is possible to directly compare the optical images of the model 1, which is the target object of each ITV camera 3, by the slit light 2', and process the measurement data of the optical images.

次に第2図により対象物体であるモデル1に対
するスリツト光照射装置2とITVカメラ3との
幾何学的な位置関係を説明する。
Next, the geometrical positional relationship between the slit light irradiation device 2 and the ITV camera 3 with respect to the model 1, which is a target object, will be explained with reference to FIG.

第2a図において、スリツト光照射装置2の光
2の広がり角度はθであり、Y軸に対する視野限
界SLMが0から+Ymとなり、対象物体であるモ
デル1の原点GでのY軸位置はYm/2となる。
第1a図にあるように4台のスリツト光照射装置
を用いる場合には、1台のスリツト光照射装置2
がモデル1の全周を照射するために必要な照射範
囲は原点Gを中心として90゜の範囲であり、Y軸
のYL1とYL2との範囲になる。スリツト光照射装
置2から対象物体4に照射されるスリツト光2′
はZ軸上で2次元撮像装置3の光軸3′と一定の
角度βで交差し、この位置をZiとする。このと
き、スリツト光照射装置2から対象物体4に照射
れたスリツト光を2次元撮像装置、即ちTV用カ
メラ3で撮像すると、対象物体4のこの断面にお
ける光像は第3図に示した鎌状の画像となる。こ
の光像平面において、線分10は前述のZを通り
Y軸と平行な直線の像である。又第3図に示した
点Pi′は第2図に示すスリツト光の光像の点Piの
像であり、これは対象物体4の表面上に照射され
たスリツト光の任意の一点である。
In Fig. 2a, the spread angle of the light 2 from the slit light irradiation device 2 is θ, the field of view limit SLM with respect to the Y axis changes from 0 to +Ym, and the Y axis position of the target object model 1 at the origin G is Ym/ It becomes 2.
When using four slit light irradiation devices as shown in Fig. 1a, one slit light irradiation device 2 is used.
The irradiation range necessary to irradiate the entire circumference of model 1 is a range of 90° centered on the origin G, which is the range between Y L1 and Y L2 on the Y axis. Slit light 2' irradiated onto the target object 4 from the slit light irradiation device 2
intersects the optical axis 3' of the two-dimensional imaging device 3 at a constant angle β on the Z axis, and this position is defined as Zi. At this time, when the slit light irradiated from the slit light irradiation device 2 to the target object 4 is imaged by a two-dimensional imaging device, that is, the TV camera 3, the light image at this cross section of the target object 4 is shaped like a sickle shown in FIG. The image will look like this. In this optical image plane, the line segment 10 is an image of a straight line passing through the aforementioned Z and parallel to the Y axis. Further, point Pi' shown in FIG. 3 is an image of point Pi of the optical image of the slit light shown in FIG. 2, and this is an arbitrary point of the slit light irradiated onto the surface of the target object 4.

第2図において、TV用カメラ3の光軸を含み
Y軸に平行な平面に対して点Piから下した垂線の
長さをΔliとし、又第3図において点Pi′から線分
10に下した垂線の足をYi′とするとき、線分
Pi′Yi′の長さ、を△ziとすれば、 △li=1/n×△zi n:ITVカメラの光学的倍率 となる。
In Figure 2, the length of the perpendicular line drawn from point Pi to a plane parallel to the Y-axis that includes the optical axis of TV camera 3 is Δli, and in Figure 3, the length of the perpendicular line drawn from point Pi' to line segment 10 is Δli. When the foot of the perpendicular line is Yi′, the line segment
If the length of Pi′Yi′ is △zi, then △li=1/n×△zi n: optical magnification of the ITV camera.

この場合△ziは次の様に求める。 In this case, △zi is calculated as follows.

第3図に示すようにTV用カメラの一画面はγ
本(一般に240〜500本程度)の走査線で構成され
ていて、これを上部から順にS1,S2,……Sn…
…Srとする。第4図に示すようにITVカメラ3
からは画面の開始信号VBLが出力され、次に第1
回目の水平走査信号HBLが出力されたのちに像の
明暗信号に応じた映像信号が一定時間taでS1上を
走査する。次いでS1上の走査が終了すると再び
HBL信号が出力され映像信号はS2から順次走査す
る。
As shown in Figure 3, one screen of a TV camera is γ
It consists of a book (generally about 240 to 500) of scanning lines, which are sequentially arranged from the top as S 1 , S 2 , ...Sn...
...Sr. ITV camera 3 as shown in Figure 4
The screen start signal V BL is output from , and then the first
After the horizontal scanning signal H BL is output for the first time, a video signal corresponding to the brightness signal of the image scans over S 1 for a fixed time ta. Then once the scan on S 1 is finished, again
The HBL signal is output and the video signal is sequentially scanned from S2 .

