JP3206948B2 - Interferometer and interferometer alignment method - Google Patents

Interferometer and interferometer alignment method

Info

Publication number
JP3206948B2
JP3206948B2 JP01191592A JP1191592A JP3206948B2 JP 3206948 B2 JP3206948 B2 JP 3206948B2 JP 01191592 A JP01191592 A JP 01191592A JP 1191592 A JP1191592 A JP 1191592A JP 3206948 B2 JP3206948 B2 JP 3206948B2
Authority
JP
Japan
Prior art keywords
light
interferometer
test
interference fringes
spots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01191592A
Other languages
Japanese (ja)
Other versions
JPH0540012A (en
Inventor
正人 野口
Original Assignee
旭光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭光学工業株式会社 filed Critical 旭光学工業株式会社
Priority to JP01191592A priority Critical patent/JP3206948B2/en
Publication of JPH0540012A publication Critical patent/JPH0540012A/en
Application granted granted Critical
Publication of JP3206948B2 publication Critical patent/JP3206948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、被測定面の形状等を
測定する際に、受光面上に測定に適した数の干渉縞を発
生させるアライメント機能を備える干渉計、及び、この
干渉計のアライメント方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer having an alignment function for generating a suitable number of interference fringes on a light-receiving surface when measuring the shape of a surface to be measured, and this interferometer. The alignment method.

【0002】[0002]

【従来の技術】光の波長以下のオーダで物体の形状を測
定する方法の一つとして、干渉計を利用した空間縞走査
法がある。空間縞走査法は、単一光源からの光束を2分
して被測定面と参照面とで反射させ、これらの反射光を
合成してテレビカメラの撮像面上に干渉縞を発生させ
る。そして、被測定面と参照面との一方を光軸方向に移
動させてカメラの各画素毎の光量変化を解析し、被測定
面の面形状を測定する。
2. Description of the Related Art One method of measuring the shape of an object on the order of the wavelength of light or less is a spatial fringe scanning method using an interferometer. In the spatial fringe scanning method, a light beam from a single light source is divided into two and reflected by a measured surface and a reference surface, and these reflected lights are combined to generate an interference fringe on an imaging surface of a television camera. Then, one of the measured surface and the reference surface is moved in the optical axis direction to analyze a change in the amount of light for each pixel of the camera, and the surface shape of the measured surface is measured.

【0003】ところで、空間縞走査法による縞解析のア
ルゴリズムを用いる場合、このアルゴリズムを簡便化す
るためには、テレビカメラの画素数nとしてn/4m本(m=1,
2,3・・・)の干渉縞を発生させることが好ましい。そこ
で、干渉縞が測定に適した本数となるように被測定面、
あるいは参照面を傾け、干渉計のアライメントを行って
いる。
When an algorithm for fringe analysis by the spatial fringe scanning method is used, in order to simplify the algorithm, the number of pixels of the television camera is set to n / 4m (m = 1,
It is preferable to generate (2, 3 ...) interference fringes. Therefore, the measured surface, so that the number of interference fringes suitable for the measurement,
Alternatively, the interferometer is aligned by tilting the reference plane.

【0004】[0004]

【発明が解決しようとする課題】従来、干渉縞の本数を
測定するためには、テレビカメラの出力をモニターに表
示し、モニター上で干渉縞の縞数を人間の目で数え、所
定の本数となるよう傾きを調整していたため、その調整
作業は非常に煩雑であり、作業効率が悪いという問題が
あった。
Conventionally, in order to measure the number of interference fringes, the output of a television camera is displayed on a monitor, the number of interference fringes is counted by a human eye on the monitor, and a predetermined number of interference fringes is measured. Therefore, there is a problem that the adjustment work is very complicated and the work efficiency is poor.

【0005】[0005]

【発明の目的】この発明は、上記の課題に鑑みてなされ
たものであり、受光面上に形成される干渉縞が所定の本
数となるように、被測定面と参照面との相対的な傾きを
容易に調整することができる干渉計、及びそのアライメ
ント方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has been made in view of the above-mentioned circumstances. An object of the present invention is to provide an interferometer capable of easily adjusting the tilt and an alignment method thereof.

