JP6882651B2 - Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device - Google Patents

Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device Download PDF

Info

Publication number
JP6882651B2
JP6882651B2 JP2017007742A JP2017007742A JP6882651B2 JP 6882651 B2 JP6882651 B2 JP 6882651B2 JP 2017007742 A JP2017007742 A JP 2017007742A JP 2017007742 A JP2017007742 A JP 2017007742A JP 6882651 B2 JP6882651 B2 JP 6882651B2
Authority
JP
Japan
Prior art keywords
measured
measurement
light
axis
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017007742A
Other languages
Japanese (ja)
Other versions
JP2018115988A (en
Inventor
森井 秀樹
秀樹 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2017007742A priority Critical patent/JP6882651B2/en
Publication of JP2018115988A publication Critical patent/JP2018115988A/en
Application granted granted Critical
Publication of JP6882651B2 publication Critical patent/JP6882651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

本発明は、表面形状測定装置の測定準備アライメント方法及び表面形状測定装置に係り、特に走査型白色干渉計を用いた表面形状測定装置において、焦点調整及び測定対象物の被測定面の傾斜角度調整の測定準備を行う表面形状測定装置における測定準備アライメント方法及び表面形状測定装置に関する。 The present invention relates to a measurement preparation alignment method of a surface shape measuring device and a surface shape measuring device, and particularly in a surface shape measuring device using a scanning white interferometer, focus adjustment and inclination angle adjustment of a surface to be measured of a measurement object are adjusted. The present invention relates to a measurement preparation alignment method and a surface shape measuring device in a surface shape measuring device that prepares for measurement.

表面形状測定装置は、測定対象物の被測定面の3次元形状を測定する装置であり、走査型白色干渉計を用いたものが知られている。 The surface shape measuring device is a device that measures the three-dimensional shape of the surface to be measured of the object to be measured, and is known to use a scanning white interferometer.

走査型白色干渉計は、特許文献1に記載されているように、波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を光源として用い、マイケルソン型やミロー型などの干渉計を用いて測定対象物の被測定面の3次元形状を非接触により測定する。 As described in Patent Document 1, the scanning white interferometer uses white light having a wide wavelength width (low coherence light with low coherence) as a light source, and an interferometer such as a Michaelson type or a Millow type is used. The three-dimensional shape of the surface to be measured of the object to be measured is measured by non-contact.

特許文献1に記載のように、マイケルソン型の走査型白色干渉計は、測定対象物(試料)の被測定面に対向して配置されるマイケルソン型干渉計と、被測定面を照明する白色光を出射する白色光源と、マイケルソン型干渉計により生成された干渉光を撮影するCCDカメラ等を備える。 As described in Patent Document 1, the Michelson-type scanning white interferometer illuminates the measured surface with the Michelson-type interferometer arranged so as to face the surface to be measured of the object (sample) to be measured. It includes a white light source that emits white light, a CCD camera that captures the interference light generated by the Michelson type interferometer, and the like.

マイケルソン型干渉計は、光学顕微鏡の構成要素としての対物レンズと、対物レンズと被測定面との間に配置されるビームスプリッタと、参照ミラーとを有する。白色光源からマイケルソン干渉計に入射した白色光は、対物レンズを透過してビームスプリッタにより測定光と参照光とに分割され、測定光は被測定面に照射され、参照光は参照ミラーに照射される。そして、被測定面から戻る測定光と参照ミラーから戻る参照光とが重ね合わされて干渉光が生成され、その干渉光が対物レンズを通過してマイケルソン干渉計からCCDカメラへと出射される。 The Michaelson type interferometer has an objective lens as a component of an optical microscope, a beam splitter arranged between the objective lens and the surface to be measured, and a reference mirror. The white light incident on the Michelson interferometer from the white light source passes through the objective lens and is split into the measurement light and the reference light by the beam splitter, the measurement light is applied to the surface to be measured, and the reference light is applied to the reference mirror. Will be done. Then, the measurement light returning from the surface to be measured and the reference light returning from the reference mirror are superposed to generate interference light, and the interference light passes through the objective lens and is emitted from the Michelson interferometer to the CCD camera.

これにより、CCDカメラの撮像面には、干渉縞像が結像され、その干渉縞像が干渉縞としてCCDカメラの撮像素子により取得される。そして、マイケルソン型干渉計を被測定面に対して高さ方向に変位させながら干渉縞を取得し、干渉縞の各画素について輝度値が最大値を示すときの変位量を検出することで被測定面の各点の相対的な高さが測定される。 As a result, an interference fringe image is formed on the image pickup surface of the CCD camera, and the interference fringe image is acquired by the image sensor of the CCD camera as interference fringes. Then, the interference fringes are acquired while the Michaelson type interferometer is displaced with respect to the surface to be measured in the height direction, and the amount of displacement when the brightness value shows the maximum value for each pixel of the interference fringes is detected. The relative height of each point on the measurement surface is measured.

ところで、上述のような走査型白色干渉計において、測定前の準備作業である測定準備アライメントとして、測定対象物がステージ上に載置された後、焦点調整及び傾斜角度調整を行う。 By the way, in the scanning white interferometer as described above, as the measurement preparation alignment which is the preparatory work before the measurement, the focus adjustment and the tilt angle adjustment are performed after the measurement object is placed on the stage.

焦点調整は干渉縞が観察可能な光学系のピント位置に、測定対象物の被測定面がくるように測定走査軸を駆動するアライメントであり、傾斜角度調整は測定対象物の被測定面が水平、即ち測定光軸に対して直交するようにステージの傾斜角度を調整するアライメントである。 Focus adjustment is an alignment that drives the measurement scanning axis so that the measurement target surface of the measurement object comes to the focus position of the optical system where interference fringes can be observed, and tilt angle adjustment is the alignment in which the measurement target surface of the measurement object is horizontal. That is, it is an alignment that adjusts the tilt angle of the stage so as to be orthogonal to the measurement optical axis.

そして、表面形状測定を高速化するためには、この測定準備アライメントはできるだけ短時間で行う必要がある。 Then, in order to speed up the surface shape measurement, it is necessary to perform this measurement preparation alignment in the shortest possible time.

しかし、従来では、このような測定準備アライメントは、操作者がCCDカメラにより取得される干渉縞の状態を目視により確認しながら行っている。このため、操作者の習熟度によって調整に要する時間や、アライメントの正確度にばらつきが生じてしまうという問題があった。 However, conventionally, such measurement preparation alignment is performed while the operator visually confirms the state of the interference fringes acquired by the CCD camera. For this reason, there is a problem that the time required for adjustment and the accuracy of alignment vary depending on the proficiency level of the operator.

このため、特許文献2では、例えば傾斜角度調整のばらつき対策として、干渉縞を撮像するカメラとは別に傾斜角度調整のための専用のカメラを別途設置する方法が提案されている。 For this reason, Patent Document 2 proposes, for example, a method of separately installing a dedicated camera for adjusting the tilt angle in addition to the camera that images the interference fringes, as a countermeasure against variations in the tilt angle adjustment.

特開2013−19767号公報Japanese Unexamined Patent Publication No. 2013-19767 特開2016−136091号公報Japanese Unexamined Patent Publication No. 2016-136091

しかしながら、傾斜角度調整に専用のカメラを別途設置する方法は装置コストの増加につながるため、得策とは言えない。 However, the method of separately installing a dedicated camera for adjusting the tilt angle leads to an increase in equipment cost, and is not a good idea.

また、表面形状測定の高速化のために測定準備アライメントを短時間で行う場合、光学部での画像取得間隔(画像サンプリング間隔)を広くする必要があるが、画像取得間隔を広くすると干渉縞の探索が難しくなる。特に、測定準備アライメント前における測定対象物の被測定面が測定光軸に直交する水平面に対して微小な傾斜角度を有している場合に、干渉縞の探索が難しいという問題がある。したがって、特に、焦点調整を自動で調整する機能(オートフォーカス)を実装する装置において、被測定面が測定光軸に直交する水平面に対して微小な傾斜角度を有している場合には、干渉縞を利用してピント位置を検出することが困難であった。 In addition, when performing measurement preparation alignment in a short time in order to speed up surface shape measurement, it is necessary to widen the image acquisition interval (image sampling interval) in the optical unit, but if the image acquisition interval is widened, interference fringes will occur. Searching becomes difficult. In particular, there is a problem that it is difficult to search for interference fringes when the surface to be measured of the object to be measured before the measurement preparation alignment has a minute inclination angle with respect to the horizontal plane orthogonal to the measurement optical axis. Therefore, in particular, in a device that implements a function (autofocus) for automatically adjusting the focus adjustment, interference occurs when the surface to be measured has a minute inclination angle with respect to the horizontal plane orthogonal to the measurement optical axis. It was difficult to detect the focus position using the stripes.

本発明は、このような事情に鑑みてなされたもので、操作者の習熟度によらず、かつ装置コストの増加を招くことなく、容易、迅速、かつ正確に焦点調整及び傾斜角度調整の測定準備アライメントを行うことができ、特にオートフォーカス機構を実装した装置において有効な表面形状測定装置の測定準備アライメント方法及び表面形状測定装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and can easily, quickly, and accurately measure focus adjustment and tilt angle adjustment regardless of the proficiency level of the operator and without increasing the equipment cost. It is an object of the present invention to provide a measurement preparatory alignment method and a surface shape measuring device of a surface shape measuring device which can perform preparatory alignment and are particularly effective in a device equipped with an autofocus mechanism.

本発明の一態様に係る表面形状測定装置の測定準備アライメント方法は目的を達成するために、測定対象物を支持する支持部と、白色光を出射する光源部、光源部からの白色光を測定光と参照光とに分割して測定光を前記測定対象物の被測定面に照射するとともに参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部、及び被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得する干渉縞取得部を有する光学部と、を備え、被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部により取得される干渉縞に基づいて被測定面の各点の測定光軸方向の干渉縞位置を検出することで測定対象物の表面形状を測定する表面形状測定装置の測定準備アライメント方法であって、測定光軸に対する前記被測定面の傾斜角度を予め設定した設定傾斜角度に意図的に傾斜させる意図的傾斜工程と、設定傾斜角度に傾斜された被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部によって干渉縞を探索する干渉縞探索工程と、前記探索して得られた干渉縞から干渉縞位置を検出する干渉縞位置検出工程と、検出した干渉縞位置に前記光学部のピント位置が合うように調整する焦点調整工程と、を有する。 In the measurement preparation alignment method of the surface shape measuring device according to one aspect of the present invention, in order to achieve the object, the support portion that supports the object to be measured, the light source portion that emits white light, and the white light from the light source portion are measured. The measurement light is divided into light and reference light, and the measurement light is irradiated to the measured surface of the object to be measured, and the reference light is irradiated to the reference surface, so that the measurement light returning from the measurement surface and the reference light returning from the reference surface interfere with each other. An interference unit that generates interference light, and an optical unit that has an interference fringe acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point on the surface to be measured. The position of the interference fringes in the measurement optical axis direction of each point on the measurement surface is determined based on the interference fringes acquired by the interference fringe acquisition unit while changing the optical path length of the measurement light applied to each point on the measurement surface. This is a measurement preparation alignment method of a surface shape measuring device that measures the surface shape of an object to be measured by detecting it, and intentionally tilts the tilt angle of the surface to be measured with respect to the measurement optical axis to a preset tilt angle. The intentional tilting step, the interference fringe search step of searching for interference fringes by the interference fringe acquisition unit while changing the optical path length of the measurement light applied to each point of the surface to be measured tilted to the set tilt angle, and the search. The present invention includes an interference fringe position detecting step of detecting the interference fringe position from the interference fringes thus obtained, and a focus adjusting step of adjusting the focus position of the optical unit to match the detected interference fringe position.

