JPH0518726A - Three-dimensional color image input apparatus - Google Patents

Three-dimensional color image input apparatus

Info

Publication number
JPH0518726A
JPH0518726A JP3168628A JP16862891A JPH0518726A JP H0518726 A JPH0518726 A JP H0518726A JP 3168628 A JP3168628 A JP 3168628A JP 16862891 A JP16862891 A JP 16862891A JP H0518726 A JPH0518726 A JP H0518726A
Authority
JP
Japan
Prior art keywords
luminous
scanning
position detecting
image input
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3168628A
Other languages
Japanese (ja)
Inventor
Hideji Sonoda
秀二 園田
Yuichi Yamazaki
祐一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3168628A priority Critical patent/JPH0518726A/en
Publication of JPH0518726A publication Critical patent/JPH0518726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To make processing speed for data input high to shorten the input time and at the same time to improve detected position precision. CONSTITUTION:A color three-dimensional image input apparatus consists of a scanning means 3 to radiate measuring luminous-ray fluxes to a measurement object 2 on a reference plane 1 and scan it with the fluxes, a light converging means 4 to converge the scattered luminous-ray fluxes among the measuring luminous-ray fluxes from the measurement object, and a spectro-scopic means 5 to separate the luminous-ray fluxes from the light converging means 4 into three principle colors. RGB. Further, it consists of a position detecting means 6 to detect the light converging position of each luminous-ray flux and a signal processing part 7 to compute and introduce a distance of the surface of the measurement object 2 from the reference plane 1 based on the deflection of the detected position by the position detecting means 6 from the standard position corresponding to the reference plane 1. The position detecting means 6 is composed of a plurality of non-dividing-type position detecting devices to detect the light converging position for each luminous-ray flux dividually.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、参照面上の測定対象物
に測定光線束を投影走査する走査手段と、前記測定光線
束のうち前記測定対象物からの散乱光線束を集光する集
光手段と、その集光手段からの光線束をRGBの三原色
に分光する分光手段と、その分光手段からの各光線束の
集光位置を検出する位置検出手段と、その位置検出手段
による検出位置と前記参照面に対応する基準位置との偏
差に基づき、前記参照面からの前記測定対象物表面の距
離を演算導出する信号処理部とから構成してある三次元
画像入力装置に関し、例えば、成形用型やデザインされ
た各種製品の模型から外観形状を入力して最終設計図面
に仕上げるCAD用データの入力装置や、教育用や販売
用に用いられるカラー三次元映像資料の入力装置、医療
用診断装置、或いはロボットの視覚センサとして用いら
れるカラー三次元画像入力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning means for projecting and scanning a measuring ray bundle on a measuring object on a reference surface, and a collecting means for condensing a scattered ray bundle of the measuring ray bundle from the measuring object. A light unit, a spectroscopic unit that disperses a light beam bundle from the condensing unit into three primary colors of RGB, a position detection unit that detects a condensing position of each light beam bundle from the spectroscopic unit, and a detection position by the position detection unit. And a signal processing unit that calculates and derives the distance of the measurement object surface from the reference surface based on the deviation from the reference position corresponding to the reference surface. Input device for CAD data that inputs the external shape from the model of various types of designed products and finishes the final design drawing, input device for color three-dimensional image material used for education and sales, medical diagnosis Device A color three-dimensional image input device used as a visual sensor of a robot.

【0002】[0002]