【0006】[0006]

【課題を解決するための手段】この発明にかかる干渉計
は、上記の目的を達成させるため、被測定面からの被検
光と参照面からの参照光とにより形成される干渉縞の本
数を所定の本数に調整して測定する第1の受光手段と、
前記被検光と前記参照光とを集光させて光点を形成する
集光レンズと、集光レンズにより形成される前記被検
光に基づく光点と前記参照光に基づく光点との2つの光
点を受光する第2の受光手段と、前記被検光と前記参照
光との少なくとも何れか一方を偏向させる偏向手段とを
有することを特徴とする。
Means for Solving the Problems An interferometer according to the present invention, in order to achieve the above object, the present of the interference fringes formed by the reference light from the reference surface and the test light from the measurement surface
First light receiving means for adjusting the number to a predetermined number and measuring,
Wherein a condenser lens to form a light spot by focusing with said reference light and test light, the subject formed by the condenser lens
A second light receiving unit that receives two light spots, a light spot based on light and a light spot based on the reference light, and a deflecting unit that deflects at least one of the test light and the reference light. It is characterized by having.

【0007】また、この発明にかかる干渉計のアライメ
ント方法は、干渉計の被測定面からの被検光と参照面か
らの参照光とを集光させて光点を形成し、光点間の距離
を予め定められた距離となるよう被検光と参照光との少
なくともいずれか一方を偏向させることを特徴とする。
Further, in the method for aligning an interferometer according to the present invention, a light spot is formed by converging a test light from a measured surface of the interferometer and a reference light from a reference surface, and forming a light spot between the light spots At least one of the test light and the reference light is deflected so that the distance becomes a predetermined distance.

【0008】[0008]

【実施例】以下、この発明を図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0009】[0009]

【実施例1】図1及び図2は、この発明の実施例1を示し
たものである。
First Embodiment FIGS. 1 and 2 show a first embodiment of the present invention.

【0010】図1に示した干渉計において、光源1から発
した光束は、コリメータレンズ2により平行光束とさ
れ、第1のハーフミラー3により被測定面である平面ミラ
ー4と参照ミラー5とに向けて分割される。各ミラーで反
射された光束は、第1のハーフミラー3で重ね合わされ、
第2のハーフミラー6に入射する。
In the interferometer shown in FIG. 1, a light beam emitted from a light source 1 is converted into a parallel light beam by a collimator lens 2, and is transmitted by a first half mirror 3 to a plane mirror 4 and a reference mirror 5 which are surfaces to be measured. Divided toward The luminous flux reflected by each mirror is superimposed on the first half mirror 3, and
The light enters the second half mirror 6.

【0011】第2のハーフミラー6を透過した成分は、結
像レンズ7を介して瞳と共役な瞳面に配置された第1の受
光面としてのCCDカメラの撮像面8に結像し、干渉縞を形
成する。他方、ハーフミラー6で反射された成分は、集
光レンズ9により収束され、フーリエ面に位置する第2の
受光面としてのスクリーン10上に各反射光に対応する2
つの光点P1,P2を形成する。
The component transmitted through the second half mirror 6 forms an image on an imaging surface 8 of a CCD camera as a first light receiving surface disposed on a pupil plane conjugate with the pupil via an imaging lens 7, Form interference fringes. On the other hand, the component reflected by the half mirror 6 is converged by the condenser lens 9 and corresponds to each reflected light on a screen 10 as a second light receiving surface located on the Fourier surface.
Two light spots P1 and P2 are formed.

【0012】参照ミラー5は、光軸に対して傾斜自在に
設けられており、参照光を偏向させる偏向手段としての
機能を有している。参照ミラー5の傾斜角度を適当な値
に設定することにより、撮像面8上に形成される干渉縞
の本数、スクリーン10上の光点の間隔δを調整すること
ができる。
The reference mirror 5 is provided so as to be tiltable with respect to the optical axis, and has a function as a deflecting means for deflecting the reference light. By setting the inclination angle of the reference mirror 5 to an appropriate value, the number of interference fringes formed on the imaging surface 8 and the interval δ between light spots on the screen 10 can be adjusted.

【0013】ここで、スクリーン10上の2つの光点P1,P2
の間隔δとCCDカメラの撮像面8に形成される干渉縞の本
数nとの関係について説明する。
Here, two light spots P1, P2 on the screen 10
The relationship between the interval Δ and the number n of interference fringes formed on the imaging surface 8 of the CCD camera will be described.