本発明の態様によれば、意図的傾斜工程において、測定光軸に対する被測定面の傾斜角度を予め設定した設定傾斜角度に意図的に傾斜させた状態で、干渉縞探索工程において被測定面の各点に照射される測定光の光路長を変化させながら干渉縞を探索するようにした。これにより、干渉縞を容易、迅速、かつ正確に探索して焦点調整に必要な干渉縞位置を検出することができる。特に、測定準備アライメント前における測定対象物の被測定面が測定光軸に対して微小な傾斜角度を有している場合であっても、焦点調整に必要な干渉縞を容易、迅速、かつ正確に見つけ出すことができる。これにより、焦点調整を短時間で行うことができる。 According to the aspect of the present invention, in the intentional tilting step, the tilted angle of the surface to be measured with respect to the measurement optical axis is intentionally tilted to a preset tilting angle, and the surface to be measured is tilted in the interference fringe search step. The interference fringes are searched while changing the optical path length of the measurement light applied to each point. This makes it possible to easily, quickly and accurately search for the interference fringes and detect the position of the interference fringes required for focus adjustment. In particular, even when the surface to be measured of the object to be measured before the measurement preparation alignment has a minute inclination angle with respect to the measurement optical axis, the interference fringes required for focus adjustment can be easily, quickly and accurately. Can be found in. As a result, the focus adjustment can be performed in a short time.

また、本発明の別態様に係る表面形状測定装置の測定準備アライメント方法は目的を達成するために、測定対象物を支持する支持部と、白色光を出射する光源部、光源部からの白色光を測定光と参照光とに分割して測定光を前記測定対象物の被測定面に照射するとともに参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部、及び被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得する干渉縞取得部を有する光学部と、を備え、被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部により取得される干渉縞に基づいて被測定面の各点の測定光軸方向の干渉縞位置を検出することで測定対象物の表面形状を測定する表面形状測定装置の測定準備アライメント方法であって、測定光軸に対する被測定面の傾斜角度を予め設定された設定傾斜角度に意図的に傾斜させる意図的傾斜工程と、設定傾斜角度に傾斜された被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部によって干渉縞を探索する干渉縞探索工程と、探索して得られた干渉縞から干渉縞位置を検出する干渉縞位置検出工程と、検出した干渉縞位置から被測定面を測定光軸に対して校正するための修正角度を求め、求めた修正角度に基づいて被測定面の傾斜角度を調整する傾斜角度調整工程と、を有する。 Further, in the measurement preparation alignment method of the surface shape measuring device according to another aspect of the present invention, in order to achieve the object, a support portion that supports the object to be measured, a light source portion that emits white light, and white light from the light source portion. Is divided into a measurement light and a reference light, and the measurement light is applied to the measured surface of the object to be measured, and the reference light is irradiated to the reference surface. An interference unit that generates interference light that interferes with each other, and an optical unit that has an interference fringe acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point on the surface to be measured. , And the interference fringes in the measurement optical axis direction of each point on the measurement surface based on the interference fringes acquired by the interference fringe acquisition unit while changing the optical path length of the measurement light applied to each point on the measurement surface. This is a measurement preparation alignment method of a surface shape measuring device that measures the surface shape of an object to be measured by detecting the position, and intentionally sets the tilt angle of the surface to be measured with respect to the measurement optical axis to a preset tilt angle. An intentional tilting step of tilting, an interference fringe search step of searching for interference fringes by an interference fringe acquisition unit while changing the optical path length of the measurement light applied to each point of the surface to be measured tilted to a set tilt angle. The interference fringe position detection step of detecting the interference fringe position from the interference fringes obtained by searching, and the correction angle for calibrating the surface to be measured with respect to the measurement optical axis from the detected interference fringe position are obtained and obtained. It has an inclination angle adjusting step of adjusting the inclination angle of the surface to be measured based on the angle.

本発明の態様によれば、意図的傾斜工程において、測定光軸に対する被測定面の傾斜角度を予め設定した設定傾斜角度に意図的に傾斜させた状態で、干渉縞探索工程において被測定面の各点に照射される測定光の光路長を変化させながら干渉縞を探索するようにした。これにより、干渉縞を容易、迅速、かつ正確に探索して傾斜角度調整に必要な干渉縞位置の移動(位置の変化)を検出することができる。特に、測定準備アライメント前における測定対象物の被測定面が測定光軸に対して微小な傾斜角度を有している場合であっても、干渉縞位置の移動を検出することができる。これにより、傾斜角度調整を短時間で行うことができる。 According to the aspect of the present invention, in the intentional tilting step, the tilted angle of the surface to be measured with respect to the measurement optical axis is intentionally tilted to a preset tilting angle, and the surface to be measured is tilted in the interference fringe search step. The interference fringes are searched while changing the optical path length of the measurement light applied to each point. This makes it possible to easily, quickly, and accurately search for the interference fringes and detect the movement (change in position) of the interference fringe position required for adjusting the tilt angle. In particular, even when the surface to be measured of the object to be measured before the measurement preparation alignment has a minute inclination angle with respect to the measurement optical axis, the movement of the interference fringe position can be detected. As a result, the tilt angle can be adjusted in a short time.

また、本発明の別態様に係る表面形状測定装置の測定準備アライメント方法は目的を達成するために、測定対象物を支持する支持部と、白色光を出射する光源部、光源部からの白色光を測定光と参照光とに分割して測定光を測定対象物の被測定面に照射するとともに参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部、及び被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得する干渉縞取得部を有する光学部と、を備え、被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部により取得される干渉縞に基づいて被測定面の各点の測定光軸方向の干渉縞位置を検出することで測定対象物の表面形状を測定する表面形状測定装置の測定準備アライメント方法であって、測定光軸に対する被測定面の傾斜角度を予め設定した設定傾斜角度に意図的に傾斜させる意図的傾斜工程と、設定傾斜角度に傾斜された被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部によって干渉縞を探索する干渉縞探索工程と、探索して得られた干渉縞から干渉縞位置を検出する干渉縞位置検出工程と、検出した干渉縞位置に光学部のピント位置が合うように調整する焦点調整工程と、検出した干渉縞位置から被測定面を測定光軸に対して校正するための修正角度を求め、求めた修正角度に基づいて被測定面の傾斜角度を調整する傾斜角度調整工程と、を有する。 Further, in the measurement preparation alignment method of the surface shape measuring device according to another aspect of the present invention, in order to achieve the object, a support portion that supports the object to be measured, a light source portion that emits white light, and white light from the light source portion. Is divided into a measurement light and a reference light, and the measurement light is irradiated to the measured surface of the object to be measured, and the reference light is irradiated to the reference surface. An interference unit that generates interference light that interferes with each other, and an optical unit that has an interference fringe acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point on the surface to be measured. The interference fringe position in the measurement optical axis direction of each point on the measurement surface is based on the interference fringe acquired by the interference fringe acquisition unit while changing the optical path length of the measurement light applied to each point on the measurement surface. This is a measurement preparation alignment method of a surface shape measuring device that measures the surface shape of an object to be measured by detecting, and intentionally tilts the tilt angle of the surface to be measured with respect to the measurement optical axis to a preset tilt angle. The intentional inclination step and the interference fringe search step of searching for interference fringes by the interference fringe acquisition unit while changing the optical path length of the measurement light applied to each point of the surface to be measured inclined to the set inclination angle. The interference fringe position detection step of detecting the interference fringe position from the obtained interference fringes, the focus adjustment step of adjusting the focus position of the optical unit to the detected interference fringe position, and the measurement to be performed from the detected interference fringe position. It has an inclination angle adjusting step of obtaining a correction angle for calibrating the surface with respect to the measurement optical axis and adjusting the inclination angle of the surface to be measured based on the obtained correction angle.

本発明の態様によれば、意図的傾斜工程において、測定光軸に対する被測定面の傾斜角度を予め設定した設定傾斜角度に意図的に傾斜させた状態で、干渉縞探索工程において被測定面の各点に照射される測定光の光路長を変化させながら干渉縞を探索するようにした。これにより、干渉縞を容易、迅速、かつ正確に探索して、焦点調整に必要な干渉縞位置及び傾斜角度調整に必要な干渉縞位置の移動(位置の変化)を検出することができる。特に、測定準備アライメント前における測定対象物の被測定面が測定光軸に対して微小な傾斜角度を有している場合であっても容易、迅速、かつ正確に見つけ出すことができる。これにより、焦点調整及び傾斜角度調整を短時間で行うことができる。 According to the aspect of the present invention, in the intentional tilting step, the tilted angle of the surface to be measured with respect to the measurement optical axis is intentionally tilted to a preset tilting angle, and the surface to be measured is tilted in the interference fringe search step. The interference fringes are searched while changing the optical path length of the measurement light applied to each point. Thereby, the interference fringes can be easily, quickly and accurately searched, and the movement (change in position) of the interference fringe position required for focus adjustment and the interference fringe position required for tilt angle adjustment can be detected. In particular, even when the surface to be measured before the measurement preparation alignment has a minute inclination angle with respect to the measurement optical axis, it can be easily, quickly, and accurately found. As a result, the focus adjustment and the tilt angle adjustment can be performed in a short time.

本発明の別態様として、設定傾斜角度は、tan(θ2)=N*λ/Lの式から求めることが好ましい。ただし、θ2:設定傾斜角度、N:撮像面に観察したい干渉縞の本数、λ:測定光の中心波長、L:撮像面のx軸方向(又はy軸方向)の視野長さ、
また、本発明の別態様として、意図的傾斜工程は、被測定面のx軸方向に対する傾斜角度を予め設定された設定傾斜角度に意図的に傾斜させて干渉縞探索工程から傾斜角度調整工程までを行うx軸傾斜角度調整と、被測定面のy軸方向に対する傾斜角度を予め設定された設定傾斜角度に意図的に傾斜させて干渉縞探索工程から傾斜角度調整工程までを行うy軸傾斜角度調整と、の少なくとも一方を含むことが好ましい。
As another aspect of the present invention, it is preferable to obtain the set tilt angle from the equation of tan (θ2) = N * λ / L. However, θ2: set tilt angle, N: number of interference fringes to be observed on the imaging surface, λ: center wavelength of the measurement light, L: viewing length in the x-axis direction (or y-axis direction) of the imaging surface,
Further, as another aspect of the present invention, in the intentional tilting step, the tilting angle of the surface to be measured with respect to the x-axis direction is intentionally tilted to a preset tilting angle, from the interference fringe search step to the tilting angle adjusting step. The x-axis tilt angle adjustment and the y-axis tilt angle from the interference fringe search step to the tilt angle adjustment step by intentionally tilting the tilt angle of the surface to be measured with respect to the y-axis direction to a preset set tilt angle. It is preferable to include at least one of the adjustments.

また、本発明の別態様として、意図的傾斜工程において、被測定面のx軸とy軸とで形成される直角を2等分する2等分軸に対する傾斜角度を予め設定された設定傾斜角度に意図的に傾斜させて、干渉縞探索工程から傾斜角度調整工程までを行うことによって、x軸傾斜角度調整とy軸傾斜角度調整とを同時に行うことが好ましい。 Further, as another aspect of the present invention, in the intentional tilting step, a preset tilt angle with respect to the bisection axis that divides the right angle formed by the x-axis and the y-axis of the surface to be measured into two equal parts is set in advance. It is preferable to perform the x-axis tilt angle adjustment and the y-axis tilt angle adjustment at the same time by intentionally tilting the vehicle from the interference fringe search step to the tilt angle adjustment step.

このようにx軸傾斜角度調整とy軸傾斜角度調整とを同時に行うことができるので、測定準備アライメントに要する時間を一層短縮することができる。 Since the x-axis tilt angle adjustment and the y-axis tilt angle adjustment can be performed at the same time in this way, the time required for the measurement preparation alignment can be further shortened.

また、本発明の別態様として、意図的傾斜工程において、被測定面のx軸とy軸とで形成される直角を2等分する2等分軸に対する傾斜角度を予め設定された設定傾斜角度に意図的に傾斜させて、干渉縞探索工程から前記傾斜角度調整工程までを行うことによって、焦点調整とx軸傾斜角度調整とy軸傾斜角度調整とを同時に行うことが好ましい。 Further, as another aspect of the present invention, in the intentional tilting step, a preset tilt angle with respect to the bisection axis that divides the right angle formed by the x-axis and the y-axis of the surface to be measured into two equal parts is set in advance. It is preferable that the focus adjustment, the x-axis tilt angle adjustment, and the y-axis tilt angle adjustment are performed at the same time by intentionally tilting the vehicle from the interference fringe search step to the tilt angle adjustment step.