ここで、Sn上の走査においてスリツト光2′の
光像があるとスリツト光映像信号BHSとして映
像信号HS中に顕著に現われる。そして、Srの走
査迄順次繰返えされて1画面の走査が終了する。
次いでこのSrの走査が終了するとモーターによ
りスリツト光を△hだけZ軸方向の隣接位置に移
動した後、次の1画面の開始信号VBLが出力され
てることにより、前述と同様に水平走査開始信号
が順次出力されて新らたな1画面が走査される。
Here, if there is an optical image of the slit light 2' during scanning on Sn, it will appear conspicuously in the video signal HS as the slit light video signal BHS. Then, the scanning is repeated in sequence up to the scanning of Sr, and the scanning of one screen is completed.
Next, when the scanning of Sr is completed, the motor moves the slit light by △h to an adjacent position in the Z-axis direction, and then, as the start signal V BL for the next screen is output, horizontal scanning is started in the same way as above. The signals are sequentially output and one new screen is scanned.

第5図はこのITVカメラを用いて△ziを求める
ための制御回路を示すブロツク線図であり、3は
ITVカメラであり、31は分離回路で、ITVカ
メラ3で撮影したスリツト光2′の光像の映像信
号HSと水平走査開始信号HBLと画面開始信号VBL
とを含む信号を分離回路31に入力し、分離回路
31で映像信号とHBL,VBLとを分離する。
Figure 5 is a block diagram showing the control circuit for determining △zi using this ITV camera;
In the ITV camera, 31 is a separation circuit that outputs a video signal HS of the optical image of the slit light 2' taken by the ITV camera 3, a horizontal scanning start signal HBL , and a screen start signal VBL.
A signal containing H BL and V BL is input to the separation circuit 31, and the separation circuit 31 separates the video signal from H BL and V BL .

20はカウンターで、水平走査開始信号HBL
数を計数するための計数器であり、画面開始信号
VBLが発信したときに0にリセツトする。従つて
カウンター20は画面開始信号VBLが発信された
後、次のVBLが発信される迄の水平走査開始信号
HBLの数を計数する。この様にして、カウンター
20で計数された内容に応じて走査線番号Siが検
出される。この走査線番号Siに乗算器21により
走査線間隔qを乗じ、S1からSi迄の長さを変換す
る。次いで減算器22内でr×q/2の値(画面
の中央線、即ち第3図の線分10の位置)から減
算され、線分10に対する走査点の垂直方向の長
さを算出する。
20 is a counter for counting the number of horizontal scanning start signals HBL , and is a counter for counting the number of horizontal scanning start signals HBL;
V Reset to 0 when BL is transmitted. Therefore, the counter 20 calculates the horizontal scanning start signal after the screen start signal V BL is transmitted until the next V BL is transmitted.
Count the number of H BL . In this way, the scanning line number Si is detected according to the count counted by the counter 20. This scanning line number Si is multiplied by the scanning line interval q by a multiplier 21 to convert the length from S1 to Si. It is then subtracted from the value r×q/2 (the center line of the screen, ie, the position of line segment 10 in FIG. 3) in the subtractor 22 to calculate the vertical length of the scanning point with respect to line segment 10.

他方1本の走査線の走査時間taをm等分した間
隔パルスを出力する発振器23が設けられ、この
間隔パルスはカウンタ24で計数され、また間隔
パルスは水平走査開始信号HBLで0にリセツトす
る。この場合それぞれの走査線に対する水平面走
査開始信号HBLが出力される迄この前の走査線上
での発振器23からのパルスをカウンタ24が計
数し、次いでこの計数内容を乗算器26で、走査
線の長さをm等分した長さ△yeを乗ずる。この
様にしてITVカメラの映像面上の走査点の水平
位置が乗算器26の出力信号から算出される。
On the other hand, an oscillator 23 is provided which outputs interval pulses obtained by dividing the scanning time ta of one scanning line into m equal parts, and this interval pulse is counted by a counter 24, and the interval pulse is reset to 0 by the horizontal scanning start signal HBL . do. In this case, the counter 24 counts the pulses from the oscillator 23 on the previous scanning line until the horizontal plane scanning start signal HBL for each scanning line is output. Divide the length into m equal parts and multiply by the length △ye. In this way, the horizontal position of the scanning point on the image plane of the ITV camera is calculated from the output signal of the multiplier 26.