【従来の技術】この種のカラー三次元画像入力装置は、
前記位置検出手段を、前記分光手段により分光された各
光線束の集光位置を検出する単一の一次元イメージセン
サ(CCD)で構成していた。
2. Description of the Related Art A color three-dimensional image input device of this type is
The position detecting means is composed of a single one-dimensional image sensor (CCD) that detects the condensing position of each light flux dispersed by the spectral means.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術によ
れば、先ず、前記位置検出手段により、イメージセンサ
(CCD)の全ての画素データ(例えば256ピクセ
ル)を読み出し、RGBの各散乱光線束に対応するピー
ク値を示す画素を抽出して、その位置を各光線束の集光
位置として特定して、その後に、前記信号処理部によ
り、基準集光位置(演算で求まる参照面からの散乱光線
束の集光位置)からの検出集光位置の偏差と、前記走査
手段による走査位置に基づき、所定の演算を施すことで
参照面からの測定対象物の高さを導出するものである
が、測定タイミング毎にイメージセンサ(CCD)の全
ての画素データを読み出すのに相当の時間がかかり、特
に高精度の三次元データを得るための入力時間は長くな
るという欠点があった。又、集光位置精度はイメージセ
ンサ(CCD)の画素により決まる分解能以上の精度を
得ることが出来ず、精度の向上を図るためにはRGBそ
れぞれの画素データに基づき得られる前記偏差に平均化
処理等を施す必要があるが、この場合に散乱光線束にR
GBの何れかの成分が欠けているとそれも適わないとい
う欠点があった。本発明の目的は上述した従来欠点を解
消する点にある。
According to the above-mentioned prior art, first, the position detecting means reads out all the pixel data (for example, 256 pixels) of the image sensor (CCD) to obtain each of the scattered light fluxes of RGB. Pixels showing the corresponding peak value are extracted, and the position thereof is specified as the condensing position of each ray bundle, and then the signal processing unit causes the standard condensing position (scattered light rays from the reference plane to be calculated). The height of the object to be measured from the reference surface is derived by performing a predetermined calculation based on the deviation of the detected condensing position from the bundle condensing position) and the scanning position by the scanning unit. It takes a considerable time to read all the pixel data of the image sensor (CCD) at each measurement timing, and in particular, the input time for obtaining highly accurate three-dimensional data is long. Further, the accuracy of the condensing position cannot be higher than the resolution determined by the pixels of the image sensor (CCD), and in order to improve the accuracy, the deviation obtained based on each pixel data of RGB is averaged. Etc., but in this case the scattered light flux is R
If any component of GB is lacking, it is not suitable either. An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明によるカラー三次元画像入力装置の特徴構成
は、前記位置検出手段を、前記分光手段により分光され
た各光線束の集光位置を各別に検出する複数の非分割型
の位置検出素子で構成してあることにある。前記信号処
理部は、RGBの三原色に対応して前記位置検出手段に
より検出された各データのうち最大受光量を示すデータ
を用いて前記参照面からの前記測定対象物表面の距離を
演算導出するように構成してあることが好ましい。
In order to achieve this object, the color three-dimensional image input device according to the present invention is characterized in that the position detecting means is used for converging position of each light flux dispersed by the spectroscopic means. It is composed of a plurality of non-divided position detecting elements for individually detecting the. The signal processing unit arithmetically derives the distance of the surface of the measuring object from the reference surface by using the data indicating the maximum amount of received light among the data detected by the position detecting unit corresponding to the three primary colors of RGB. It is preferable that it is configured as follows.

【0005】[0005]

【作用】非分割型の位置検出素子(例えば、フォトダイ
オードの表面抵抗を利用して左右の光電流の差から光ス
ポットの入射位置を検出する素子で、浜松ホトニクス社
製のPSD素子がある)であれば、入射位置に対応する
連続した電気信号が出力されるので、CCDのように各
画素データを順次読み出してピーク値を示す画素を求め
るという時間のかかる信号処理が不要となる。例えば、
上述のPSD素子であれば、図3に示すように、入射光
に対して左右に発生する光電流I1 ,I2 により入射光
の中心位置が判明する。前記基準集光位置からの上記中
心位置の偏差と、前記走査手段による走査位置に基づ
き、所定の演算を施すことで参照面からの測定対象物の
高さを導出する。又、前記信号処理部を、RGBの三原
色に対応して、前記位置検出手段により検出された各デ
ータのうちS/N比の高い最大受光量を示すデータを用
いて、前記参照面からの前記測定対象物表面の距離を演
算導出するように構成すれば、参照面からの測定対象物
の高さを、比較的多くの場合に高精度に演算導出でき
る。例えば、上述のPSD素子の場合には、光電流
1 ,I2 の和が入射光量に対応する値となるので、こ
れよりただちにRGBの該当成分の有無及び組成が判明
し、その値が最大となる成分の入射位置を、参照面から
の測定対象物の高さの導出に用いる。
Function: Non-divided position detection element (for example, an element that detects the incident position of the light spot from the difference between the left and right photocurrents using the surface resistance of the photodiode, and there is a PSD element manufactured by Hamamatsu Photonics) In this case, since a continuous electric signal corresponding to the incident position is output, time-consuming signal processing such as CCD in which each pixel data is sequentially read to obtain a pixel showing a peak value is unnecessary. For example,
In the case of the above-mentioned PSD element, as shown in FIG. 3, the center position of the incident light is determined by the photocurrents I 1 and I 2 generated on the left and right with respect to the incident light. The height of the object to be measured from the reference surface is derived by performing a predetermined calculation based on the deviation of the center position from the reference condensing position and the scanning position of the scanning unit. Further, the signal processing unit uses the data showing the maximum received light amount having a high S / N ratio among the respective data detected by the position detecting means in correspondence with the three primary colors of RGB, If the distance of the surface of the measurement object is calculated and derived, the height of the measurement object from the reference surface can be calculated and derived with high accuracy in a relatively large number of cases. For example, in the case of the above-mentioned PSD element, since the sum of the photocurrents I 1 and I 2 has a value corresponding to the amount of incident light, the presence / absence and composition of the corresponding component of RGB are immediately found from this, and the value is the maximum. The incident position of the component that becomes is used to derive the height of the measurement target from the reference surface.