このように焦点調整とx軸傾斜角度調整とy軸傾斜角度調整とを同時に行うことができるので、測定準備アライメントに要する時間を更に一層短縮することができる。 Since the focus adjustment, the x-axis tilt angle adjustment, and the y-axis tilt angle adjustment can be performed at the same time in this way, the time required for the measurement preparation alignment can be further shortened.

また、本発明の一態様に係る表面形状測定装置は目的を達成するために、測定対象物を支持する支持部と、白色光を出射する光源部、光源部からの白色光を測定光と参照光とに分割して測定光を前記測定対象物の被測定面に照射するとともに参照光を参照面に照射し、被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部、及び被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得する干渉縞取得部を有する光学部と、測定光の測定光軸に対して被測定面を相対的に傾動させる傾動手段と、を備え、被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部により取得される干渉縞に基づいて被測定面の各点の測定光軸方向の干渉縞位置を検出することで測定対象物の表面形状を測定する表面形状測定装置であって、測定光軸に対する被測定面の傾斜角度を予め設定した設定傾斜角度に意図的に傾斜させる意図的傾斜動作と、設定傾斜角度に傾斜された被測定面の各点に照射される測定光の光路長を変化させながら干渉縞取得部によって干渉縞を探索する干渉縞探索動作と、探索して得られた干渉縞から干渉縞位置を検出する干渉縞位置検出動作と、検出した干渉縞位置に光学部のピント位置が合うように調整する焦点調整動作と、検出した干渉縞位置から被測定面を測定光軸に対して校正するための修正角度を求めて傾動手段を求めた修正角度分駆動して被測定面の傾斜角度を調整する傾斜角度調整動作と、の測定準備動作プログラムを制御する測定準備制御部を有する。 Further, in the surface shape measuring device according to one aspect of the present invention, in order to achieve the object, the support portion that supports the object to be measured, the light source portion that emits white light, and the white light from the light source portion are referred to as measurement light. It is divided into light and the measurement light is irradiated to the measured surface of the measurement object and the reference light is irradiated to the reference surface so that the measurement light returning from the measured surface and the reference light returning from the reference surface interfere with each other. An optical unit having an interference unit that generates interference light, an interference fringe acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point on the surface to be measured, and the measurement light. It is provided with a tilting means for tilting the surface to be measured relative to the measurement optical axis of the above, and is acquired by the interference fringe acquisition unit while changing the optical path length of the measurement light applied to each point of the surface to be measured. A surface shape measuring device that measures the surface shape of an object to be measured by detecting the position of the interference fringes in the measurement optical axis direction at each point on the surface to be measured based on the interference fringes. Interference fringe acquisition while changing the optical path length of the measurement light that is applied to each point of the surface to be measured that is tilted to the set tilt angle and the intentional tilt operation that intentionally tilts the tilt angle to the preset tilt angle. The interference fringe search operation for searching for interference fringes by the unit, the interference fringe position detection operation for detecting the interference fringe position from the interference fringes obtained by the search, and the focus position of the optical unit so as to match the detected interference fringe position. The focus adjustment operation to be adjusted and the correction angle for calibrating the surface to be measured with respect to the measurement optical axis are obtained from the detected interference fringe position. It has a tilt angle adjusting operation to be adjusted and a measurement preparation control unit for controlling a measurement preparation operation program.

本発明の態様によれば、意図的傾斜動作と、干渉縞探索動作と、渉縞位置検出動作と、焦点調整動作と、修正角度演算動作と、傾斜角度調整動作と、の測定準備動作プログラムを制御する測定準備制御部を設けた。これにより、干渉縞を容易、迅速、かつ正確に探索して、焦点調整に必要な干渉縞位置及び傾斜角度調整に必要な干渉縞位置の移動(位置の変化)を検出することができる。したがって、焦点調整及び傾斜角度調整を短時間で行うことができる。特に、測定準備アライメント前における測定対象物の被測定面が測定光軸に対して微小な傾斜角度を有している場合であっても、容易、迅速、かつ正確に見つけ出すことができる。 According to the aspect of the present invention, a measurement preparation operation program of intentional tilt operation, interference fringe search operation, cross fringe position detection operation, focus adjustment operation, correction angle calculation operation, and inclination angle adjustment operation is performed. A measurement preparation control unit for control was provided. Thereby, the interference fringes can be easily, quickly and accurately searched, and the movement (change in position) of the interference fringe position required for focus adjustment and the interference fringe position required for tilt angle adjustment can be detected. Therefore, the focus adjustment and the tilt angle adjustment can be performed in a short time. In particular, even when the surface to be measured before the measurement preparation alignment has a minute inclination angle with respect to the measurement optical axis, it can be easily, quickly, and accurately found.

本発明の表面形状測定装置の測定準備アライメント方法及び表面形状測定装置によれば、操作者の習熟度によらず、かつ装置コストの増加を招くことなく、容易、迅速、かつ正確に焦点調整及び傾斜角度調整の測定準備アライメントを行うことができる。 According to the measurement preparation alignment method and the surface shape measuring device of the surface shape measuring device of the present invention, focus adjustment and focusing can be easily, quickly and accurately performed regardless of the proficiency level of the operator and without increasing the device cost. Measurement preparation alignment for tilt angle adjustment can be performed.

特にオートフォーカス機構を実装した表面形状測定装置において有効である。 This is particularly effective in a surface shape measuring device equipped with an autofocus mechanism.

本発明の実施の形態の表面形状測定装置(走査型白色干渉計)の全体構成図Overall configuration diagram of the surface shape measuring device (scanning white interferometer) according to the embodiment of the present invention. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図The figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of an image sensor 干渉部のz位置と輝度値との関係及び干渉縞曲線を例示した図The figure which illustrated the relationship between the z position of the interference part and the luminance value, and the interference fringe curve. 被測定面の異なる点の異なるz座標値と干渉縞曲線との関係を例示した図A diagram illustrating the relationship between different z-coordinate values at different points on the surface to be measured and the interference fringe curve. 被測定面が測定光軸に対して微小角度傾斜している場合の干渉縞探索の困難性を示した図A diagram showing the difficulty of searching for interference fringes when the surface to be measured is tilted at a small angle with respect to the measurement optical axis. 測定準備アライメントの処理手順を説明するフローチャートFlow chart explaining the processing procedure of measurement preparation alignment 測定準備アライメントを説明する模式図Schematic diagram illustrating measurement preparation alignment 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、基準領域の設定例等を示した図It is a figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of an image sensor, and is the figure which showed the setting example of the reference region. 測定準備アライメントにおける被測定面の意図的な設定傾斜角度の設定方法の説明図Explanatory drawing of how to set the intentional tilt angle of the surface to be measured in the measurement preparation alignment 測定準備アライメントの焦点調整において被測定面を設定傾斜角度に意図的に傾斜した場合としない場合との干渉縞探索の違いを説明する説明図Explanatory drawing explaining the difference in the interference fringe search between the case where the surface to be measured is intentionally tilted to the set tilt angle and the case where it is not tilted in the focus adjustment of the measurement preparation alignment. 選出画素の干渉縞曲線の表示例を示した図The figure which showed the display example of the interference fringe curve of a selected pixel 撮像素子の撮像面のxy座標上の干渉縞における画素配列を示した図であり、x軸レベリング調整領域の設定例等を示した図It is a figure which showed the pixel array in the interference fringe on the xy coordinate of the image pickup surface of an image sensor, and is the figure which showed the setting example of the x-axis leveling adjustment area. 測定準備アライメントの傾斜角度調整において被測定面を設定傾斜角度に意図的に傾斜した場合としない場合との干渉縞探索の違いを説明する説明図Explanatory drawing explaining the difference in the interference fringe search between the case where the surface to be measured is intentionally tilted to the set tilt angle and the case where it is not tilted in the tilt angle adjustment of the measurement preparation alignment. x軸レベリング調整における選出画素の干渉縞曲線の表示例を示した図The figure which showed the display example of the interference fringe curve of the selected pixel in the x-axis leveling adjustment. 撮像素子の撮像面のxy座標上に干渉縞の画素配列を示した図であり、y軸レベリング調整領域の設定例等を示した図It is a figure which showed the pixel array of the interference fringe on the xy coordinate of the image pickup surface of an image sensor, and is the figure which showed the setting example of the y-axis leveling adjustment area. y軸レベリング調整における選出画素の干渉縞曲線の表示例を示した図The figure which showed the display example of the interference fringe curve of the selected pixel in the y-axis leveling adjustment. x軸レベリング調整及びy軸レベリング調整を実施した後の選出画素の干渉縞曲線の表示例を示した図The figure which showed the display example of the interference fringe curve of the selected pixel after performing the x-axis leveling adjustment and the y-axis leveling adjustment. x軸レベリング調整とy軸レベリング調整とを同時に行う場合の設定傾斜角度の設定方法を説明する説明図Explanatory drawing explaining the setting method of the setting tilt angle at the time of performing the x-axis leveling adjustment and the y-axis leveling adjustment at the same time. 表面形状測定の全体処理手順を説明するフローチャートFlow chart explaining the overall processing procedure of surface shape measurement

以下、添付図面にしたがって本発明の表面形状測定装置の測定準備アライメント方法及び表面形状測定装置の好ましい実施の形態について説明する。 Hereinafter, a measurement preparation alignment method of the surface shape measuring device of the present invention and a preferred embodiment of the surface shape measuring device will be described with reference to the accompanying drawings.

本発明は以下の好ましい実施の形態により説明される。本発明の範囲を逸脱することなく、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。 The present invention will be described in the following preferred embodiments. Changes can be made by many methods without departing from the scope of the present invention, and other embodiments other than the present embodiment can be used. Therefore, all modifications within the scope of the present invention are included in the claims.

ここで、図中、同一の記号で示される部分は、同様の機能を有する同様の要素である。また、本明細書中で、数値範囲を“ 〜 ”を用いて表す場合は、“ 〜 ”で示される上限、下限の数値も数値範囲に含むものとする。 Here, in the figure, the parts indicated by the same symbols are similar elements having the same functions. Further, in the present specification, when the numerical range is expressed by using "~", the numerical values of the upper limit and the lower limit indicated by "~" are also included in the numerical range.

[表面形状測定装置]
図1は、本発明の実施の形態の表面形状測定装置の全体構成を示した構成図である。
[Surface shape measuring device]
FIG. 1 is a configuration diagram showing the overall configuration of the surface shape measuring device according to the embodiment of the present invention.

同図における表面形状測定装置1は、マイケルソン型の干渉計を用いて測定対象物Pの表面形状等を非接触により3次元測定する所謂、マイケルソン型の走査型白色干渉計(顕微鏡)であり、測定対象物Pの干渉縞(干渉画像)を取得する光学部2と、測定対象物Pが載置されるステージ10と、光学部2の各種制御や光学部2により取得された干渉縞像に基づいて各種演算処理を行うパーソナルコンピュータ等の演算処理装置からなる処理部18等を備える。 The surface shape measuring device 1 in the figure is a so-called Michaelson type scanning white interferometer (microscope) that measures the surface shape of the object P to be measured three-dimensionally by non-contact using a Michaelson type interferometer. Yes, there is an optical unit 2 that acquires the interference fringes (interference image) of the object to be measured P, a stage 10 on which the object to be measured P is placed, various controls of the optical unit 2, and interference fringes acquired by the optical unit 2. A processing unit 18 or the like including an arithmetic processing device such as a personal computer that performs various arithmetic processes based on an image is provided.