【0014】n本の干渉縞を発生させるためには、光源1
を発光波長λの単色光源とし、被測定物である平面ミラ
ー4からの反射光束の径をDとすると、参照ミラー5の傾
斜による光束の傾斜角度θを次式のとおりに設定する必
要がある。
In order to generate n interference fringes, the light source 1
Is a monochromatic light source having an emission wavelength λ, and the diameter of the light beam reflected from the flat mirror 4 which is the object to be measured is D, and the inclination angle θ of the light beam due to the inclination of the reference mirror 5 needs to be set as follows: .

【0015】[0015]

【数1】θ= (nλ)/D [rad][Equation 1] θ = (nλ) / D [rad]

【0016】また、集光レンズ9の焦点距離をfとする
と、スクリーン10上の光点P1,P2の間隔δは、次式の通
りとなる。
If the focal length of the condenser lens 9 is f, the interval δ between the light points P1 and P2 on the screen 10 is as follows.

【0017】[0017]

【数2】δ= fθ= (nλf)/D## EQU2 ## δ = fθ = (nλf) / D

【0018】このように、光点の間隔δは干渉縞の本数
nの関数となり、所定の本数の干渉縞を発生させるため
の間隔δが一義的に定まるため、この間隔δを予め定め
られた干渉縞の本数に応じた設定値δ0となるよう参照
面を傾斜させることにより、n本の干渉縞をCCDカメラの
撮像面8上に形成することができる。
As described above, the interval δ between the light spots is determined by the number of interference fringes.
n is a function of n, and the interval δ for generating a predetermined number of interference fringes is uniquely determined. By doing so, n interference fringes can be formed on the imaging surface 8 of the CCD camera.

【0019】実施例1では、所定の本数nの干渉縞を発生
させるための設定値を示すために、スクリーン10上に図
2に示すような十字形の指標S1,S2が設けられている。こ
れらの指標の中心の間隔が設定値δ0であり、光点P1,P2
をそれぞれの指標の中心に一致させるよう参照ミラー5
の角度を調整することにより、CCDカメラの撮像面8上に
所定の本数の干渉縞が発生する。
In the first embodiment, in order to indicate set values for generating a predetermined number n of interference fringes,
Cross-shaped indices S1 and S2 as shown in FIG. The distance between the centers of these indices is the set value δ0, and the light spots P1 and P2
To match the center of each index
By adjusting the angle, a predetermined number of interference fringes are generated on the imaging surface 8 of the CCD camera.

【0020】なお、第2のハーフミラーは、上記の例で
は光路中に固定して設けられているが、アライメント時
のみ光路中に設定され、干渉縞の測定時には光路中から
退避するよう挿脱自在に設ける構成としてもよい。この
ような構成とすれば、測定時の光量ロスを低減し、ノイ
ズによる影響を受けにくくすることができる。更に、ミ
ラーを挿脱自在に設ける場合には、ハーフミラー6に代
えて全反射ミラーを用いてもよい。
Although the second half mirror is fixed in the optical path in the above example, it is set in the optical path only during alignment, and is inserted and removed so as to retreat from the optical path when measuring interference fringes. It is good also as a structure provided freely. With such a configuration, it is possible to reduce a light amount loss at the time of measurement and to make it less susceptible to noise. Further, when a mirror is provided so as to be freely inserted and removed, a total reflection mirror may be used instead of the half mirror 6.

【0021】[0021]

【実施例2】図3及び図4は、この発明の実施例2を示し
たものである。
Second Embodiment FIGS. 3 and 4 show a second embodiment of the present invention.

【0022】上記の実施例1では、2つの光点の位置をス
クリーン上で目視により直接確認する構成であるが、実
施例2では、光点の位置をPSD、イメージセンサ等の受光
素子により測定し、更に測定結果に基づいて被測定面と
参照面とをアクチュエータを介して駆動し、光点間隔が
所定の距離となるよう自動的に設定するよう構成してい
る。
In the first embodiment, the positions of the two light spots are directly confirmed visually on the screen. In the second embodiment, the positions of the light spots are measured by a light receiving element such as a PSD or an image sensor. The measured surface and the reference surface are driven via an actuator based on the measurement result, and the light spot interval is automatically set to a predetermined distance.