【0006】[0006]

【発明の効果】従って、本発明によれば、CCDのよう
に各画素データを順次読み出してピーク値を示す画素を
求めるという時間のかかる信号処理が不要となるので、
サンプリング間隔を短くすることができ、三次元イメー
ジデータを高速に、しかも、比較的多くの場合に高精度
に入力できるカラー三次元画像入力装置を提供すること
ができるようになった。
As described above, according to the present invention, it is not necessary to perform time-consuming signal processing such as CCD in which each pixel data is sequentially read to obtain a pixel having a peak value.
It has become possible to provide a color three-dimensional image input device capable of shortening the sampling interval, inputting three-dimensional image data at high speed and with high accuracy in a relatively large number of cases.

【0007】[0007]

【実施例】以下実施例を説明する。図1に示すように、
三次元画像入力装置は、X−Y参照平面1上の測定対象
物2に測定光線束を投影走査する走査手段3と、前記測
定光線束のうち前記測定対象物2からの散乱光線束を集
光する集光手段4と、その集光手段4からの光線束をR
GBの三原色に分光する分光手段5と、その分光手段5
からの各光線束の集光位置を検出する位置検出手段6
と、その位置検出手段6による検出位置と前記参照平面
1に対応する基準位置との偏差に基づき、前記参照平面
1からの前記測定対象物2表面の距離を演算導出する信
号処理部7と、前記信号処理部7により導出された三次
元データから前記測定対象物2を再構築するモデル生成
部8と、前記走査手段3、集光手段4、分光手段5、位
置検出手段6による計測動作を制御する計測制御部9と
から構成してある。前記位置検出手段6は、前記分光手
段5により分光された各光線束の集光位置を各別に検出
する三つの非分割型の位置検出素子を分光方向に並設し
て構成してある。前記走査手段3は、三原色(R:レッ
ド、G:グリーン、B:ブルー)を同時発振するホロー
陰極型He −Cd レーザでなる光源3Aと,Y軸に平行
な軸心周りに回動自在の走査用ミラー3Bと、前記レー
ザの出力光線束で前記走査用ミラー3Bにより走査され
た光線束を前記測定対象物2にX軸に平行な方向で投影
走査する固定ミラー3Cとで構成してある。前記集光手
段4は、前記測定光線束のうち前記測定対象物2表面か
らの散乱光線束を前記走査用ミラー3Bの裏面に向けて
反射する固定ミラー4Aと、前記走査用ミラー3Bと、
前記走査用ミラー3Bの裏面から反射された光線束を前
記位置検出手段6の検出面上に集光するレンズ4Bとで
構成してある。図2に示すように、前記分光手段5は散
乱光線束を三原色(R:レッド、G:グリーン、B:ブ
ルー)に分光するプリズムで構成してあり、前記位置検
出手段6は、入射位置に対応する連続した電気信号が出
力される位置検出素子(フォトダイオードの表面抵抗を
利用して左右の光電流の差から光スポットの入射位置を
検出する素子で、浜松ホトニクス社製のPSD素子)6
A,6B,6Cを、RGBの各波長に対応してその分光
方向に三つ並べて配置してある。前記走査手段3、集光
手段4、分光手段5、位置検出手段6で光学ヘッドを構
成してあり、その光学ヘッドをY軸方向へ移動させるこ
とによりY軸方向への走査を行う走査機構(図示せず)
を設けて、前記測定対象物のXYZ方向の三次元座標、
及びカラーデータを入力する。前記計測制御部9は、前
記走査用ミラー3B及び前記光学ヘッドのY軸方向への
移動走査を制御するとともに、前記信号処理部7に同期
信号を送る。前記信号処理部7は、演算導出された前記
参照平面1からの前記測定対象物2表面の距離、即ちZ
方向座標とそれが得られたときの同期信号とからXYZ
方向の三次元座標を特定する。前記信号処理部7は、図
4に示すように、前記位置検出手段6で検出される距離
0 1 が、ΔX0 に比例すること、及び、参照平面1
からの測定対象物2の表面位置Z0 が、Z0 ・θ=ΔX
0 なる関係を有することからZ0 を求める。前記モデル
生成部8は、X方向への走査及びY方向への走査により
得られた各測定ポイント(走査密度で決定される)に対
するZ方向の値で特定されるXYZ座標データを三次元
画像データとして、それらから測定対象物2の形状をコ
ンピュータ上に再現する。
EXAMPLES Examples will be described below. As shown in Figure 1,
The three-dimensional image input device collects a scanning means 3 for projecting and scanning a measurement light beam on a measurement object 2 on an XY reference plane 1 and a scattered light beam from the measurement object 2 in the measurement light beam. The condensing means 4 that emits light and the light flux from the condensing means 4 are R
Spectral means 5 for splitting into the three primary colors of GB, and the spectroscopic means 5
Position detecting means 6 for detecting the condensing position of each ray bundle from the
And a signal processing unit 7 for calculating and deriving the distance of the surface of the measuring object 2 from the reference plane 1 based on the deviation between the detected position by the position detecting means 6 and the reference position corresponding to the reference plane 1. The model generation unit 8 for reconstructing the measurement object 2 from the three-dimensional data derived by the signal processing unit 7 and the measurement operation by the scanning unit 3, the condensing unit 4, the spectroscopic unit 5, and the position detecting unit 