なお、本実施の形態では、マイケルソン型の走査型白色干渉計の例で説明するが、周知のミロー型の走査型白色干渉計であってもよい。また、測定対象物Pが配置される測定空間において、互いに直交する水平方向の2つの座標軸をx軸(紙面に平行する軸)とy軸(紙面に直交する軸)とし、x軸及びy軸に直交する鉛直方向の座標軸をz軸(測定光軸方向)とする。z軸は後記する測定光軸Z−0に平行である。 In the present embodiment, the example of the Michelson type scanning white interferometer will be described, but a well-known Millow type scanning white interferometer may be used. Further, in the measurement space where the measurement object P is arranged, the two horizontal coordinate axes orthogonal to each other are set as the x-axis (axis parallel to the paper surface) and the y-axis (axis orthogonal to the paper surface), and the x-axis and y-axis are defined. The coordinate axis in the vertical direction orthogonal to is defined as the z-axis (measurement optical axis direction). The z-axis is parallel to the measurement optical axis Z-0 described later.

ステージ10は、x軸及びy軸に略平行する平坦面であって測定対象物Pを載置するステージ面10Sを有する。また、ステージ10は、ステージ面10Sの水平面に対する傾斜角度(z軸に対する傾斜角度)を変更する傾動手段35を備えており、ステージ面10S(ステージ10)は、傾動手段35により、x軸に平行なx回転軸30の周りとy軸に平行なy回転軸32の周りに回転可能に設けられる。 The stage 10 is a flat surface substantially parallel to the x-axis and the y-axis, and has a stage surface 10S on which the measurement object P is placed. Further, the stage 10 includes a tilting means 35 for changing the tilt angle (tilt angle with respect to the z-axis) of the stage surface 10S with respect to the horizontal plane, and the stage surface 10S (stage 10) is parallel to the x-axis by the tilting means 35. It is rotatably provided around the x-rotation axis 30 and around the y-rotation axis 32 parallel to the y-axis.

そして、ステージ面10Sは、xアクチュエータ34の駆動によりx回転軸30周りに回転し、yアクチュエータ36の駆動によりy回転軸32周りに回転する。このステージ面10Sのx回転軸30周りの回転及びy回転軸32周りの回転によって、後述のように測定対象物Pの上面である被測定面Sの傾斜角度を調整する。 Then, the stage surface 10S rotates around the x-rotation axis 30 by driving the x-actuator 34, and rotates around the y-rotation axis 32 by driving the y-actuator 36. The inclination angle of the surface S to be measured, which is the upper surface of the object P to be measured, is adjusted by the rotation of the stage surface 10S around the x rotation axis 30 and the rotation around the y rotation axis 32, as will be described later.

なお、xアクチュエータ34及びyアクチュエータ36のように本明細書においてアクチュエータという場合には、ピエゾアクチュエータやモータなどの任意の駆動装置を示す。 In addition, when the term "actuator" is used in the present specification as in the case of the x-actuator 34 and the y-actuator 36, it means an arbitrary driving device such as a piezo actuator or a motor.

また、ステージ10は、測定対象物Pの被測定面Sをz軸に対して校正(通常はz軸に対して直交)可能に測定対象物Pを支持する支持部であって、z軸に対する被測定面Sの傾斜角度を変更する傾動手段35を備えたものであれば、どのような形態であってもよい。一例として、1軸のゴニオ(スイベル)ステージの2台重ねした傾動手段35が考えられるが、2軸のチルトテーブルで回転中心が一致しているものが好ましい(例えば、シグマ光機製 GOHTA−120B)。なお、本実施の形態では、ステージ10は、測定対象物Pの被測定面Sをz軸に対して直交するように支持する場合で説明する。 Further, the stage 10 is a support portion that supports the measurement object P so that the surface S to be measured of the measurement object P can be calibrated with respect to the z axis (usually orthogonal to the z axis), and is with respect to the z axis. Any form may be used as long as it is provided with the tilting means 35 for changing the tilt angle of the surface S to be measured. As an example, a tilting means 35 in which two 1-axis goniometer (swivel) stages are stacked can be considered, but a 2-axis tilt table having the same rotation center is preferable (for example, GOHTA-120B manufactured by Sigma Kogyo). .. In the present embodiment, the stage 10 will be described in the case where the surface S to be measured of the object to be measured P is supported so as to be orthogonal to the z-axis.

ステージ面10Sに対向する位置、即ち、ステージ10の上側には、不図示の筐体により一体的に収容保持された光学部2が配置される。 An optical unit 2 integrally housed and held by a housing (not shown) is arranged at a position facing the stage surface 10S, that is, on the upper side of the stage 10.

光学部2は、x軸に平行な光軸Z−1を有する光源部12と、z軸に平行な光軸Z−0(以下、測定光軸Z−0と言う)を有する干渉部14及び撮影部16とを有する。光源部12の光軸Z−1は、干渉部14及び撮影部16の測定光軸Z−0に対して直交し、干渉部14と撮影部16との間において測定光軸Z−0と交差する。なお、光軸Z−1は、必ずしもx軸と平行でなくてもよい。 The optical unit 2 includes a light source unit 12 having an optical axis Z-1 parallel to the x-axis, an interference unit 14 having an optical axis Z-0 parallel to the z-axis (hereinafter referred to as a measurement optical axis Z-0), and an interference unit 14. It has a photographing unit 16. The optical axis Z-1 of the light source unit 12 is orthogonal to the measurement optical axis Z-0 of the interference unit 14 and the imaging unit 16, and intersects the measurement optical axis Z-0 between the interference unit 14 and the imaging unit 16. To do. The optical axis Z-1 does not necessarily have to be parallel to the x-axis.

光源部12は、測定対象物Pを照明する照明光として波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を出射する光源40と、光源40から拡散して出射された照明光を略平行な光束に変換するコレクタレンズ42とを有する。光源40及びコレクタレンズ42の各々の中心とする軸は光源部12の光軸Z−1として同軸上に配置される。 The light source unit 12 emits white light having a wide wavelength width (low coherence light with little coherence) as illumination light for illuminating the object P to be measured, and illumination light diffused from the light source 40 and emitted. It has a collector lens 42 that converts light into a substantially parallel light source. The central axes of the light source 40 and the collector lens 42 are coaxially arranged as the optical axis Z-1 of the light source unit 12.

また、光源40としては、発光ダイオード、半導体レーザ、ハロゲンランプ、高輝度放電ランプなど、任意の種類の発光体を用いることができる。 Further, as the light source 40, any kind of light emitting body such as a light emitting diode, a semiconductor laser, a halogen lamp, and a high-intensity discharge lamp can be used.

この光源部12から出射された照明光は、干渉部14と撮影部16との間に配置され、光軸Z−1と測定光軸Z−0とが交差する位置に配置されたハーフミラー等のビームスプリッタ44に入射する。そして、ビームスプリッタ44(ビームスプリッタ44の平坦な光分割面(反射面))で反射した照明光が光軸Z−0に沿って進行して干渉部14に入射する。 The illumination light emitted from the light source unit 12 is arranged between the interference unit 14 and the photographing unit 16, and is a half mirror or the like arranged at a position where the optical axis Z-1 and the measurement optical axis Z-0 intersect. It is incident on the beam splitter 44 of the above. Then, the illumination light reflected by the beam splitter 44 (the flat light dividing surface (reflecting surface) of the beam splitter 44) travels along the optical axis Z-0 and is incident on the interference portion 14.

干渉部14は、マイケルソン型干渉計により構成され、光源部12から入射した照明光を測定光と参照光とに分割する。そして、測定光を測定対象物Pに照射するとともに参照光を参照ミラー52に照射し、測定対象物Pから戻る測定光と参照ミラー52から戻る参照光とを干渉させた干渉光を生成する。 The interference unit 14 is composed of a Michelson type interferometer, and divides the illumination light incident from the light source unit 12 into measurement light and reference light. Then, the measurement object P is irradiated with the measurement light and the reference light is irradiated to the reference mirror 52 to generate interference light in which the measurement light returning from the measurement object P and the reference light returning from the reference mirror 52 interfere with each other.

干渉部14は、集光作用を有する対物レンズ50と、光を反射する参照面であって平坦な反射面を有する参照ミラー52と、光を分割する平坦な光分割面を有するビームスプリッタ54を有する。対物レンズ50、参照ミラー52、及びビームスプリッタ54の各々の中心とする軸は干渉部14の測定光軸Z−0として同軸上に配置される。参照ミラー52の反射面はビームスプリッタ54の側方位置に、測定光軸Z−0と平行に配置される。 The interference unit 14 includes an objective lens 50 having a condensing action, a reference mirror 52 having a reference surface for reflecting light and having a flat reflecting surface, and a beam splitter 54 having a flat light dividing surface for dividing light. Have. The central axes of the objective lens 50, the reference mirror 52, and the beam splitter 54 are coaxially arranged as the measurement optical axis Z-0 of the interference unit 14. The reflecting surface of the reference mirror 52 is arranged at a lateral position of the beam splitter 54 in parallel with the measurement optical axis Z-0.

光源部12から干渉部14に入射した照明光は、対物レンズ50により集光作用を受けた後、ビームスプリッタ54に入射する。 The illumination light incident on the interference unit 14 from the light source unit 12 is focused by the objective lens 50 and then incident on the beam splitter 54.

ビームスプリッタ54は、例えばハーフミラーであり、ビームスプリッタ54に入射した照明光は、ビームスプリッタ54を透過する測定光と、ビームスプリッタ54の光分割面で反射する参照光とに分割される。 The beam splitter 54 is, for example, a half mirror, and the illumination light incident on the beam splitter 54 is split into a measurement light that passes through the beam splitter 54 and a reference light that is reflected by the light splitting surface of the beam splitter 54.

ビームスプリッタ54を透過した測定光は、測定対象物Pの被測定面Sに照射された後、被測定面Sから干渉部14へと戻り、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54を透過した測定光が対物レンズ50に入射する。 The measurement light transmitted through the beam splitter 54 is applied to the surface S to be measured of the object P to be measured, then returns from the surface S to be measured to the interference portion 14, and is incident on the beam splitter 54 again. Then, the measurement light transmitted through the beam splitter 54 is incident on the objective lens 50.

一方、ビームスプリッタ54で反射した参照光は、参照ミラー52の光反射面で反射した後、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54で反射した参照光が対物レンズ50に入射する。 On the other hand, the reference light reflected by the beam splitter 54 is reflected by the light reflecting surface of the reference mirror 52 and then incidents on the beam splitter 54 again. Then, the reference light reflected by the beam splitter 54 is incident on the objective lens 50.

これによって、干渉部14から測定対象物Pの被測定面Sに照射されて干渉部14に戻る測定光と、参照ミラー52で反射した参照光と、が重ね合わされた干渉光が生成され、その干渉光が対物レンズ50により集光作用を受けた後、干渉部14から撮影部16に向けて出射される。 As a result, interference light is generated in which the measurement light irradiated from the interference unit 14 to the surface S of the object to be measured P and returned to the interference unit 14 and the reference light reflected by the reference mirror 52 are superimposed. After the interference light is focused by the objective lens 50, it is emitted from the interference unit 14 toward the photographing unit 16.

また、照明光が測定光と参照光とに分割された後、測定光と参照光とが重ね合わされるまでの測定光と参照光の各々が通過した光路の光学的距離を、測定光の光路長及び参照光の光路長といい、それらの差を測定光と参照光の光路長差というものとする。 Further, after the illumination light is divided into the measurement light and the reference light, the optical path of the optical path through which each of the measurement light and the reference light passes until the measurement light and the reference light are superimposed is determined by the optical path of the measurement light. The length and the optical path length of the reference light are referred to, and the difference between them is referred to as the optical path length difference between the measurement light and the reference light.

また、干渉部14は、光学部2においてz軸方向に直線移動可能に設けられる。そして、干渉部アクチュエータ56の駆動により干渉部14がz軸方向に移動する。これにより、対物レンズ50の焦点面の位置(高さ)がz軸方向に移動すると共に、被測定面Sとビームスプリッタ54との距離が変化することで測定光の光路長が変化し、測定光と参照光との光路長差が変化する。 Further, the interference unit 14 is provided in the optical unit 2 so as to be linearly movable in the z-axis direction. Then, the interference unit 14 moves in the z-axis direction by driving the interference unit actuator 56. As a result, the position (height) of the focal plane of the objective lens 50 moves in the z-axis direction, and the distance between the surface S to be measured and the beam splitter 54 changes, so that the optical path length of the measurement light changes, and the measurement is performed. The optical path length difference between the light and the reference light changes.