また、映像信号HSを明“1”、暗“0”という
論理的な2値に変換するために2値化回路25を
分離回路31の後方に接続し、映像信号HSのみ
を2値化回路25で対象物体であるモデル1の外
周に照射されたスリツト光像部分を“1”及びこ
れ以外の部分を“0”として出力する。
In addition, in order to convert the video signal HS into logical binary values of bright "1" and dark "0", a binarization circuit 25 is connected behind the separation circuit 31, and only the video signal HS is converted to the binarization circuit. At step 25, the slit light image portion irradiated onto the outer periphery of the model 1, which is the target object, is outputted as "1" and the other portions are outputted as "0".

光像の垂直位置は2値化回路25の出力が
“1”の瞬間減算器22の出力をゲート回路27
を介して記録回路28に記憶させる。
The vertical position of the optical image is determined by using the output of the subtracter 22 at the moment when the output of the binarization circuit 25 is "1" to the gate circuit 27.
The data is stored in the recording circuit 28 via.

光像の水平位置は、2値化回路25の出力が
“1”のとき乗算器26の出力を記憶回路30に
記憶させる。
Regarding the horizontal position of the optical image, when the output of the binarization circuit 25 is "1", the output of the multiplier 26 is stored in the storage circuit 30.

この様にして、第5図に示したブロツク線図に
従い、1画面の光像についての第3図に示したひ
とつの走査線Siに対する垂直位置Δziと水平位置
△yiとが決定される。なお、1本の走査線につい
て△zi,△yiが複数検出される場合があるがこれ
を△zi1〜△zip,△yi1〜△yipとしてそのすべて
を決定する。
In this way, according to the block diagram shown in FIG. 5, the vertical position Δzi and horizontal position Δyi with respect to one scanning line Si shown in FIG. 3 for one screen of the optical image are determined. Note that a plurality of Δzi and Δyi may be detected for one scanning line, but all of them are determined as Δzi 1 to Δzip and Δyi 1 to Δyip.

このITVカメラの1画面からスリツト光平面
における2次元平面、即ちX−Y軸系平面に変換
するためは次式の演算式を用いて算出する。
In order to convert from one screen of this ITV camera to a two-dimensional plane in the slit light plane, that is, an X-Y axis system plane, calculation is performed using the following calculation formula.

Xi=1/n×△zi×1/sinβ ……(1) Yi=(Ym/2−1/n×Δyi)×Xi/L+1/n×Δ
yi ……(2) n:ITVカメラの光学的倍率 L:ITVカメラとZ軸の水平距離 上記の演算は汎用のマイクロコンピユータ等に
より行なう。この際、βは対象物体であるモデル
1の凹凸の応じてITVカメラの傾斜を変化させ
ることで変るので、このX−Y軸系平面に変換す
るのでβも対応させて演算する。
Xi=1/n×△zi×1/sinβ...(1) Yi=(Ym/2-1/n×Δyi)×Xi/L+1/n×Δ
yi...(2) n: Optical magnification of the ITV camera L: Horizontal distance between the ITV camera and the Z axis The above calculations are performed by a general-purpose microcomputer or the like. At this time, since β changes by changing the inclination of the ITV camera according to the unevenness of the model 1, which is the target object, β is also calculated in correspondence with the conversion to this X-Y axis system plane.

そして、スリツト光2′をモデル1のすべてに
照射するためにスリツト光2′段階的に上下に駆
動する。即ち、光照射装置2は架台8に固定され
ボールネジ軸5に螺合するボールナツトに固定さ
れているので、ボールネジ軸5をモータ(図示し
ない)で回転させることにより、スリツト光の厚
さ△hの高さだけ架台8を段階的にZ軸に対して
上下に駆動する。
Then, in order to irradiate the entire model 1 with the slit light 2', the slit light 2' is driven up and down stepwise. That is, since the light irradiation device 2 is fixed to a pedestal 8 and a ball nut screwed onto the ball screw shaft 5, the thickness Δh of the slit light can be adjusted by rotating the ball screw shaft 5 with a motor (not shown). The pedestal 8 is driven up and down with respect to the Z axis stepwise by the height.