6. It comprises a measurement control unit 9 for controlling. The position detecting means 6 is configured by arranging three non-divided position detecting elements, which detect the condensing position of each light beam split by the spectroscopic means 5, separately in the spectral direction. Said scanning means 3, three primary colors (R: Red, G: Green, B: Blue) and the light source 3A made of a hollow cathode type H e -C d laser that simultaneously oscillate, rotate parallel axis about the Y axis It is composed of a free-moving mirror 3B and a fixed mirror 3C for projecting and scanning the light beam scanned by the scanning mirror 3B with the output light beam of the laser onto the measurement object 2 in a direction parallel to the X axis. There is. The condensing unit 4 includes a fixed mirror 4A that reflects a scattered light flux from the surface of the measurement object 2 of the measurement light flux toward the back surface of the scanning mirror 3B, and the scanning mirror 3B.
It is composed of a lens 4B for condensing the light flux reflected from the back surface of the scanning mirror 3B on the detection surface of the position detection means 6. As shown in FIG. 2, the spectroscopic means 5 is composed of a prism that disperses the scattered light flux into three primary colors (R: red, G: green, B: blue), and the position detecting means 6 is arranged at the incident position. Corresponding position detection element that outputs continuous electrical signals (element that detects the incident position of the light spot from the difference between the left and right photocurrents using the surface resistance of the photodiode, a PSD element manufactured by Hamamatsu Photonics) 6
Three A, 6B, and 6C are arranged in the spectral direction corresponding to each wavelength of RGB. An optical head is configured by the scanning unit 3, the condensing unit 4, the spectroscopic unit 5, and the position detecting unit 6, and a scanning mechanism that performs scanning in the Y-axis direction by moving the optical head in the Y-axis direction ( (Not shown)
Is provided, the three-dimensional coordinates of the measurement target in the XYZ directions,
And input the color data. The measurement control unit 9 controls movement scanning of the scanning mirror 3B and the optical head in the Y-axis direction, and sends a synchronization signal to the signal processing unit 7. The signal processing unit 7 calculates the distance of the surface of the measuring object 2 from the calculated reference plane 1;
XYZ from the directional coordinate and the sync signal when it was obtained
Specify the three-dimensional coordinates of the direction. As shown in FIG. 4, in the signal processing unit 7, the distance X 0 X 1 detected by the position detecting unit 6 is proportional to ΔX 0 , and the reference plane 1
The surface position Z 0 of the measuring object 2 from Z is Z 0 · θ = ΔX
Since it has a relation of 0 , Z 0 is obtained. The model generation unit 8 converts the XYZ coordinate data specified by the value in the Z direction for each measurement point (determined by the scanning density) obtained by scanning in the X direction and scanning in the Y direction into three-dimensional image data. Then, the shape of the measuring object 2 is reproduced from them on a computer.

