JP2839059B2 - 3D shape measuring device - Google Patents

3D shape measuring device

Info

Publication number
JP2839059B2
JP2839059B2 JP5001581A JP158193A JP2839059B2 JP 2839059 B2 JP2839059 B2 JP 2839059B2 JP 5001581 A JP5001581 A JP 5001581A JP 158193 A JP158193 A JP 158193A JP 2839059 B2 JP2839059 B2 JP 2839059B2
Authority
JP
Japan
Prior art keywords
light
light beam
light receiving
scattered
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5001581A
Other languages
Japanese (ja)
Other versions
JPH06201342A (en
Inventor
祐一 山崎
昌宏 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5001581A priority Critical patent/JP2839059B2/en
Publication of JPH06201342A publication Critical patent/JPH06201342A/en
Application granted granted Critical
Publication of JP2839059B2 publication Critical patent/JP2839059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、成形用型やデ
ザインされた各種製品の模型から外観形状データ及び表
面色データを入力して最終設計図面に仕上げるCAD用
データの入力装置や、教育用や販売用に用いられる三次
元映像資料の入力装置、医療用診断装置、或いはロボッ
トの視覚センサとして用いられる三次形状計測装置に関
し、詳述すると、赤緑青(RGB)の各単色光を出力す
る光源と、前記光源からの測定光線束を参照面上の被測
定物に向けて照射する測定用光学系と、前記測定光線束
のうち前記被測定物表面から反射した散乱光線束を検出
する受光部と、その受光部に前記散乱光線束を導く受光
用光学系と、前記受光部による前記散乱光線束の検出出
力に基づき前記参照面からの前記被測定物表面の距離と
色を演算導出する信号処理部とから構成してある三次元
形状計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CAD data input device for inputting external shape data and surface color data from a molding die or a model of various designed products to finish a final design drawing, and an educational system. More specifically, a tertiary shape measuring device used as an input device for three-dimensional video data, a medical diagnostic device, or a visual sensor of a robot used for sales or sales, outputs monochromatic light of red, green, and blue (RGB). A light source, a measurement optical system that irradiates the measurement light beam from the light source toward the measurement object on the reference surface, and a light receiving device that detects a scattered light beam reflected from the measurement object surface in the measurement light beam. Unit, a light receiving optical system for guiding the scattered light beam to the light receiving unit, and calculating and deriving a distance and a color of the surface of the measured object from the reference surface based on a detection output of the scattered light beam by the light receiving unit. It relates to a three-dimensional shape measuring apparatus that is configured from a No. processor.

【0002】[0002]