そして、スリツト光により形成される平面、即
ちX−Y軸系平面における対象物体であるモデル
1の最下端Z0から最上端Zmまでスリツト光2′の
直径△hごとに、スリツト光2′により光像軌跡
を求め、スリツト光の直径△hの変化ごとのX−
Y軸平面における形状データXi,Yiを求める。
Then, the slit light 2' is used for every diameter △h of the slit light 2' from the lowest end Z0 to the uppermost end Zm of the model 1, which is the target object, on the plane formed by the slit light, that is, the X-Y axis system plane. Find the light image locus and calculate X- for each change in the diameter Δh of the slit light.
Find shape data Xi and Yi on the Y-axis plane.

このようにスリツト光2′の直径△hごとに求
められた形状データXi,Yiに基づいてこえらの
データをNCレーザ切断機に入力して、薄板の厚
さ△hから形状データと同一の型板を作り出す
(型板形成手段)。これらの型板を順次重ね合せる
ことにより対象物体と同一形状の立体形状を作成
する。
Based on the shape data Xi and Yi obtained for each diameter △h of the slit beam 2', these data are input to the NC laser cutting machine, and from the thickness △h of the thin plate, the same shape data as the shape data is cut. Produce a plate (template forming means). By sequentially overlapping these templates, a three-dimensional shape having the same shape as the target object is created.

この実施例によれば、人の顔像等を対象物体し
た形状が複雑で表面が柔らかい場合であつても、
ITVカメラの撮像角度を変えて撮像すれば対象
物体を容易に把握でき、かつ容易に同一または拡
大、縮尺した立体像を形成できる。
According to this embodiment, even if the target object, such as a human face image, has a complex shape and a soft surface,
By changing the imaging angle of the ITV camera, the target object can be easily grasped, and a three-dimensional image of the same or enlarged or reduced scale can be easily formed.

この実施例において、型板形成の際にスリツト
光の厚さと同じ肉厚の薄板を用いて、対象物体と
同一形状としたが、薄板の肉厚をスリツト光の厚
さ△hと一定比率にして、形状データXi,Yiも
一定比率にすることにより容易の拡大、縮小した
立体像を形成できる。また、この実施例では4台
のスリツト光照射装置とITVカメラとは使用し
たが、第2b図に示す台座9を設けて、台座9を
90゜づつ回転させて1台のスリツト光照射装置で
スリツト光を照射させてITVカメラで撮像させ
てもよい。
In this example, when forming the template, a thin plate with the same thickness as the slit beam was used to form the same shape as the target object, but the thickness of the thin plate was set at a constant ratio to the thickness △h of the slit beam. By setting the shape data Xi and Yi to a constant ratio, a three-dimensional image that is easily enlarged or reduced can be formed. Although four slit light irradiation devices and an ITV camera were used in this embodiment, a pedestal 9 shown in FIG. 2b was provided, and the pedestal 9 was
It is also possible to irradiate the slit light with one slit light irradiation device by rotating it by 90 degrees and take an image with an ITV camera.

(発明の効果) 以上の説明から明らかなように、本発明によれ
ば、対象物体の形状が多少複雑であつても、また
対象物体の硬度の如何とは関わりなしに、対象物
体と同一の立体形状もしくはそれを一定比率で拡
大または縮小した立体形状を有する複製物を、所
望の薄板材料を用いて容易に作成することができ
る。
(Effects of the Invention) As is clear from the above description, according to the present invention, even if the shape of the target object is somewhat complicated, and regardless of the hardness of the target object, the same A replica having a three-dimensional shape or a three-dimensional shape enlarged or contracted at a certain ratio can be easily created using a desired thin plate material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図及び第1b図は本発明の第1実施例の
平面及び立面の概略図である。第2図は同実施例
において対象物体の光像を計測するための説明図
である。第3図は同実施例のITVカメラ(二次
元撮像装置)の画面を示す図である。第4図は、
第3図に示す画面の走査状態を示す図である。第
5図は、同実施例の断面形状演算のためのデータ
処理を示すブロツク線図である。 (符号の説明)、1……モデル(対象物体)、2
……スリツト光照射装置、2′……スリツト光、
3……ITVカメラ(二次元撮像装置)、5……ボ
ールネジ、6……ボールナツト、7……案内柱、
8,18……架台。
Figures 1a and 1b are schematic plan and elevation views of a first embodiment of the invention. FIG. 2 is an explanatory diagram for measuring an optical image of a target object in the same embodiment. FIG. 3 is a diagram showing the screen of the ITV camera (two-dimensional imaging device) of the same embodiment. Figure 4 shows
FIG. 4 is a diagram showing a scanning state of the screen shown in FIG. 3; FIG. 5 is a block diagram showing data processing for calculating the cross-sectional shape of the same embodiment. (Explanation of symbols), 1...Model (target object), 2
...Slit light irradiation device, 2'...Slit light,
3... ITV camera (two-dimensional imaging device), 5... Ball screw, 6... Ball nut, 7... Guide column,
8,18... mount.