【0023】光学系の構成は実施例1とほぼ同様であ
り、図3に示すように、第2の受光面としてスクリーン10
に代えてPSD(ポジションセンシングデバイス)あるいは
イメージセンサ等の受光素子11を用いている。PSDは、
光量が最も大きい部分の座標を検出する素子であるた
め、2つの光点の座標を得るためには、各光点が集光す
る位置に1つづつ合計2つの素子が必要となる。イメージ
センサを用いる場合には1つの素子で2つの光点の座標を
検出することができる。
The configuration of the optical system is almost the same as that of the first embodiment, and as shown in FIG.
Instead, a light receiving element 11 such as a PSD (position sensing device) or an image sensor is used. PSD is
Since the element detects the coordinates of the portion where the amount of light is the largest, two elements are required at each position where each light point converges in order to obtain the coordinates of the two light points. When an image sensor is used, one element can detect the coordinates of two light spots.

【0024】受光素子11によって光点の座標情報を含む
電気信号が駆動制御回路12に入力される。駆動制御回路
12は、この情報に基づいて各ミラー4,5を駆動するアク
チュエータ13,14を制御する。
An electric signal including coordinate information of a light spot is input to the drive control circuit 12 by the light receiving element 11. Drive control circuit
The controller 12 controls the actuators 13 and 14 that drive the mirrors 4 and 5 based on the information.

【0025】図4は、干渉計による測定の手順を示すフ
ローチャートである。
FIG. 4 is a flowchart showing the procedure of measurement by the interferometer.

【0026】まず、ステップ(図中S.と記する)1におい
て、被測定面であるミラーを所定の位置に配置し、ステ
ップ2で受光素子11の出力に基づいて光点P1,P2の間隔δ
を測定する。ステップ3では、測定された間隔δが所定
の干渉縞の本数に対応する設定値δ0と等しいか否かを
判断し、等しくない場合にはステップ4でこれが等しく
なる方向にアクチュエータ13,14を制御してミラー4,5を
傾斜させ、再びステップ2において間隔δを測定する。
間隔δが設定値δ0と等しくなるまでステップ2,3,4を繰
り返し、等しくなった後にステップ5で干渉縞の解析を
開始する。
First, in step (denoted by S. in the drawing) 1, a mirror as a surface to be measured is arranged at a predetermined position, and in step 2, the distance between light points P1 and P2 is determined based on the output of light receiving element 11. δ
Is measured. In step 3, it is determined whether or not the measured interval δ is equal to a set value δ0 corresponding to the predetermined number of interference fringes, and if not, the actuators 13 and 14 are controlled in a direction in which they are equal in step 4 Then, the mirrors 4 and 5 are tilted, and the distance δ is measured again in step 2.
Steps 2, 3, and 4 are repeated until the interval Δ becomes equal to the set value Δ0. After the intervals become equal, the analysis of interference fringes is started in Step 5.

【0027】実施例2の構成によれば、干渉計のアライ
メントを自動化することができる。
According to the configuration of the second embodiment, the alignment of the interferometer can be automated.

【0028】[0028]

【実施例3】図5は、この発明の実施例3を示す。実施例
1,2は、この発明をトワイマン・グリーン型干渉計に適
用した例であるが、実施例3はこれをマッハ・ツェンダ
ー型干渉計に適用した例である。
Third Embodiment FIG. 5 shows a third embodiment of the present invention. Example
Examples 1 and 2 are examples in which the present invention is applied to a Twyman-Green interferometer, while Example 3 is an example in which this is applied to a Mach-Zehnder interferometer.

【0029】図5に示した干渉計において、光源1から発
した光束は、コリメータレンズ2により平行光束とさ
れ、第1のハーフミラー3により被測定面を持つ平行平面
板4'と参照ミラー5とに向けて分割される。平行平面板
4'を透過してミラー20で反射された被検光と参照ミラー
5で反射された参照光とは、第2のハーフミラー6に入射
する。
In the interferometer shown in FIG. 5, a light beam emitted from a light source 1 is converted into a parallel light beam by a collimator lens 2, and a parallel plate 4 'having a surface to be measured and a reference mirror 5 by a first half mirror 3. And divided into Parallel plane plate
Test light transmitted through 4 'and reflected by mirror 20 and reference mirror
The reference light reflected by 5 enters second half mirror 6.