【従来の技術】この種の三次元形状計測装置としては、
光源を赤緑青(RGB)の各単色光を出力するレーザー
発振器で構成するとともに、前記参照面からの散乱光線
束をプリズムで分光してその分光光線束を集光手段によ
り集光して、一次元CCDイメージセンサを用いた受光
部に入射させるように構成していた。そして、信号処理
部では、受光部による赤緑青(RGB)いずれかの光線
束の検出位置データに基づいて、参照面から被測定物の
表面までの距離を導出し、且つ、赤緑青(RGB)それ
ぞれの検出強度データ比に基づいて被測定物の表面色を
特定するように構成していた。
2. Description of the Related Art As a three-dimensional shape measuring apparatus of this kind,
The light source is composed of a laser oscillator that outputs monochromatic light of red, green and blue (RGB). The scattered light beam from the reference surface is separated by a prism, and the separated light beam is condensed by condensing means. It was configured to be incident on a light receiving section using an original CCD image sensor. The signal processing unit derives a distance from the reference plane to the surface of the object to be measured based on the detection position data of any one of the red, green, blue (RGB) light beams by the light receiving unit, and obtains red, green, blue (RGB). The surface color of the measured object is specified based on each detection intensity data ratio.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術によ
れば、一次元CCDイメージセンサにより赤緑青(RG
B)の各成分データが検出される場合には、各成分の検
出位置の相対関係から距離及び色を正確に検出すること
ができるが、赤緑青(RGB)の各成分データのうち一
成分でも欠けると、各成分の検出位置の相対関係が判別
できず、従ってそのデータだけではどの成分が欠けたの
かを特定できないために、その周辺のデータを用いて欠
落した成分を推定する必要があった。しかし、被測定物
の表面形状或いは表面色が急激に変化した場合には、距
離及び色を正確に検出することは極めて困難であるとい
う欠点があった。本発明の目的は、上述の欠点を解消
し、被測定物の表面形状或いは表面色が急激に変化した
場合であっても、距離及び色を正確に検出することがで
きる三次元形状計測装置を提供する点にある。
According to the above-mentioned prior art, the red-green-blue (RG) is obtained by a one-dimensional CCD image sensor.
When each component data of B) is detected, the distance and the color can be accurately detected from the relative relationship between the detection positions of each component, but even one component of each component data of red, green and blue (RGB) can be detected. If it is missing, the relative relationship between the detection positions of each component cannot be determined, and therefore it is not possible to identify which component was missing with that data alone, so it was necessary to estimate the missing component using the data around it. . However, when the surface shape or the surface color of the measured object changes rapidly, there is a disadvantage that it is extremely difficult to accurately detect the distance and the color. An object of the present invention is to solve the above-mentioned drawbacks and provide a three-dimensional shape measuring apparatus capable of accurately detecting a distance and a color even when the surface shape or surface color of an object to be measured changes rapidly. The point is to provide.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による三次元形状計測装置の特徴構成は、前
記光源からの出力光に対して各色毎に異なる変調信号で
変調する変調手段を設ける一方、前記受光部で検出され
た散乱光線束から各単色光を識別する検波手段を設けて
ある点にある。
In order to achieve this object, a feature of the three-dimensional shape measuring apparatus according to the present invention is that a modulating means for modulating output light from the light source with a modulation signal different for each color is provided. On the other hand, there is provided a detecting means for identifying each monochromatic light from the scattered light beam detected by the light receiving section.

【作用】光源から出力される赤緑青(RGB)の各単色
光を変調手段により異なる変調信号で変調して測定対象
物に照射し、受光部で検出された散乱光線束を検波手段
により各単色光毎に識別することにより、受光部で検出
された散乱光線束がどの色の信号であるかを、三成分の
相対関係からではなく個々に特定できるのである。
The monochromatic light of red, green and blue (RGB) output from the light source is modulated by the modulating means with different modulation signals and irradiated to the object to be measured, and the scattered light beam detected by the light receiving section is detected by the detecting means for each monochromatic light. By identifying each light, the color of the scattered light beam detected by the light receiving unit can be specified individually, not based on the three-component relative relationship.

【0005】[0005]

【発明の効果】従って、本発明によれば、被測定物の表
面形状或いは表面色が急激に変化した場合であっても、
距離及び色を正確に検出することができる三次元形状計
測装置を提供することができるようになった。
Therefore, according to the present invention, even if the surface shape or surface color of the object to be measured changes rapidly,
It has become possible to provide a three-dimensional shape measuring device capable of accurately detecting a distance and a color.

【0006】[0006]

【実施例】以下実施例を説明する。計測装置の一例であ
る三次元形状計測装置は、図2に示すように、赤緑青
(RGB)の三原色の光を発振する白色レーザ発振器3
Aを設けてスポット光を出力する光源3と、その光源3
からの測定光線束をX−Y参照面1上の被測定物2に向
けてX方向に走査する測定用光学系4と、前記測定光線
束のうち前記被測定物2表面から反射した散乱光線束を
検出する一次元CCDイメージセンサを設けた受光部6
と、前記散乱光線束を受光部6に導く受光用光学系5と
からなる光学系ユニットUと、前記受光部6による前記
散乱光線束の検出出力に基づき前記参照面1からの前記
被測定物2表面の距離を演算導出する信号処理部7と、
前記光学系ユニットUを制御する計測制御部8と、信号
処理部7及び計測制御部8から得られたX,Y,Z三次
元データから被測定物2の形状モデルを生成するモデル
生成部9とで構成してある。
Embodiments will be described below. As shown in FIG. 2, a three-dimensional shape measuring device, which is an example of a measuring device, includes a white laser oscillator 3 that oscillates light of three primary colors of red, green, and blue (RGB).
A, and a light source 3 for outputting a spot light, and the light source 3
A measurement optical system 4 that scans the measurement light beam from the target device 2 on the XY reference surface 1 in the X direction, and scattered light beams of the measurement light beam reflected from the surface of the measurement object 2 Light receiving unit 6 provided with one-dimensional CCD image sensor for detecting bundle
An optical system unit U comprising a light receiving optical system 5 for guiding the scattered light beam to the light receiving unit 6, and the object to be measured from the reference surface 1 based on a detection output of the scattered light beam by the light receiving unit 6. A signal processing unit 7 for calculating and deriving the distance between the two surfaces;
A measurement control unit 8 for controlling the optical system unit U; and a model generation unit 9 for generating a shape model of the DUT 2 from the X, Y, and Z three-dimensional data obtained from the signal processing unit 7 and the measurement control unit 8. It consists of