【0008】以下、本発明の別実施例を説明する。位置
検出手段としては、フォトダイオードの表面抵抗を利用
して左右の光電流の差から光スポットの入射位置を検出
するPSD素子を用いているがこれに限定するものでは
ない。光源として、ホロー陰極型He −Cd レーザを用
いた例を示したが、これに限定するものではなく、同様
のレーザを用いることができる。XY方向への走査手段
の走査機構はこれに限定するものではなく、例えば図5
に示すように、光学ヘッドを、投影光線束のみ走査する
走査機構と散乱光線束を受光素子に導く固定の光学系で
構成してもよいし、光学ヘッドをY軸方向へ移動させる
ことによりY軸方向への走査を行う走査機構(これは、
モータとプーリを用いて容易に構成できる)の代わり
に、図6に示すように、投影光線束と散乱光線束で形成
される平面をY軸方向に走査するべく、Z軸周りに回動
自在の反射ミラーを設けて構成してもよい。先の実施例
では、分光手段をプリズムで構成していたが、これに限
定するものではなく、回折格子を用いて構成してもよ
い。
Another embodiment of the present invention will be described below. As the position detecting means, a PSD element that uses the surface resistance of the photodiode to detect the incident position of the light spot from the difference between the left and right photocurrents is used, but the position detecting means is not limited to this. As a light source, an example of using the hollow cathode-type H e -C d lasers is not limited to this, it is possible to use the same laser. The scanning mechanism of the scanning means in the XY directions is not limited to this, and for example, FIG.
As shown in FIG. 5, the optical head may be composed of a scanning mechanism that scans only the projection light beam bundle and a fixed optical system that guides the scattered light beam bundle to the light receiving element, or by moving the optical head in the Y-axis direction, A scanning mechanism for scanning in the axial direction (this is
Instead of using a motor and a pulley), as shown in FIG. 6, it is rotatable about the Z-axis to scan the plane formed by the projection ray bundle and the scattered ray bundle in the Y-axis direction. It may be configured by providing a reflection mirror. In the previous embodiment, the spectroscopic means was composed of a prism, but it is not limited to this and may be composed of a diffraction grating.

【0009】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】三次元画像入力装置の全体構成図FIG. 1 is an overall configuration diagram of a three-dimensional image input device.

【図2】要部の断面図FIG. 2 is a sectional view of a main part

【図3】位置検出素子の原理を示す説明図FIG. 3 is an explanatory diagram showing the principle of a position detection element.

【図4】Z方向座標を検出する原理を示す説明図FIG. 4 is an explanatory diagram showing the principle of detecting Z-direction coordinates.

【図5】別実施例を示す要部の構成図FIG. 5 is a configuration diagram of a main part showing another embodiment.

【図6】別実施例を示す要部の構成図FIG. 6 is a configuration diagram of a main part showing another embodiment.

【符号の説明】[Explanation of symbols]