撮影部16は、測定対象物Pの被測定面Sの各点に照射された測定光と、参照光とによる干渉光の輝度情報から干渉縞を取得する干渉縞取得部であり、例えばCCD(Charge Coupled Device)カメラに相当し、CCD型の撮像素子60と、結像レンズ62とを有する。撮像素子60と結像レンズ62の各々の中心とする軸は撮影部16の測定光軸Z−0として同軸上に配置される。なお、撮像素子60は、CMOS(Complementary Metal Oxide Semiconductor)型の固体撮像素子等、任意の撮像手段を用いることができる。 The photographing unit 16 is an interference fringe acquisition unit that acquires interference fringes from the brightness information of the interference light due to the measurement light irradiated to each point of the measured surface S of the measurement object P and the reference light, for example, a CCD (CCD). It corresponds to a Charge Coupled Device) camera and has a CCD type image pickup element 60 and an imaging lens 62. The central axes of the image sensor 60 and the image lens 62 are coaxially arranged as the measurement optical axis Z-0 of the photographing unit 16. As the image sensor 60, any imaging means such as a CMOS (Complementary Metal Oxide Semiconductor) type solid-state image sensor can be used.

干渉部14から出射された干渉光は、上述のビームスプリッタ44に入射し、ビームスプリッタ44を透過した干渉光が撮影部16に入射する。 The interference light emitted from the interference unit 14 is incident on the beam splitter 44 described above, and the interference light transmitted through the beam splitter 44 is incident on the imaging unit 16.

撮影部16に入射した干渉光は、結像レンズ62により撮像素子60の撮像面60Sに干渉縞像を結像する。ここで、結像レンズ62は、測定対象物Pの被測定面Sの測定光軸Z−0周辺の領域に対する干渉縞像を高倍率に拡大して撮像素子60の撮像面60Sに結像する。 The interference light incident on the photographing unit 16 forms an interference fringe image on the image pickup surface 60S of the image pickup element 60 by the image pickup lens 62. Here, the imaging lens 62 magnifies the interference fringe image with respect to the region around the measurement optical axis Z-0 of the measurement surface S of the measurement object P at a high magnification and forms an image on the image pickup surface 60S of the image pickup element 60. ..

また、結像レンズ62は、干渉部14の対物レンズ50の焦点面上における点を、撮像素子60の撮像面上の像点として結像する。即ち、撮影部16は、対物レンズ50の焦点面の位置にピントが合うように(合焦するように)設計されている。 Further, the imaging lens 62 forms an image of a point on the focal plane of the objective lens 50 of the interference unit 14 as an image point on the imaging surface of the image pickup device 60. That is, the photographing unit 16 is designed so that the position of the focal plane of the objective lens 50 is in focus (focused).

なお、以下において、測定対象物Pの焦点面のz軸方向の位置を単に「ピント位置」、又は、「撮影部16のピント位置」というものとする。 In the following, the position of the focal plane of the object P to be measured in the z-axis direction is simply referred to as the "focus position" or the "focus position of the photographing unit 16".

撮像素子60の撮像面60Sに結像された干渉縞像は、撮像素子60により電気信号に変換されて干渉縞として取得される。そして、その干渉縞は、処理部18に与えられる。 The interference fringe image formed on the image pickup surface 60S of the image pickup element 60 is converted into an electric signal by the image pickup element 60 and acquired as interference fringes. Then, the interference fringes are given to the processing unit 18.

以上のように光源部12、干渉部14、及び撮影部16等により構成される光学部2は、全体が一体的としてz軸方向に直進移動可能に設けられる。例えば、光学部2は、z軸方向に沿って立設された不図示のz軸ガイド部に直進移動可能に支持される。そして、zアクチュエータ70の駆動により光学部2全体がZ軸方向に直進移動する。これにより、干渉部14をz軸方向に移動させる場合よりも、撮影部16のピント位置をz軸方向に大きく移動させることができ、例えば、測定対象物Pの厚さ等に応じて撮影部16のピント位置を適切な位置に調整することができる。 As described above, the optical unit 2 including the light source unit 12, the interference unit 14, the photographing unit 16, and the like is provided as an integral body so as to be movable in the z-axis direction in a straight line. For example, the optical unit 2 is supported by a z-axis guide unit (not shown) erected along the z-axis direction so as to be movable in a straight line. Then, the entire optical unit 2 moves linearly in the Z-axis direction by driving the z-actuator 70. As a result, the focus position of the imaging unit 16 can be moved more in the z-axis direction than when the interference unit 14 is moved in the z-axis direction. For example, the imaging unit can be moved according to the thickness of the measurement object P or the like. The focus position of 16 can be adjusted to an appropriate position.

処理部18は、測定対象物Pの被測定面Sの表面形状を測定する際に、干渉部アクチュエータ56を制御して光学部2の干渉部14をz軸方向に移動させながら撮影部16の撮像素子60から干渉縞を順次取得する。そして、取得した干渉縞に基づいて被測定面Sの3次元形状データを被測定面Sの表面形状を示すデータとして取得する。 When measuring the surface shape of the surface S to be measured of the object P to be measured, the processing unit 18 controls the interference unit actuator 56 to move the interference unit 14 of the optical unit 2 in the z-axis direction, while the processing unit 18 of the imaging unit 16 Interference fringes are sequentially acquired from the image sensor 60. Then, based on the acquired interference fringes, the three-dimensional shape data of the surface S to be measured is acquired as data indicating the surface shape of the surface S to be measured.

ここで、処理部18が干渉縞に基づいて被測定面Sの3次元形状データを取得する処理について説明する。 Here, a process in which the processing unit 18 acquires the three-dimensional shape data of the surface S to be measured based on the interference fringes will be described.

撮影部16の撮像素子60は、x軸及びy軸からなるxy平面(水平面F)に沿って2次元的に配列された多数の受光素子(画素)から構成されている。そして、各画素において受光される干渉縞の輝度値、即ち、撮像素子60により取得される干渉縞の各画素の輝度値は、各画素に対応する被測定面Sの各点で反射した測定光と参照光との光路長差に応じた干渉光の強度(輝度情報)を示す。 The image sensor 60 of the photographing unit 16 is composed of a large number of light receiving elements (pixels) two-dimensionally arranged along the xy plane (horizontal plane F) composed of the x-axis and the y-axis. Then, the brightness value of the interference fringes received by each pixel, that is, the brightness value of each pixel of the interference fringes acquired by the image pickup element 60 is the measurement light reflected at each point of the surface S to be measured corresponding to each pixel. The intensity (luminance information) of the interference light according to the difference in the optical path length between the light and the reference light is shown.

ここで、図2に示すように、撮像素子60の撮像面60Sのxy座標上の干渉縞におけるm列目、n行目の画素を(m,n)を表すものとする。そして、画素(m,n)のx軸方向に関する位置(以下、x軸方向に関する位置を「x位置」という)を示すx座標値をx(m,n)と表するものとする。そして、y軸方向に関する位置(以下、y軸方向に関する位置「y位置」という)を示すy座標値をy(m,n)と表すものとする。 Here, as shown in FIG. 2, the pixels in the m-th column and the n-th row in the interference fringes on the xy coordinates of the image pickup surface 60S of the image pickup device 60 are assumed to represent (m, n). Then, the x-coordinate value indicating the position of the pixel (m, n) in the x-axis direction (hereinafter, the position in the x-axis direction is referred to as “x position”) is expressed as x (m, n). Then, the y coordinate value indicating the position in the y-axis direction (hereinafter, referred to as the position “y position” in the y-axis direction) is expressed as y (m, n).

また、画素(m,n)に対応する測定対象物Pの被測定面S上の点のx位置を示すx座標値をX(m,n)と表し、y位置を示すy座標値をY(m,n)と表すものとし、その点をxy座標値により(X(m,n),Y(m,n))と表すものとする。なお、画素(m,n)に対応する被測定面S上の点とは、ピントが合っている状態において画素(m,n)の位置に像点が結像される被測定面S上の点を意味する。 Further, the x-coordinate value indicating the x-position of the point on the measured surface S of the measurement object P corresponding to the pixel (m, n) is represented by X (m, n), and the y-coordinate value indicating the y-position is Y. It shall be expressed as (m, n), and the point shall be expressed as (X (m, n), Y (m, n)) by the xy coordinate value. The point on the measured surface S corresponding to the pixel (m, n) is the point on the measured surface S on which the image point is formed at the position of the pixel (m, n) in the focused state. Means a point.

このとき、撮像素子60により取得される干渉縞の画素(m,n)の輝度値は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差に応じた大きさを示す。 At this time, the brightness values of the pixels (m, n) of the interference fringes acquired by the image sensor 60 are the points (X (m, n), Y (X (m, n), Y ( The magnitude corresponding to the optical path length difference between the measurement light and the reference light irradiated to m, n)) is shown.

即ち、図1の干渉部アクチュエータ56により干渉部14をz軸方向に移動させて光学部2(撮影部16)に対する干渉部14の相対的なz軸方向の位置(以下、「z位置」という)を変位させると、撮影部16のピント位置(対物レンズ50の焦点面)もz軸方向に移動し、ピント位置も干渉部14と同じ変位量で変位する。また、ピント位置が変位すると、被測定面Sの各点に照射される測定光の光路長も変化する。 That is, the interference unit 14 is moved in the z-axis direction by the interference unit actuator 56 in FIG. 1, and the position of the interference unit 14 relative to the optical unit 2 (photographing unit 16) in the z-axis direction (hereinafter referred to as “z position”). ) Is displaced, the focus position of the photographing unit 16 (the focal plane of the objective lens 50) also moves in the z-axis direction, and the focus position is also displaced by the same displacement amount as that of the interference unit 14. Further, when the focus position is displaced, the optical path length of the measurement light applied to each point of the surface S to be measured also changes.

そして、干渉部14をz軸方向に移動させてピント位置を変位させながら、即ち、測定光の光路長を変化させながら、撮像素子60から干渉縞を順次取得して干渉縞の任意の画素(m,n)の輝度値を検出する。 Then, while moving the interference unit 14 in the z-axis direction to displace the focus position, that is, while changing the optical path length of the measurement light, the interference fringes are sequentially acquired from the image sensor 60 and any pixel of the interference fringes ( The brightness value of m, n) is detected.

ここで、処理部18は、干渉部14の所定の基準位置からの変位量(干渉部14のz位置)を、ポテンショメータやエンコーダなどの不図示の位置検出手段からの検出信号により検出することができる。または、位置検出手段を使用することなく干渉部14のz位置を制御する場合、例えば、干渉部アクチュエータ56に与える駆動信号により一定変位量ずつ干渉部14を移動させる場合には、その総変位量により検出することができる。 Here, the processing unit 18 can detect the displacement amount of the interference unit 14 from a predetermined reference position (z position of the interference unit 14) by a detection signal from a position detecting means (not shown) such as a potentiometer or an encoder. it can. Alternatively, when controlling the z position of the interference unit 14 without using the position detecting means, for example, when moving the interference unit 14 by a constant displacement amount by a drive signal given to the interference unit actuator 56, the total displacement amount. Can be detected by.

そして、干渉部14が基準位置のときのピント位置のz位置を測定空間におけるz座標の基準位置(原点位置)として、かつ、干渉部14の基準位置からの変位量をピント位置のz座標値として取得することができる。なお、z座標値は、原点位置よりも高い位置(撮影部16に近づく位置)を正側、低い位置(ステージ面10Sに近づく位置)を負側とする。また、干渉部14の基準位置、即ち、z座標の原点位置は任意のz位置に設定、変更することができる。 Then, the z position of the focus position when the interference unit 14 is the reference position is set as the reference position (origin position) of the z coordinate in the measurement space, and the displacement amount of the interference unit 14 from the reference position is the z coordinate value of the focus position. Can be obtained as. The z coordinate value has a positive side at a position higher than the origin position (a position closer to the photographing unit 16) and a negative side at a lower position (a position closer to the stage surface 10S). Further, the reference position of the interference unit 14, that is, the origin position of the z coordinate can be set or changed to an arbitrary z position.