【0030】第2のハーフミラー6を透過した参照光、及
びハーフミラー6で反射された被検光の成分は、結像レ
ンズ7を介して瞳と共役な瞳面に配置された第1の受光面
としてのCCDカメラの撮像面8に結像し、干渉縞を形成す
る。他方、ハーフミラーで反射された参照光、及びハー
フミラーを透過した被検光の成分は、集光レンズ9によ
り収束され、フーリエ面に位置する第2の受光面として
のスクリーン10上に各反射光に対応する2つの光点を形
成する。
The reference light transmitted through the second half mirror 6 and the component of the test light reflected by the half mirror 6 pass through the first pupil plane conjugate with the pupil via the imaging lens 7. An image is formed on an imaging surface 8 of a CCD camera as a light receiving surface to form interference fringes. On the other hand, the reference light reflected by the half mirror and the component of the test light transmitted through the half mirror are converged by the condenser lens 9 and are reflected on the screen 10 as the second light receiving surface located on the Fourier surface. Form two light spots corresponding to the light.

【0031】参照ミラー5は、光軸に対して傾斜自在に
設けられており、参照光を偏向させる偏向手段としての
機能を有している。参照ミラー5の傾斜角度を適当な値
に設定することにより、撮像面8上に形成される干渉縞
の本数、スクリーン10上の光点の間隔を調整することが
できる。
The reference mirror 5 is provided so as to be tiltable with respect to the optical axis, and has a function as a deflecting means for deflecting the reference light. By setting the inclination angle of the reference mirror 5 to an appropriate value, the number of interference fringes formed on the imaging surface 8 and the interval between light spots on the screen 10 can be adjusted.

【0032】なお、偏向手段としては、参照ミラー5の
他、ミラー20を回動自在に設けてもよい。
As the deflecting means, besides the reference mirror 5, a mirror 20 may be provided rotatably.

【0033】[0033]

【発明の効果】以上説明したように、この発明によれ
ば、被測定面からの被検光と参照面からの参照光とを集
光させて光点の間隔を測定することにより、干渉縞の本
数を知ることができ、干渉縞の本数を数える等の操作を
しなくとも、容易に干渉縞を所定の本数に設定すること
ができる。
As described above, according to the present invention, the interference fringes are obtained by converging the test light from the surface to be measured and the reference light from the reference surface and measuring the interval between the light spots. And the number of interference fringes can be easily set to a predetermined number without performing an operation such as counting the number of interference fringes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の構成を示す光学系の説明図であ
る。
FIG. 1 is an explanatory diagram of an optical system showing a configuration of a first embodiment.

【図2】 図1に示した装置のスクリーンを示す説明図
である。
FIG. 2 is an explanatory view showing a screen of the apparatus shown in FIG.

【図3】 実施例2の構成を示す光学系の説明図であ
る。
FIG. 3 is an explanatory diagram of an optical system showing a configuration of a second embodiment.

【図4】 実施例2の作用を示すフローチャートであ
る。
FIG. 4 is a flowchart illustrating an operation of a second embodiment.

【図5】 実施例3の構成を示す光学系の説明図であ
る。
FIG. 5 is an explanatory diagram of an optical system showing a configuration of a third embodiment.

【符号の説明】[Explanation of symbols]