Claims (1)

【特許請求の範囲】 1 立体形状を有する対象物体から複製を作成す
るために用いる型板を製作する装置であつて、 前記対象物体の水平方向に一定角度の広がり角
を有するスリツト光を照射するスリツト光照射手
段と、 前記対象物体の同一水平面上の全周を前記スリ
ツト光照射手段により形成されるスリツト光で照
射させる全周照射手段と、 前記全周照射手段を鉛直方向に動かす鉛直位置
可動手段と、 前記全周照射手段により対象物体に照射された
スリツト光による同一水平面上における対象物体
の表面の光像を連続的に撮像する二次元撮像手段
と、 前記二次元撮像手段を、前記全周照射手段に追
従して移動させ、かつ該二次元撮像手段を、前記
スリツト光平面上の一点を通る該平面の垂直面内
において、撮像の光軸が前記1点を通り撮像位置
が該1点からの距離を一定に保つように移動させ
る撮像位置可変手段と、 前記二次元撮像手段により得られる光像の軌跡
形状と前記スリツト光照射手段及び前記二次元撮
像手段との幾何学的関係から、前記水平面に関す
る前記対象物体表面の断面形状を計測する断面計
測手段と、 前記計測された対象物体表面の断面形状に基づ
いて、前記スリツト光の直径に一定比率の肉厚を
有する薄板から、前記断面形状に同一もしくは相
似の形状の型板を作成する型板形成手段と、 を備え、相互に重ね合わせることにより立体形状
の複製を成形することができる型板を製作する立
体形状成形用型板製造装置。
[Scope of Claims] 1. An apparatus for manufacturing a template used for making a replica from a target object having a three-dimensional shape, which irradiates the target object with slit light having a spread angle of a certain angle in the horizontal direction of the target object. slit light irradiation means; all-around irradiation means for irradiating the entire circumference of the target object on the same horizontal plane with the slit light formed by the slit light irradiation means; and a vertical position movable device for moving the all-around irradiation means in the vertical direction. means, two-dimensional imaging means for continuously capturing optical images of the surface of the target object on the same horizontal plane by the slit light irradiated onto the target object by the all-round irradiation means; The two-dimensional imaging means is moved to follow the circumferential irradiation means, and the two-dimensional imaging means is moved within a vertical plane of the plane passing through one point on the slit light plane, and the imaging optical axis passes through the one point and the imaging position is at the one point. From the geometric relationship between the imaging position variable means that moves the image so as to maintain a constant distance from the point, the locus shape of the light image obtained by the two-dimensional imaging means, the slit light irradiation means, and the two-dimensional imaging means. , a cross-sectional measuring means for measuring the cross-sectional shape of the surface of the target object with respect to the horizontal plane; A three-dimensional shape molding template for producing templates capable of molding a three-dimensional replica by overlapping each other, comprising a template forming means for creating a template with the same or similar shape to the cross-sectional shape. Manufacturing equipment.
JP59077213A 1984-04-17 1984-04-17 Device for forming solid shape Granted JPS60220805A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59077213A JPS60220805A (en) 1984-04-17 1984-04-17 Device for forming solid shape
AT85104269T ATE69400T1 (en) 1984-04-17 1985-04-09 DEVICE FOR CREATING A THREE-DIMENSIONAL COPY OF AN OBJECT.
DE8585104269T DE3584642D1 (en) 1984-04-17 1985-04-09 DEVICE FOR GENERATING A THREE-DIMENSIONAL COPY OF AN OBJECT.
EP85104269A EP0163076B1 (en) 1984-04-17 1985-04-09 Apparatus for producing a three-dimensional copy of an object
US06/721,451 US4752964A (en) 1984-04-17 1985-04-09 Method and apparatus for producing three-dimensional shape
CA000478699A CA1257682A (en) 1984-04-17 1985-04-10 Method and apparatus for producing three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59077213A JPS60220805A (en) 1984-04-17 1984-04-17 Device for forming solid shape