図3の(A)〜(C)は、干渉部14を測定対象物Pの被測定面Sに近接した位置からz軸方向に上昇させながら撮影部16の撮像素子60から画像を取得したときの干渉部14のz位置と輝度値との関係を示した図である。 3 (A) to 3 (C) show are when an image is acquired from the image sensor 60 of the photographing unit 16 while raising the interference unit 14 from a position close to the measured surface S of the measurement object P in the z-axis direction. It is a figure which showed the relationship between the z position of the interference part 14 and a luminance value.

図3の(A)のように、測定光の光路長L1が参照光の光路長L2よりも小さいと干渉は小さく、輝度値は略一定となる。そして、図3の(B)のように、測定光の光路長L1と参照光の光路長L2とが同じ、即ち光路長差が0となる場合に干渉が大きくなり、最も大きな輝度値を示す。さらに、図3の(C)のように、測定光の光路長L1が参照光の光路長L2よりも大きいと再び干渉は小さくなり、輝度値は略一定となる。これにより、図3の(D)に示す干渉縞曲線Qに沿った輝度値が得られる。 As shown in FIG. 3A, when the optical path length L1 of the measurement light is smaller than the optical path length L2 of the reference light, the interference is small and the brightness value is substantially constant. Then, as shown in FIG. 3B, when the optical path length L1 of the measurement light and the optical path length L2 of the reference light are the same, that is, when the optical path length difference becomes 0, the interference becomes large and the maximum luminance value is shown. .. Further, as shown in FIG. 3C, when the optical path length L1 of the measurement light is larger than the optical path length L2 of the reference light, the interference becomes small again and the luminance value becomes substantially constant. As a result, the luminance value along the interference fringe curve Q shown in FIG. 3D can be obtained.

即ち、任意の画素(m,n)における干渉縞曲線Qは、その画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差が所定値より大きい場合には略一定の輝度値を示し、光路長差がその所定値より小さいときには、光路長差が減少するにつれて輝度値が振動すると共にその振幅が大きくなる。 That is, the interference fringe curve Q at an arbitrary pixel (m, n) is located at a point (X (m, n), Y (m, n)) on the surface to be measured S corresponding to the pixel (m, n). When the optical path length difference between the irradiated measurement light and the reference light is larger than the predetermined value, a substantially constant luminance value is shown, and when the optical path length difference is smaller than the predetermined value, the luminance value increases as the optical path length difference decreases. As it vibrates, its amplitude increases.

したがって、図3(D)に示すように、干渉縞曲線Qは、測定光と参照光との光路長が一致したときに(光路長差が0のときに)、最大値を示すと共に、その干渉縞曲線Qの包絡線における最大値を示す。 Therefore, as shown in FIG. 3D, the interference fringe curve Q shows the maximum value when the optical path lengths of the measurement light and the reference light match (when the optical path length difference is 0), and the maximum value thereof is shown. The maximum value in the envelope of the interference fringe curve Q is shown.

また、被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長は、撮影部16のピント位置が被測定面S上の点(X(m,n),Y(m,n))のz位置に一致したときに一致する。 Further, the optical path length between the measurement light and the reference light applied to the points (X (m, n), Y (m, n)) on the measurement surface S is such that the focus position of the photographing unit 16 is the measurement surface S. It matches when it matches the z position of the upper point (X (m, n), Y (m, n)).

したがって、干渉縞曲線Qが最大値を示すとき(又は干渉縞曲線Qの包絡線が最大値を示すとき)のピント位置は、被測定面S上の点(X(m,n),Y(m,n))のz位置に一致しており、そのときのピント位置のz座標値は、被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。 Therefore, when the interference fringe curve Q shows the maximum value (or when the envelope of the interference fringe curve Q shows the maximum value), the focus position is the point (X (m, n), Y ( It matches the z-position of m, n)), and the z-coordinate value of the focus position at that time is the z-coordinate of the point (X (m, n), Y (m, n)) on the surface S to be measured. Indicates a value.

以上のことから、処理部18は、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に移動させながら(測定光の光路長を変化させながら)、撮像素子60から干渉縞を順次取得し、各画素(m,n)の輝度値をピント位置のz座標値に対応付けて取得する。即ち、ピント位置をz軸方向に走査しながら干渉縞の各画素(m,n)の輝度値を取得する。そして、各画素(m,n)について、図3(D)のような干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値(干渉縞位置)を、各画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値Z(m,n)として検出する。 From the above, the processing unit 18 moves the interference unit 14 in the z-axis direction by the interference unit actuator 56 to move the focus position in the z-axis direction (while changing the optical path length of the measurement light), while the image sensor Interference fringes are sequentially acquired from 60, and the luminance value of each pixel (m, n) is acquired in association with the z-coordinate value of the focus position. That is, the brightness values of each pixel (m, n) of the interference fringes are acquired while scanning the focus position in the z-axis direction. Then, for each pixel (m, n), the z coordinate value (interference fringe position) of the focus position when the brightness value of the interference fringe curve Q as shown in FIG. 3D shows the maximum value is set to each pixel (m). , N) is detected as the z-coordinate value Z (m, n) of the point (X (m, n), Y (m, n)) on the surface S to be measured.

なお、Z(m,n)は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。 Note that Z (m, n) indicates the z coordinate value of the point (X (m, n), Y (m, n)) on the measured surface S corresponding to the pixel (m, n).

また、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出する方法は周知であり、どのような方法を採用してもよい。例えば、ピント位置の微小間隔ごとのz座標値において干渉縞を取得することで、各画素(m,n)について、図3(D)のような干渉縞曲線Qを実際に描画することができる程度に輝度値を取得することができる。そして、取得した輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。 Further, a method for detecting the z-coordinate value of the focus position when the luminance value of the interference fringe curve Q indicates the maximum value is well known, and any method may be adopted. For example, by acquiring the interference fringes at the z-coordinate values for each minute interval of the focus position, it is possible to actually draw the interference fringe curve Q as shown in FIG. 3 (D) for each pixel (m, n). The brightness value can be obtained to some extent. Then, by detecting the z-coordinate value of the focus position when the acquired luminance value indicates the maximum value, the z-coordinate value of the focus position when the luminance value of the interference fringe curve Q indicates the maximum value can be detected. it can.

または、ピント位置の各z座標値において取得した輝度値に基づいて最小二乗法等により干渉縞曲線Qを推測し、又は、干渉縞曲線Qの包絡線を推測する。そして、その推測した干渉縞曲線Q又は包絡線に基づいて輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。 Alternatively, the interference fringe curve Q is estimated by the least squares method or the like based on the luminance value acquired at each z coordinate value of the focus position, or the envelope of the interference fringe curve Q is estimated. Then, by detecting the z-coordinate value of the focus position when the luminance value shows the maximum value based on the estimated interference fringe curve Q or the envelope, when the luminance value of the interference fringe curve Q shows the maximum value. The z-coordinate value of the focus position can be detected.

以上のようにして、処理部18は、干渉縞(撮像素子60の撮像面60S)の各画素(m,n)に対応する被測定面S上の各点(X(m,n),Y(m,n))のz座標値z(m,n)を検出することで、被測定面S上の各点(X(m,n),Y(m,n))の相対的な高さを検出することができる。 As described above, the processing unit 18 has each point (X (m, n), Y) on the measured surface S corresponding to each pixel (m, n) of the interference fringe (imaging surface 60S of the image sensor 60). By detecting the z-coordinate value z (m, n) of (m, n)), the relative height of each point (X (m, n), Y (m, n)) on the surface to be measured S is Can be detected.

そして、被測定面S上の各点のx座標値X(m,n)、y座標値Y(m,n)、及びz座標値Z(m,n)を被測定面Sの3次元形状データ(表面形状を示すデータ)として取得することができる。 Then, the x-coordinate values X (m, n), y-coordinate values Y (m, n), and z-coordinate values Z (m, n) of each point on the measured surface S are the three-dimensional shapes of the measured surface S. It can be acquired as data (data indicating the surface shape).

例えば、図4に示すようにx軸方向に並ぶ3つの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3が相違する場合に、ピント位置をz軸方向に走査しながら干渉縞のそれらの画素の輝度値を取得する。その結果、それらの画素の各々に関してピント位置がz座標値Z1、Z2、Z3のときに輝度値が最大値を示す干渉縞曲線Q1、Q2、Q3が取得される。したがって、それらの干渉縞曲線Q1、Q2、Q3の輝度値が最大値を示すときのピント位置のz座標値を検出することで、それらの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3を検出することができる。このようにして、被測定面Sの3次元形状データを取得することにより、測定対象物Pの表面形状測定を行う。 For example, as shown in FIG. 4, when the z-coordinate values Z1, Z2, and Z3 at three points on the measured surface S corresponding to the three pixels arranged in the x-axis direction are different, the focus position is scanned in the z-axis direction. While acquiring the brightness values of those pixels of the interference fringes. As a result, the interference fringe curves Q1, Q2, and Q3 showing the maximum luminance value when the focus position is the z coordinate values Z1, Z2, and Z3 for each of those pixels are acquired. Therefore, by detecting the z-coordinate value of the focus position when the luminance values of the interference fringe curves Q1, Q2, and Q3 show the maximum values, z at three points on the measured surface S corresponding to those pixels The coordinate values Z1, Z2, and Z3 can be detected. In this way, the surface shape of the object P to be measured is measured by acquiring the three-dimensional shape data of the surface S to be measured.

上述のように測定対象物Pの表面形状測定を行う際に、測定前の準備作業として測定準備アライメントを行う。即ち、処理部18は、測定準備として干渉縞が観察可能な位置へ光学部2全体のピント(焦点)を位置合わせする焦点調整及び測定光軸Z−0に対して測定対象物Pが直交するように角度を調整する傾斜角度調整を行う。 When measuring the surface shape of the object P to be measured as described above, measurement preparatory alignment is performed as a preparatory work before measurement. That is, in the processing unit 18, the measurement object P is orthogonal to the focus adjustment and measurement optical axis Z-0 for aligning the focus of the entire optical unit 2 to a position where interference fringes can be observed in preparation for measurement. Adjust the tilt angle so that the angle is adjusted.

測定光軸Z−0に対して測定対象物Pが直交するように角度を調整することによって、表面形状測定の際に干渉部14をz軸方向に測定走査する測定走査範囲を減少させることができるので、測定時間の短縮に寄与する。更には、測定光の反射率が向上することでS/N比を改善できるので、高精度測定が可能となる。 By adjusting the angle so that the object P to be measured is orthogonal to the measurement optical axis Z-0, it is possible to reduce the measurement scanning range in which the interference portion 14 is measured and scanned in the z-axis direction when measuring the surface shape. Since it can be done, it contributes to shortening the measurement time. Furthermore, since the S / N ratio can be improved by improving the reflectance of the measurement light, high-precision measurement becomes possible.

この測定準備アライメントはできだけ短時間で行うことが表面形状の測定効率を向上させるうえで好ましい。 It is preferable to perform this measurement preparation alignment in the shortest possible time in order to improve the measurement efficiency of the surface shape.

しかし、表面形状の測定効率を向上させるために測定準備を短時間で行うには、光学部2での画像取得間隔(画像サンプリング間隔)を広くする必要があるが、画像取得間隔を広くすると干渉縞の探索が難しくなる。特に、測定準備前における測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面に対して微小な傾斜角度θ1を有している場合(たまたま測定光軸Z−0に対して測定対象物Pの被測定面Sが直交、即ち傾斜角度θ1がゼロの場合も含む)、干渉縞の探索が難しい。 However, in order to prepare for measurement in a short time in order to improve the measurement efficiency of the surface shape, it is necessary to widen the image acquisition interval (image sampling interval) in the optical unit 2, but if the image acquisition interval is widened, interference occurs. Searching for fringes becomes difficult. In particular, when the surface S to be measured of the object to be measured P before the measurement preparation has a minute inclination angle θ1 with respect to the horizontal plane orthogonal to the measurement optical axis Z-0 (accidentally with respect to the measurement optical axis Z-0). Therefore, it is difficult to search for interference fringes when the surface S to be measured of the object to be measured P is orthogonal, that is, the inclination angle θ1 is zero).