1…光源 4…被測定面 5…参照面 8…撮像面(第1の受光面) 10…スクリーン(第2の受光面) 11…受光素子(第2の受光面) 1 ... Light source 4 ... Measurement surface 5 ... Reference surface 8 ... Imaging surface (first light receiving surface) 10 ... Screen (second light receiving surface) 11 ... Light receiving element (second light receiving surface)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定面からの被検光と参照面からの参
照光とにより形成される干渉縞の本数を所定の本数に調
整して測定する第1の受光手段と、 前記被検光と前記参照光とを集光させて光点を形成する
集光レンズと、 集光レンズにより形成される前記被検光に基づく光点
と前記参照光に基づく光点との2つの光点を受光する第2
の受光手段と、 前記被検光と前記参照光との少なくとも何れか一方を偏
向させる偏向手段とを有することを特徴とする干渉計。
The number of interference fringes formed by the test light from the surface to be measured and the reference light from the reference surface is adjusted to a predetermined number.
A first light receiving means for measuring and integer, based on the a condenser lens to form a light spot by focusing with said reference light and test light, the test light that is formed by the condenser lens Light spot
And a second light point that receives two light points of a light point based on the reference light .
An interferometer, comprising: a light receiving unit; and a deflecting unit that deflects at least one of the test light and the reference light.
【請求項2】 前記第2の受光手段は、前記光点を視認
できるスクリーンであり、このスクリーンは、前記2つ
の光点の間隔を所定の値とするために該光点が位置すべ
き位置に指標が設けられていることを特徴とする請求項
1に記載の干渉計。
Wherein said second light receiving means is a screen that is visible to the light spot, the screen, the two
An index is provided at a position where the light spot should be located in order to set the interval between the light spots to a predetermined value.
The interferometer according to 1.
【請求項3】 前記第2の受光手段は、前記光点の座標
を光電変換して検出する受光素子であり、この受光素子
の出力に基づいて前記2つの光点の間隔を測定し、測定
結果に基づいて前記間隔が所定の値となるよう前記偏向
手段を制御する偏向制御手段を有することを特徴とする
請求項1に記載の干渉計。
3. The second light receiving means is a light receiving element that photoelectrically converts and detects the coordinates of the light spot , and measures an interval between the two light spots based on an output of the light receiving element. 2. The interferometer according to claim 1, further comprising a deflection control unit that controls the deflection unit so that the interval has a predetermined value based on a result.
【請求項4】 干渉計の被測定面からの被検光と参照面
からの参照光とを集光させてそれぞれ2つの光点を形成
し、該2つの光点間の距離予め定められた距離となる
よう前記被検光と前記参照光との少なくともいずれか一
方を偏向させることを特徴とする干渉計のアライメント
方法。
4. The method according to claim 1, wherein the test light from the surface to be measured of the interferometer and the reference light from the reference surface are condensed to form two light spots, and the distance between the two light spots is predetermined. An alignment method for an interferometer, wherein at least one of the test light and the reference light is deflected so as to have a distance.
JP01191592A 1991-02-18 1992-01-27 Interferometer and interferometer alignment method Expired - Lifetime JP3206948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01191592A JP3206948B2 (en) 1991-02-18 1992-01-27 Interferometer and interferometer alignment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10992391 1991-02-18
JP3-109923 1991-02-18
JP01191592A JP3206948B2 (en) 1991-02-18 1992-01-27 Interferometer and interferometer alignment method

Publications (2)

Publication Number Publication Date
JPH0540012A JPH0540012A (en) 1993-02-19
JP3206948B2 true JP3206948B2 (en) 2001-09-10

Family

ID=26347445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01191592A Expired - Lifetime JP3206948B2 (en) 1991-02-18 1992-01-27 Interferometer and interferometer alignment method

Country Status (1)

Country Link
JP (1) JP3206948B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202112A (en) * 2000-11-06 2002-07-19 Fujitsu Ltd Shape measuring apparatus
JP5070370B2 (en) * 2007-05-23 2012-11-14 株式会社ジェイテック Ultraprecision shape measuring method and apparatus
JP6882651B2 (en) * 2017-01-19 2021-06-02 株式会社東京精密 Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device

Also Published As

Publication number Publication date
JPH0540012A (en) 1993-02-19

Similar Documents

Publication Publication Date Title
JP5341351B2 (en) Measuring apparatus and method based on basic principle of confocal microscope system
US6827442B2 (en) Ophthalmic wavefront measuring devices
US5841149A (en) Method of determining the distance of a feature on an object from a microscope, and a device for carrying out the method
KR101257586B1 (en) Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
JP2649088B2 (en) Positioning device for ophthalmic examination instruments
US3639041A (en) System and method for scanning the depth of the optic fundus
US6614538B1 (en) Method and apparatus for recording medical objects, in particular for recording models of prepared teeth
US6556307B1 (en) Method and apparatus for inputting three-dimensional data
US4867554A (en) Surface examining apparatus
JPH0593888A (en) Method and device for determining optical axis of off-set mirror
JPH0812127B2 (en) Curvature radius measuring device and method
JP3509088B2 (en) Optical device for three-dimensional shape measurement
JP3805791B2 (en) Method and apparatus for reducing undesirable effects of noise in three-dimensional color imaging systems
JP3206948B2 (en) Interferometer and interferometer alignment method
US6699198B2 (en) Ocular-blood-flow meter
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
JPH035810B2 (en)
JPH05317255A (en) Measuring instrument for eye to be examined
US20220187120A1 (en) Method and apparatus for interferometric vibration measurement at a plurality of a measurement points by means of a measuring laser beam
JP2911283B2 (en) Non-contact step measurement method and device
JP2839059B2 (en) 3D shape measuring device
JPH0861911A (en) Interferometer alignment device
JP3236090B2 (en) Plane azimuth measuring device, plane azimuth measuring method, and optical component inspection method
JPS6318208A (en) Apparatus for measuring surface shape
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11