【0007】測定用光学系4は、光源3からの測定光線
束を走査する第一可動ミラー4Aと、その第一可動ミラ
ー4Aにより走査された測定光線束を被測定物2に向け
て反射する第一固定ミラー4Bとから構成するととも
に、受光用光学系5を、被測定物2表面からの散乱光線
束を反射する第二固定ミラー5Bと、その第二固定ミラ
ー5Bにより反射された散乱光線束を受光部6に導く第
二可動ミラー5Aと、第二可動ミラー5Aで反射された
散乱光線束をRGBの三原色に分光する分光手段5C
と、その分光手段5CによりRGBの三原色に分光され
た散乱光線束を受光部6に収束させる結像レンズでなる
集光手段5Dとから構成してある。
The measurement optical system 4 scans the measurement light beam from the light source 3 with the first movable mirror 4A, and reflects the measurement light beam scanned by the first movable mirror 4A toward the DUT 2. The light receiving optical system 5 includes a first fixed mirror 4B and a second fixed mirror 5B that reflects a scattered light beam from the surface of the device under test 2 and a scattered light reflected by the second fixed mirror 5B. A second movable mirror 5A for guiding the bundle to the light receiving unit 6, and a spectral unit 5C for dispersing the scattered light beam reflected by the second movable mirror 5A into three primary colors of RGB.
And a light condensing means 5D, which is an image forming lens that converges the scattered light beams separated into the three primary colors of RGB by the dispersing means 5C on the light receiving unit 6.

【0008】第一可動ミラー4A及び第二可動ミラー5
Aは、モータMOTにより、Y軸に平行な軸心周りで回
動する両面反射ミラーで構成してある。
[0008] First movable mirror 4A and second movable mirror 5
A is a double-sided reflecting mirror that is rotated by a motor MOT about an axis parallel to the Y axis.

【0009】計測制御部8は、モータMOTを回動させ
て測定光線束をX方向に走査するとともに、光学系ユニ
ットUをY方向に移動させてZ−Y平面上を走査する。
The measurement control unit 8 rotates the motor MOT to scan the measurement light beam in the X direction, and moves the optical system unit U in the Y direction to scan on the ZY plane.

【0010】図1に示すように、前記白色レーザ発振器
3Aの赤緑青(RGB)それぞれの発振強度を調節する
制御端子T1,T2,T3に、異なる周波数の変調信号
を各別に入力する変調手段としてのAM変調器10の出
力端子を接続する一方、前記受光部6で検出された信号
を前記異なる変調信号毎に検波する検波手段11を設け
てあり、前記受光部6で検出された信号が赤緑青(RG
B)のうちのいずれの信号であるかを選択的に出力す
る。
As shown in FIG. 1, modulation means for separately inputting modulation signals of different frequencies to control terminals T1, T2, T3 for adjusting the respective oscillation intensities of red, green and blue (RGB) of the white laser oscillator 3A. The output terminal of the AM modulator 10 is connected, and a detecting means 11 for detecting the signal detected by the light receiving section 6 for each of the different modulation signals is provided. The signal detected by the light receiving section 6 is red. Patina (RG
B), which signal is selectively output.