3 走査手段 4 集光手段 5 分光手段 6 位置検出手段 7 信号処理部 3 scanning means 4 Focusing means 5 Spectral means 6 Position detection means 7 Signal processing unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 参照面(1)上の測定対象物(2)に測
定光線束を投影走査する走査手段(3)と、前記測定光
線束のうち前記測定対象物からの散乱光線束を集光する
集光手段(4)と、その集光手段(4)からの光線束を
RGBの三原色に分光する分光手段(5)と、その分光
手段(5)からの各光線束の集光位置を検出する位置検
出手段(6)と、その位置検出手段(6)による検出位
置と前記参照面(1)に対応する基準位置との偏差に基
づき、前記参照面(1)からの前記測定対象物(2)表
面の距離を演算導出する信号処理部(7)とから構成し
てあるカラー三次元画像入力装置であって、 前記位置検出手段(6)を、前記分光手段(5)により
分光された各光線束の集光位置を各別に検出する複数の
非分割型の位置検出素子で構成してあるカラー三次元画
像入力装置。
1. A scanning means (3) for projecting and scanning a measuring ray bundle onto a measuring object (2) on a reference surface (1), and a scattered ray bundle from the measuring object among the measuring ray bundles. Condensing means (4) for illuminating light, spectroscopic means (5) for spectroscopically dividing the light flux from the condensing means (4) into three primary colors of RGB, and condensing position of each light flux from the spectroscopic means (5) Based on a deviation between a position detection means (6) for detecting the position and a reference position corresponding to the reference surface (1) detected by the position detection means (6), and the measurement target from the reference surface (1). A color three-dimensional image input device comprising a signal processing section (7) for calculating and deriving the distance of the surface of an object (2), wherein the position detecting means (6) is separated by the spectroscopic means (5). A plurality of non-divided position detection elements that detect the focused position of each bundle To Aru color three-dimensional image input device.
【請求項2】 前記信号処理部(7)は、RGBの三原
色に対応して前記位置検出手段(6)により検出された
各データのうち最大受光量を示すデータを用いて前記参
照面(1)からの前記測定対象物(2)表面の距離を演
算導出するように構成してある請求項1記載のカラー三
次元画像入力装置。
2. The signal processing section (7) uses the data indicating the maximum light receiving amount among the data detected by the position detecting means (6) corresponding to the three primary colors of RGB, and the reference surface (1 3. The color three-dimensional image input device according to claim 1, which is configured to calculate and derive the distance of the surface of the measuring object (2) from (1).
JP3168628A 1991-07-10 1991-07-10 Three-dimensional color image input apparatus Pending JPH0518726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168628A JPH0518726A (en) 1991-07-10 1991-07-10 Three-dimensional color image input apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168628A JPH0518726A (en) 1991-07-10 1991-07-10 Three-dimensional color image input apparatus

Publications (1)

Publication Number Publication Date
JPH0518726A true JPH0518726A (en) 1993-01-26

Family

ID=15871580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168628A Pending JPH0518726A (en) 1991-07-10 1991-07-10 Three-dimensional color image input apparatus

Country Status (1)

Country Link
JP (1) JPH0518726A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483133A (en) * 1990-07-25 1992-03-17 Matsushita Electric Ind Co Ltd Three-dimensional scanner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483133A (en) * 1990-07-25 1992-03-17 Matsushita Electric Ind Co Ltd Three-dimensional scanner

Similar Documents

Publication Publication Date Title
US7903261B2 (en) Controlling a projected pattern
US5177556A (en) Three dimensional color imaging
US7189984B2 (en) Object data input apparatus and object reconstruction apparatus
US5319442A (en) Optical inspection probe
US6636310B1 (en) Wavelength-dependent surface contour measurement system and method
US6765606B1 (en) Three dimension imaging by dual wavelength triangulation
US5090811A (en) Optical radius gauge
IL138414A (en) Apparatus and method for optically measuring an object surface contour
US11493331B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring computer-readable storage medium, and three-dimensional shape measuring computer-readable storage device
CA2334225C (en) Method and device for opto-electrical acquisition of shapes by axial illumination
US6730926B2 (en) Sensing head and apparatus for determining the position and orientation of a target object
JP3805791B2 (en) Method and apparatus for reducing undesirable effects of noise in three-dimensional color imaging systems
CN116447988B (en) Triangular laser measurement method adopting wide-spectrum light source
JPH0518726A (en) Three-dimensional color image input apparatus
JP2987540B2 (en) 3D scanner
JP2509776B2 (en) Three-dimensional shape measuring device
JP2839059B2 (en) 3D shape measuring device
JPS6291833A (en) Measuring instrument for two-dimensional light distribution of light source
JP3206948B2 (en) Interferometer and interferometer alignment method
CA2043336C (en) Three dimensional colour imaging
JP2731062B2 (en) 3D shape measuring device
JPH06109436A (en) Measuring apparatus of three-dimensional shape
JPH06102021A (en) Three-dimensional shape measuring apparatus
JP2021060214A (en) Measuring apparatus and measuring method
CA2013337C (en) Optical radius gauge