Publications (2)

Publication Number Publication Date
JPS60220805A JPS60220805A (en) 1985-11-05
JPH0550681B2 true JPH0550681B2 (en) 1993-07-29

Family

ID=13627551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59077213A Granted JPS60220805A (en) 1984-04-17 1984-04-17 Device for forming solid shape

Country Status (1)

Country Link
JP (1) JPS60220805A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274204A (en) * 1986-05-23 1987-11-28 Hamamatsu Photonics Kk Microscope system for obtaining three-dimensional data
JPS63289406A (en) * 1987-05-21 1988-11-25 Kinkashiya:Kk Three-dimensional configuration measuring instrument
JPS63298007A (en) * 1987-05-29 1988-12-05 Mitsui Constr Co Ltd Shape measuring instrument for body
JPS6454208A (en) * 1987-08-25 1989-03-01 O G Joho Syst Kk Shape detecting method
JPH02303900A (en) * 1989-05-19 1990-12-17 Gojigen Kikaku:Kk Automatic carving apparatus
JPH041511A (en) * 1990-04-17 1992-01-07 Nippon Koshuha Kk Noncontact shape measuring instrument
CN102735182A (en) * 2011-04-15 2012-10-17 顾建达 Method and device for scanning inner contour of buildings by using handheld rangefinder
CN104960365B (en) * 2015-08-03 2017-05-03 温岭市创嘉信息科技有限公司 Ball head carving machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532580A (en) * 1976-06-29 1978-01-11 Mitsui Petrochem Ind Ltd Preparation of polyolefin
JPS5781283A (en) * 1980-11-10 1982-05-21 Aoki Tei Making of cubic model
JPS58201006A (en) * 1982-05-20 1983-11-22 Hitachi Ltd Detector of three-dimensional shape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532580A (en) * 1976-06-29 1978-01-11 Mitsui Petrochem Ind Ltd Preparation of polyolefin
JPS5781283A (en) * 1980-11-10 1982-05-21 Aoki Tei Making of cubic model
JPS58201006A (en) * 1982-05-20 1983-11-22 Hitachi Ltd Detector of three-dimensional shape

Also Published As

Publication number Publication date
JPS60220805A (en) 1985-11-05

Similar Documents

Publication Publication Date Title
DE69628956T2 (en) Scanning device and method
EP0163076B1 (en) Apparatus for producing a three-dimensional copy of an object
EP0002945B1 (en) Method and apparatus of making a stereogram
CN100396252C (en) Method and device for the there-dimensional determination and digitisation of a plaster- or positive-model
JPS59210311A (en) Method and device for obtaining "moire" fringe pattern imageof body
JPH0550681B2 (en)
US20020048396A1 (en) Apparatus and method for three-dimensional scanning of a subject, fabrication of a natural color model therefrom, and the model produced thereby
JP2000076460A (en) Monitor display device
CN102538707B (en) Three dimensional localization device and method for workpiece
WO1994027198A1 (en) A system and a method for the reproduction of three-dimensional objects
JP2000131032A (en) Method and device for measuring three-dimensional profile
GB2197502A (en) Model making
US2163124A (en) Photosculpture
JPH0534603B2 (en)
WO1983004114A1 (en) Method and apparatus for performing operations on three-dimensional surfaces
US3613501A (en) Method of and apparatus for use in producing a three-dimensional model of a piece of terrain
US20020033819A1 (en) Apparatus and method for three-dimensional scanning of a subject, fabrication of a model therefrom, and the model produced thereby
JPH0654228B2 (en) Three-dimensional shape manufacturing method and manufacturing apparatus
US4158325A (en) Method and apparatus for producing a three-dimensional form from a photographic image of that form
CN108170095A (en) The processing method of the numerically-controlled machine tool closed loop system of view-based access control model
CN107991990A (en) A kind of numerically-controlled machine tool closed loop system of view-based access control model
JPS63289406A (en) Three-dimensional configuration measuring instrument
JPH03268818A (en) Angle measuring instrument for bender
US3692405A (en) Orthocartograph
US3777055A (en) Hexagonal patch printing for orthophoto printers