【0011】信号処理部7は、図1に示すように、参照
平面1で反射される錯乱光線束の各色成分が、一定のポ
イントX0(例えばRX0)に集光することに着目して、
RGBの三原色に分光されたいずれかの検出出力につい
て、前記受光部6で検出される距離X0,X1(例えばR
0,RX1)がΔX0に比例すること、及び、参照平面
1からの測定対象物2の表面位置Z0が、Z0・θ=ΔX
0なる関係を有することからZ0を求めるとともに、RG
Bの三原色それぞれの強度を検出してそのポイントの色
を求める。モデル生成部9は、計測制御部8による第一
可動ミラー4A及び第二可動ミラー5Aの回転角(モー
タMOTの回転角)からX−Y平面上の計測ポイントを
把握し、信号処理部7により導出されたそのポイントに
おけるZ座標と、そのポイントの表面色を示すデータか
ら被測定物2の形状モデルを生成する。
As shown in FIG. 1, the signal processing section 7 focuses on the fact that each color component of the scattered light beam reflected by the reference plane 1 is converged on a certain point X 0 (for example, RX 0 ). ,
For any of the detection outputs separated into the three primary colors of RGB, the distances X 0 , X 1 (for example, R
X 0 , RX 1 ) is proportional to ΔX 0 , and the surface position Z 0 of the measuring object 2 from the reference plane 1 is Z 0 · θ = ΔX
Since there is a relationship of 0 , Z 0 is obtained and RG
The intensity of each of the three primary colors B is detected to determine the color at that point. The model generation unit 9 grasps measurement points on the XY plane from the rotation angles (rotation angles of the motor MOT) of the first movable mirror 4A and the second movable mirror 5A by the measurement control unit 8, and the signal processing unit 7 A shape model of the device under test 2 is generated from the derived Z coordinate at the point and data indicating the surface color of the point.

【0012】以下、本発明の別実施例を説明する。先の
実施例では光学系ユニットUのY軸方向への走査機構に
ついて詳述していないが、これは既存の技術、例えばモ
ータとプーリー等の駆動機構を用いて構成すればよい。
光学系ユニットUの構成はこの構成に限定するものでは
なく,先の実施例で説明した原理に基づき三次元座標を
導出するものであれば任意に構成することができる。例
えば可動ミラー4A,5Aを固定して、第一固定ミラー
4Bを回動させることで投影光線束を走査するように構
成してもよく、投影光線束と検出光線束で形成される平
面をY軸方向に走査するべく、X軸と平行な回転軸周り
に回動自在の反射ミラーを設けて構成してもよい。先の
実施例では、光源に赤緑青(RGB)の三原色の光を発
振する白色レーザ発振器3Aを用いた例を説明したが、
これに限定するものではなく赤緑青(RGB)各波長の
光を発振するレーザを各別に設けて構成してもよい。先
の実施例では、変調手段としてレーザの出力強度の調節
信号にAM変調信号を入力するものを説明したが、変調
信号としてはこれに限定するものではなく、デジタル方
式、アナログ方式を問わず他の変調方法による変調信号
であってもよい。先の実施例では、散乱光線束を赤緑青
(RGB)の三原色に分光する分光手段を設けたものを
説明したが、検波手段を用いれば散乱光線束が成分毎に
検出できることから係る分光手段を省略することもでき
る。
Hereinafter, another embodiment of the present invention will be described. In the above embodiment, the scanning mechanism of the optical system unit U in the Y-axis direction is not described in detail, but this may be configured by using an existing technology, for example, a driving mechanism such as a motor and a pulley.
The configuration of the optical system unit U is not limited to this configuration, but can be arbitrarily configured as long as it derives three-dimensional coordinates based on the principle described in the previous embodiment. For example, the movable mirrors 4A and 5A may be fixed, and the first fixed mirror 4B may be rotated to scan the projected light beam. The plane formed by the projected light beam and the detected light beam may be Y-shaped. In order to scan in the axial direction, a reflective mirror that can rotate around a rotation axis parallel to the X axis may be provided. In the above embodiment, an example is described in which the white laser oscillator 3A that oscillates light of three primary colors of red, green and blue (RGB) is used as a light source.
However, the present invention is not limited to this, and a laser that emits light of each wavelength of red, green, and blue (RGB) may be provided separately. In the previous embodiment, the modulation means for inputting the AM modulation signal to the adjustment signal of the laser output intensity was described. However, the modulation signal is not limited to this, and the modulation signal may be other than digital or analog. The modulation signal may be a modulation signal according to the above modulation method. In the above-described embodiment, a description has been given of a case in which the spectral unit that disperses the scattered light beam into the three primary colors of red, green, and blue (RGB) is provided. It can be omitted.