図5の(A)は、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して微小な傾斜角度θ1を有している場合に、干渉部14を測定対象物Pの被測定面Sの近接位置からz軸方向(走査軸方向)に沿って上昇走査させながら(B)〜(E)の4枚の画像を撮像したものである。これら4枚の画像から分かるように、(C)に干渉が観察されるものの(B)、(D)、(E)では干渉が観察されない。これは、白色干渉計の場合には、焦点の合うz軸方向の範囲は非常に小さく(例えば3μm程度)、画像取得間隔(画像サンプリング間隔)を広くすると、干渉縞が出現するz軸位置が限定されるため、干渉縞を極めて探索しにくくなるためである。 In FIG. 5A, the interference portion 14 is measured when the surface S to be measured of the object P to be measured has a minute inclination angle θ1 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0. Four images (B) to (E) are captured while ascending and scanning along the z-axis direction (scanning axis direction) from a position close to the surface S to be measured of the object P. As can be seen from these four images, interference is observed in (C), but no interference is observed in (B), (D), and (E). This is because in the case of a white interferometer, the range in the z-axis direction in focus is very small (for example, about 3 μm), and when the image acquisition interval (image sampling interval) is widened, the z-axis position where interference fringes appear is This is because it is extremely difficult to search for interference fringes because of the limitation.

そこで、本発明の実施の形態の表面形状測定装置1の処理部18には、傾動手段35によって測定光軸Z−0に対する測定対象物Pの被測定面Sの傾斜角度を予め設定した設定傾斜角度θ2に意図的に傾斜させる意図的傾斜動作と、設定傾斜角度θ2に傾斜された被測定面Sの各点に照射される測定光の光路長を変化させながら撮影部16によって干渉縞を探索する干渉縞探索動作と、探索して得られた干渉縞から干渉縞位置を検出する干渉縞位置検出動作と、検出した干渉縞位置に光学部2のピント位置が合うように調整する焦点調整動作と、検出した干渉縞位置から被測定面が測定光軸に直交するための修正角度を求め、傾動手段35を求めた修正角度分駆動して被測定面の傾斜角度を調整する傾斜角度調整動作と、の測定準備動作プログラムを制御する測定準備制御部18Aが内蔵される構成とした。 Therefore, the processing unit 18 of the surface shape measuring device 1 according to the embodiment of the present invention has a set tilt angle in which the tilt angle of the surface S to be measured of the object P to be measured with respect to the measurement optical axis Z-0 is preset by the tilting means 35. The interference fringes are searched by the photographing unit 16 while changing the optical path length of the measurement light applied to each point of the measured surface S inclined to the set inclination angle θ2 and the intentional inclination operation to intentionally incline the angle θ2. Interference fringe search operation, interference fringe position detection operation that detects the interference fringe position from the interference fringes obtained by searching, and focus adjustment operation that adjusts the focus position of the optical unit 2 to the detected interference fringe position. Then, the correction angle for the surface to be measured to be orthogonal to the measurement optical axis is obtained from the detected interference fringe position, and the tilt angle adjustment operation for adjusting the tilt angle of the surface to be measured is driven by the correction angle obtained by the tilting means 35. The measurement preparation control unit 18A for controlling the measurement preparation operation program is built-in.

[測定準備アライメント方法]
次に、表面形状測定装置1の測定準備アライメント方法について説明する。
[Measurement preparation alignment method]
Next, the measurement preparation alignment method of the surface shape measuring device 1 will be described.

なお、以下において、測定準備アライメントの基本的な作業を処理部18により自動で行う自動アライメントの形態について説明する。しかし、アライメントの基本的な作業の一部又は全てを手動で行う形態とすることも可能であり、その場合については以下の説明の中で適宜説明する。 In the following, a form of automatic alignment in which the basic work of measurement preparation alignment is automatically performed by the processing unit 18 will be described. However, it is also possible to manually perform a part or all of the basic alignment work, which will be described as appropriate in the following description.

図6は、処理部18の測定準備制御部18Aによる焦点調整及び傾斜角度調整の測定準備アライメントの処理手順を示したフローチャートであるが、先ず焦点調整のアライメントから説明する。また、図7は、焦点調整及び傾斜角度調整のアライメントの主要部分を示す模式図である。 FIG. 6 is a flowchart showing the processing procedure of the measurement preparation alignment of the focus adjustment and the tilt angle adjustment by the measurement preparation control unit 18A of the processing unit 18, but the alignment of the focus adjustment will be described first. Further, FIG. 7 is a schematic view showing a main part of the alignment of the focus adjustment and the tilt angle adjustment.

なお、図7の(A)に示すように、焦点調整のアライメントを行う前の測定対象物Pの被測定面Sは光軸Z−0に直交する水平面Fに対して微小な傾斜角度θ1を有しているものとする。また、図7の(D)は傾斜角度調整のアライメントを説明する図であり、焦点調整のアライメントでは説明に使用しない。 As shown in FIG. 7A, the surface S to be measured of the measurement object P before the focus adjustment alignment has a minute inclination angle θ1 with respect to the horizontal plane F orthogonal to the optical axis Z-0. Suppose you have. Further, FIG. 7D is a diagram for explaining the alignment of the tilt angle adjustment, and is not used for the explanation in the alignment of the focus adjustment.

(焦点調整のアライメント)
測定準備制御部18Aは、図8に示すように、撮像素子60の撮像面60Sのxy座標上の干渉縞におけるピント位置合わせの基準とする基準領域100を予め設定する。即ち、光学部2に対する干渉部14のz軸方向の移動によるピント位置のz軸方向の走査範囲の中心位置にピント位置が設定されているときにピントが合うようにする被測定面Sの領域に対応する干渉縞の領域を基準領域100として設定する。この基準領域100は、後述する傾斜角度調整のアライメントの場合にも使用される。
(Focus adjustment alignment)
As shown in FIG. 8, the measurement preparation control unit 18A presets a reference region 100 as a reference for focusing alignment in the interference fringes on the xy coordinates of the image pickup surface 60S of the image pickup element 60. That is, the region of the surface S to be measured that is in focus when the focus position is set at the center position of the scanning range in the z-axis direction of the focus position due to the movement of the interference unit 14 with respect to the optical unit 2 in the z-axis direction. The region of the interference fringe corresponding to is set as the reference region 100. This reference region 100 is also used in the case of alignment for tilt angle adjustment, which will be described later.

基準領域は、本実施の形態の場合には、焦点調整の前に予め決められた領域とした。しかし、測定準備制御部18Aが図1の表示部20に表示する図8のような干渉縞(撮像素子60の撮像面60S)における画素配列の画像を参照しながら操作者が入力部22により指定するようにしてもよい。また、基準領域は、例えば、2行2列の4つの画素を含む領域というように、事前に決まった形状及び大きさに固定してもよいし、操作者が指定する場合に任意の形状及び大きさの領域を指定できるようにしてもよい。更に1画素のみを含む領域であってもよい。 In the case of the present embodiment, the reference area is a predetermined area before the focus adjustment. However, the operator designates the measurement preparation control unit 18A by the input unit 22 while referring to the image of the pixel arrangement on the interference fringe (imaging surface 60S of the image pickup device 60) as shown in FIG. 8 displayed on the display unit 20 of FIG. You may try to do it. Further, the reference area may be fixed to a predetermined shape and size, for example, an area including four pixels of 2 rows and 2 columns, or may have an arbitrary shape and size when specified by the operator. It may be possible to specify a size area. Further, it may be an area including only one pixel.

なお、基準領域と、後述する傾斜角度調整のアライメントにおけるx軸レベリング調整領域及びy軸レベリング調整領域とは、被測定面Sの傾斜角度を調整するための調整領域として干渉縞に対して設定するものとするが、調整領域に対応する被測定面S上の領域、即ち、調整領域に含まれる画素に対応する被測定面S上の点を含む領域を調整領域として設定したことに相当する。 The reference region, the x-axis leveling adjustment region and the y-axis leveling adjustment region in the alignment of the tilt angle adjustment described later are set for the interference fringes as adjustment regions for adjusting the tilt angle of the surface S to be measured. However, it corresponds to setting the region on the measured surface S corresponding to the adjustment region, that is, the region including the point on the measured surface S corresponding to the pixels included in the adjustment region as the adjustment region.

次に測定準備制御部18Aは、測定対象物P(被測定面S)を設定傾斜角度θ2に意図的に傾斜させる意図的傾斜工程を行う(ステップS10)。即ち、ステージ10のステージ面10Sに測定対象物Pが載置され、例えば、図1の入力部22により測定準備の開始が指示されると、測定準備制御部18Aは、図7の(B)に示すように、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して設定傾斜角度θ2になるように、測定対象物Pを載置しているステージ10を傾動手段35によって意図的に傾斜させる。この設定傾斜角度θ2は、上記した微小な傾斜角度θ1よりも大きい。 Next, the measurement preparation control unit 18A performs an intentional tilting step of intentionally tilting the measurement object P (measured surface S) to the set tilt angle θ2 (step S10). That is, when the measurement object P is placed on the stage surface 10S of the stage 10, and for example, when the input unit 22 of FIG. 1 instructs the start of the measurement preparation, the measurement preparation control unit 18A has the measurement preparation control unit 18A (B) of FIG. As shown in the above, the stage 10 on which the measurement object P is placed so that the measurement surface S of the measurement object P has a set inclination angle θ2 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0. Is intentionally tilted by the tilting means 35. This set tilt angle θ2 is larger than the above-mentioned minute tilt angle θ1.

設定傾斜角度θ2は、図9に示すように次式1によって求めることができる。 The set tilt angle θ2 can be obtained by the following equation 1 as shown in FIG.

tan(θ2)=N*λ/L……式1
ただし、θ2:設定傾斜角度、
N:撮像素子60の撮像面60Sに観察したい干渉縞の本数で、5〜10本の干渉縞を観察できることが好ましい。
tan (θ2) = N * λ / L …… Equation 1
However, θ2: set tilt angle,
N: It is preferable that 5 to 10 interference fringes can be observed with the number of interference fringes to be observed on the image pickup surface 60S of the image pickup device 60.

λ:測定光の中心波長、
L:撮像面60Sのx軸方向(又はy軸方向)の視野長さ、
次に、干渉部14をz軸方向に規定範囲で走査駆動開始する干渉縞探索工程を開始する(ステップS12)。即ち、図7(C)に示すように、測定準備制御部18Aは、測定対象物Pの被測定面Sを測定光軸Z−0に対して設定傾斜角度θ2に維持した状態で干渉部アクチュエータ56により光学部2の干渉部14をz軸方向に走査駆動開始する。図7(C)では、z軸方向に上昇駆動させている。これにより、焦点調整のために干渉縞を検出するための探索が開始される。
λ: Center wavelength of measurement light,
L: Field-of-view length of the imaging surface 60S in the x-axis direction (or y-axis direction),
Next, an interference fringe search step of starting scanning drive of the interference unit 14 in a predetermined range in the z-axis direction is started (step S12). That is, as shown in FIG. 7C, the measurement preparation control unit 18A maintains the measured surface S of the measurement object P at the set inclination angle θ2 with respect to the measurement optical axis Z-0, and the interference unit actuator. The interference unit 14 of the optical unit 2 is started to be scanned and driven in the z-axis direction by the 56. In FIG. 7C, the vehicle is driven upward in the z-axis direction. As a result, a search for detecting interference fringes for focus adjustment is started.

ここで、規定範囲とは、光学部2に対する干渉部14のz軸方向の移動によるピント位置のz軸方向の走査範囲をいう。 Here, the defined range refers to the scanning range of the focus position in the z-axis direction due to the movement of the interference unit 14 with respect to the optical unit 2 in the z-axis direction.