【0013】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】要部のブロック構成図FIG. 1 is a block diagram of a main part.

【図2】三次元形状計測装置の全体構成図FIG. 2 is an overall configuration diagram of a three-dimensional shape measuring apparatus.

【図3】光学系の要部を示す断面図FIG. 3 is a sectional view showing a main part of the optical system.

【符号の説明】[Explanation of symbols]

1 参照面 2 対象物 3 光源 4 投影用光学系 5 受光用光学系 5C 分光手段 5D 集光手段 6 受光部 7 信号処理 10 変調手段 12 検波手段 DESCRIPTION OF SYMBOLS 1 Reference surface 2 Object 3 Light source 4 Projection optical system 5 Light-receiving optical system 5C Light-splitting means 5D Light-collecting means 6 Light-receiving part 7 Signal processing 10 Modulation means 12 Detection means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−232580(JP,A) 特開 平2−291907(JP,A) 特開 平5−126570(JP,A) 特開 平6−137826(JP,A) 特開 昭63−238511(JP,A) 特開 平4−83133(JP,A) 特開 平4−69547(JP,A) 特開 平5−107032(JP,A) 実開 平2−140488(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 102 G06T 1/00 - 7/00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-232580 (JP, A) JP-A-2-291907 (JP, A) JP-A-5-126570 (JP, A) JP-A-6-206 137826 (JP, A) JP-A-63-238511 (JP, A) JP-A-4-83133 (JP, A) JP-A-4-69547 (JP, A) JP-A-5-107032 (JP, A) Japanese Utility Model Application Hei 2-140488 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 11/00-11/30 102 G06T 1/00-7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 赤緑青(RGB)の各単色光を出力する
光源(3)と、前記光源(3)からの測定光線束を参照
面(1)上の被測定物(2)に向けて照射する測定用光
学系(4)と、前記測定光線束のうち前記被測定物
(2)表面から反射した散乱光線束を検出する受光部
(6)と、その受光部(6)に前記散乱光線束を導く受
光用光学系(5)と、前記受光部(6)による前記散乱
光線束の検出出力に基づき前記参照面(1)からの前記
被測定物(2)表面の距離と色を演算導出する信号処理
部(7)とから構成してある三次元形状計測装置であっ
て、 前記光源(3)からの出力光に対して各色毎に異なる変
調信号で変調する変調手段(10)を設ける一方、前記
受光部(6)で検出された散乱光線束から各単色光を識
別する検波手段(11)を設けてある三次元形状計測装
置。
1. A light source (3) for outputting monochromatic lights of red, green and blue (RGB), and a measuring light beam from the light source (3) is directed to an object to be measured (2) on a reference surface (1). An optical system for measurement (4) to be irradiated, a light receiving unit (6) for detecting a scattered light beam reflected from the surface of the object (2) of the measurement light beam, and the light receiving unit (6) receiving the scattered light. A light receiving optical system (5) for guiding a light beam, and a distance and a color of the surface of the object (2) from the reference surface (1) based on a detection output of the scattered light beam by the light receiving unit (6). A three-dimensional shape measuring device comprising a signal processing unit (7) for calculating and deriving, a modulating means (10) for modulating output light from the light source (3) with a different modulation signal for each color. While detecting means (1) for identifying each monochromatic light from the scattered light beam detected by the light receiving section (6). ) Three-dimensional shape measuring apparatus is provided with.
【請求項2】 赤緑青(RGB)の各単色光を出力する
光源(3)と、前記光源(3)からの測定光線束を参照
面(1)上の被測定物(2)に向けて照射する測定用光
学系(4)と、前記測定光線束のうち前記被測定物
(2)表面から反射した散乱光線束を検出する受光部
(6)と、前記散乱光線束を赤緑青(RGB)の三原色
に分光する分光手段(5C)とその分光出力を前記受光
部(6)に集光する集光手段(5D)とを備えて前記受
光部(6)に前記散乱光線束を導く受光用光学系(5)
と、前記受光部(6)による前記散乱光線束の検出出力
に基づき前記参照面(1)からの前記被測定物(2)表
面の距離と色を演算導出する信号処理部(7)とから構
成してある三次元形状計測装置であって、 前記光源(3)からの出力光に対して各色毎に異なる変
調信号で変調する変調手段(10)を設ける一方、前記
受光部(6)で検出された散乱光線束から各単色光を識
別する検波手段(11)を設けてある三次元形状計測装
置。
2. A light source (3) for outputting monochromatic light of red, green and blue (RGB), and a measuring light beam from the light source (3) is directed to an object to be measured (2) on a reference surface (1). A measuring optical system (4) for irradiation, a light receiving unit (6) for detecting a scattered light beam reflected from the surface of the object (2) of the measured light beam, and a red-green-blue (RGB) ), And a light condensing means (5D) for condensing the spectral output to the light receiving section (6), and receiving the light to guide the scattered light beam to the light receiving section (6). Optical system (5)
And a signal processing unit (7) that calculates and derives the distance and color of the surface of the device under test (2) from the reference surface (1) based on the detection output of the scattered light beam by the light receiving unit (6). The three-dimensional shape measuring apparatus thus configured, wherein a modulating means (10) for modulating output light from the light source (3) with a modulation signal different for each color is provided, while the light receiving unit (6) A three-dimensional shape measuring apparatus provided with a detecting means (11) for distinguishing each monochromatic light from a detected scattered light beam.
JP5001581A 1993-01-08 1993-01-08 3D shape measuring device Expired - Lifetime JP2839059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001581A JP2839059B2 (en) 1993-01-08 1993-01-08 3D shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001581A JP2839059B2 (en) 1993-01-08 1993-01-08 3D shape measuring device

Publications (2)

Publication Number Publication Date
JPH06201342A JPH06201342A (en) 1994-07-19
JP2839059B2 true JP2839059B2 (en) 1998-12-16

Family

ID=11505487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001581A Expired - Lifetime JP2839059B2 (en) 1993-01-08 1993-01-08 3D shape measuring device

Country Status (1)

Country Link
JP (1) JP2839059B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016526B2 (en) 1998-09-08 2007-12-05 富士ゼロックス株式会社 3D object identification device
JP4719284B2 (en) 2008-10-10 2011-07-06 トヨタ自動車株式会社 Surface inspection device

Also Published As

Publication number Publication date
JPH06201342A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
JP3855756B2 (en) 3D color shape detection device and 3D scanner
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP2651093B2 (en) Shape detection method and device
US6765606B1 (en) Three dimension imaging by dual wavelength triangulation
JPH04232580A (en) Method and apparatus for forming three-dimensional color image
US5090811A (en) Optical radius gauge
US11493331B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring computer-readable storage medium, and three-dimensional shape measuring computer-readable storage device
JPH04115108A (en) Three-dimensional scanner
JP2839059B2 (en) 3D shape measuring device
JP2000506609A (en) Method and apparatus for reducing unwanted effects of noise in a three-dimensional color imaging system
JP2987540B2 (en) 3D scanner
JP2509776B2 (en) Three-dimensional shape measuring device
JPS58201006A (en) Detector of three-dimensional shape
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JP2733170B2 (en) 3D shape measuring device
JP2004020536A (en) Three-dimensional shape measuring apparatus
JPH06213633A (en) Three dimensional shape measurement device
JPS6355641B2 (en)
JP2731062B2 (en) 3D shape measuring device
JPH11148806A (en) Reader for three-dimensional body and its susrface image
JP2000002521A (en) Three dimensional input device
JPH06347227A (en) Apparatus and method for measuring surface shape
CA2043336C (en) Three dimensional colour imaging
JP2866566B2 (en) 3D shape input device
JPH0518726A (en) Three-dimensional color image input apparatus