次に、干渉部14の走査駆動中に干渉縞を探索する干渉縞探索工程を行う(ステップS14)。即ち、測定準備制御部18Aは、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に走査しながら(即ち、測定光の光路長を変化させながら)撮像素子60から干渉縞を順次取得し、各画素の輝度値をピント位置のz座標値に対応付けて取得する。なお、基準領域の画素の輝度値のみを取得してもよい。 Next, an interference fringe search step of searching for interference fringes during scanning drive of the interference unit 14 is performed (step S14). That is, the measurement preparation control unit 18A moves the interference unit 14 in the z-axis direction by the interference unit actuator 56 and scans the focus position in the z-axis direction (that is, while changing the optical path length of the measurement light). Interference fringes are sequentially acquired from 60, and the brightness value of each pixel is acquired in association with the z-coordinate value of the focus position. It should be noted that only the brightness value of the pixel in the reference region may be acquired.

図10は、測定対象物Pを設定傾斜角度θ2に意図的に傾斜させるステップS10を行った場合と、ステップS10を行わなかった場合(微小な傾斜角度θ1のまま)とで、ステップS14において干渉縞の探索の容易性がどのように違うかを対比した模式図である。 FIG. 10 shows interference in step S14 between the case where the step S10 for intentionally tilting the measurement object P to the set tilt angle θ2 and the case where the step S10 is not performed (the minute tilt angle θ1 remains). It is a schematic diagram comparing how the ease of searching for fringes differs.

図10の左側の(A)の図は、ステップS10を行わずに、測定対象物Pの被測定面Sが測定光軸Z−0に対して微小な傾斜角度θ1を有している場合であり、上記図示した図5と同じである。一方、図10の右側の(B)の図は、ステップS10を行って、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して傾斜角度θ1よりも大きな設定傾斜角度θ2を有している場合である。 The figure (A) on the left side of FIG. 10 shows a case where the surface S to be measured of the measurement object P has a minute inclination angle θ1 with respect to the measurement optical axis Z-0 without performing step S10. Yes, it is the same as FIG. 5 illustrated above. On the other hand, in the figure (B) on the right side of FIG. 10, step S10 is performed, and the measured surface S of the measurement object P is larger than the inclination angle θ1 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0. This is the case when the set inclination angle θ2 is provided.

図10の(A)及び(B)ともに、干渉部14を測定対象物Pの被測定面Sの近接位置からz軸方向(測定走査軸方向)に沿って上昇走査させながら、同じ4つのz軸位置でそれぞれ画像(合計4枚)を撮像素子60の撮像面60Sに撮像したものである。 In both (A) and (B) of FIG. 10, the same four zs are scanned while the interference portion 14 is ascended and scanned along the z-axis direction (measurement scanning axis direction) from a position close to the measured surface S of the measurement object P. Images (4 images in total) are imaged on the image pickup surface 60S of the image pickup element 60 at the axial positions.

図10の(A)と(B)との対比から分かるように、ステップS10を行わない場合、画像取得間隔を広げると、図10の(A)のように干渉縞を観察できる画像(不明瞭な干渉縞の画像が1枚)が極端に減少する。 As can be seen from the comparison between (A) and (B) of FIG. 10, when step S10 is not performed, if the image acquisition interval is widened, an image in which interference fringes can be observed as shown in (A) of FIG. 10 (unclear). (One image of interference fringes) is extremely reduced.

これに対して、ステップS10を行った場合には、図10の(B)に示すように、4枚の全ての画像において干渉縞を観察することができる。 On the other hand, when step S10 is performed, interference fringes can be observed in all four images as shown in FIG. 10B.

したがって、測定対象物Pの被測定面Sを測定光軸Z−0に直交する水平面Fに対して設定傾斜角度θ2に傾斜させるステップS10を行うことによって、測定準備アライメントを短時間で行うべく画像取得間隔(画像サンプリング間隔)を広くする場合であっても干渉縞を容易に探索して焦点調整に必要な干渉縞位置を検出することができる。 Therefore, by performing step S10 in which the surface S to be measured of the object P to be measured is tilted to the set tilt angle θ2 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0, the image is prepared for measurement in a short time. Even when the acquisition interval (image sampling interval) is widened, the interference fringes can be easily searched and the interference fringe positions required for focus adjustment can be detected.

次に、探索して得られた干渉縞の干渉縞位置を検出する干渉縞位置検出工程を行う(ステップS16)。もし、干渉縞位置が検出されない場合にはステップS14に戻って干渉縞位置の検出を続ける。即ち、測定準備制御部18Aは、基準領域に含まれる画素の各々について、ピント位置のz座標値に対応付けられた輝度値に基づいて、図3(D)に示したような干渉縞曲線を取得する。また、測定準備制御部18Aは、基準領域に含まれる画素の各々について取得した干渉縞曲線に基づいて、輝度値が最大値(包絡線の最大値)を示すときのピント位置のz座標値を求める。即ち、基準領域の各画素に対応する被測定面S上の各点のz座標値を求める。そして、そのz座標値が最も大きくなる(最も突出した位置となる)1つの画素を選出する。これにより、被測定面Sに傷などの凹みが生じている場合に、その凹みの部分に対応した画素が選出されないようにすることができる。 Next, an interference fringe position detection step of detecting the interference fringe position of the interference fringes obtained by searching is performed (step S16). If the interference fringe position is not detected, the process returns to step S14 to continue the detection of the interference fringe position. That is, the measurement preparation control unit 18A creates an interference fringe curve as shown in FIG. 3D based on the luminance value associated with the z-coordinate value of the focus position for each of the pixels included in the reference region. get. Further, the measurement preparation control unit 18A determines the z-coordinate value of the focus position when the luminance value shows the maximum value (maximum value of the envelope) based on the interference fringe curve acquired for each of the pixels included in the reference region. Ask. That is, the z-coordinate value of each point on the measured surface S corresponding to each pixel in the reference region is obtained. Then, one pixel having the largest z-coordinate value (the most prominent position) is selected. As a result, when the surface S to be measured has a dent such as a scratch, the pixel corresponding to the dent portion can be prevented from being selected.

続いて、測定準備制御部18Aは、選出した画素(以下、「選出画素」という)と、その選出画素の干渉縞曲線を表示部20に表示する。例えば、図8のように基準領域100内における選出画素102を他の画素と識別可能なように配色した画素配列の画像を表示部20に表示する。また、図11のように選出画素についての干渉縞曲線をz座標値と輝度値との関係を表したグラフ上に描画した画像を表示部20に表示する。また、その干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zsと、ピント位置の走査範囲の中心位置となるz座標値Zcとが容易に把握できるように表示することが望ましい。 Subsequently, the measurement preparation control unit 18A displays the selected pixels (hereinafter, referred to as “selected pixels”) and the interference fringe curve of the selected pixels on the display unit 20. For example, as shown in FIG. 8, an image of a pixel array in which the selected pixels 102 in the reference region 100 are arranged so as to be distinguishable from other pixels is displayed on the display unit 20. Further, as shown in FIG. 11, an image in which the interference fringe curve for the selected pixel is drawn on a graph showing the relationship between the z coordinate value and the brightness value is displayed on the display unit 20. In addition, the z-coordinate value Zs of the focus position when the luminance value shows the maximum value in the interference fringe curve and the z-coordinate value Zc which is the center position of the scanning range of the focus position should be displayed so as to be easily grasped. Is desirable.

なお、オートフォーカス機構を実装した装置、即ち自動アライメントの場合には、選出画素と、選出画素の干渉縞曲線の表示部20への表示は必ずしも必要ではない。 In the case of a device equipped with an autofocus mechanism, that is, automatic alignment, it is not always necessary to display the selected pixels and the interference fringe curve of the selected pixels on the display unit 20.

そして、測定準備制御部18Aは、干渉縞位置を検出又は干渉部14の移動が規定範囲に到達したら、干渉部14の走査駆動を停止する(ステップS18)。 Then, the measurement preparation control unit 18A stops the scanning drive of the interference unit 14 when the interference fringe position is detected or the movement of the interference unit 14 reaches the specified range (step S18).

次に、検出した干渉縞位置に光学部2のピント位置を合わせる焦点調整工程を行う(ステップS20)。即ち、測定準備制御部18Aは、基準領域100の選出画素102の干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zsが、干渉部アクチュエータ56の駆動によるピント位置の走査範囲の中心位置となるz座標値Zcに一致するように、図1のzアクチュエータ70を駆動して光学部2全体をz軸方向に移動させる。換言すると、ピント位置の走査範囲の中心位置となるz位置(z座標値Zc)と、選出画素に対応する被測定面S上の点のz位置(z座標値)と、が一致するように光学部2全体のz軸方向の位置を調整する。 Next, a focus adjustment step of adjusting the focus position of the optical unit 2 to the detected interference fringe position is performed (step S20). That is, the measurement preparation control unit 18A scans the focus position by driving the interference unit actuator 56 so that the z coordinate value Zs of the focus position when the brightness value shows the maximum value in the interference fringe curve of the selected pixel 102 in the reference region 100 The z actuator 70 of FIG. 1 is driven to move the entire optical unit 2 in the z-axis direction so as to match the z coordinate value Zc which is the center position of the range. In other words, the z position (z coordinate value Zc), which is the center position of the scanning range of the focus position, and the z position (z coordinate value) of the point on the measured surface S corresponding to the selected pixel match. The position of the entire optical unit 2 in the z-axis direction is adjusted.

なお、ステップS20は、ステップS16において表示部20に表示された図11のような干渉縞曲線の表示を参照して、操作者が手動で行う形態とすることができる。例えば、操作者は、測定準備制御部18Aに対して入力部22から光学部2の移動方向を指示して干渉部アクチュエータ56を駆動して光学部2を所望量だけ移動させ、または、干渉部アクチュエータ56を駆動することなく光学部2を直接的に手動で移動させてz座標値Zsをz座標値Zcに一致させる。 Note that step S20 can be manually performed by the operator with reference to the display of the interference fringe curve as shown in FIG. 11 displayed on the display unit 20 in step S16. For example, the operator instructs the measurement preparation control unit 18A to move the optical unit 2 from the input unit 22 and drives the interference unit actuator 56 to move the optical unit 2 by a desired amount, or the interference unit. The optical unit 2 is directly and manually moved without driving the actuator 56 to match the z-coordinate value Zs with the z-coordinate value Zc.

これにより、測定準備アライメントの1つである焦点調整のアライメントが終了する。このように、測定対象物Pを設定傾斜角度θ2に意図的に傾斜させるステップS10を行うことによって、焦点調整のアライメントを操作者の習熟度によらず、かつ装置コストの増加を招くことなく、簡単、迅速、かつ正確に行うことができる。 This completes the focus adjustment alignment, which is one of the measurement preparation alignments. By performing step S10 in which the measurement object P is intentionally tilted to the set tilt angle θ2 in this way, the alignment of the focus adjustment is not dependent on the proficiency level of the operator and does not cause an increase in the device cost. It can be done easily, quickly and accurately.

また、自動アライメントの場合には、干渉部14をz軸方向(走査軸方向)に沿って走査駆動中に干渉縞を明瞭かつ確実に検出できることが重要であり、特にオートフォーカス機構を実装した装置において本発明は有効である。 Further, in the case of automatic alignment, it is important that the interference portion 14 can clearly and surely detect the interference fringes during scanning drive along the z-axis direction (scanning axis direction), and in particular, a device equipped with an autofocus mechanism. The present invention is effective in.

(傾斜角度調整のアライメント)
次に、図6のフローチャートを使って傾斜角度調整のアライメントを説明する。なお、傾斜角度調整のアライメントにおいても、図7の(A)に示すように、傾斜角度調整のアライメントを行う前の測定対象物Pの被測定面Sは光軸Z−0に直交する水平面Fに対して微小な傾斜角度θ1を有しているものとする。
(Alignment for tilt angle adjustment)
Next, the alignment of the tilt angle adjustment will be described with reference to the flowchart of FIG. In the alignment of the tilt angle adjustment, as shown in FIG. 7A, the surface S to be measured of the measurement object P before the alignment of the tilt angle adjustment is the horizontal plane F orthogonal to the optical axis Z-0. It is assumed that the tilt angle θ1 is very small.

傾斜角度調整のアライメントは、測定対象物Pの被測定面Sのx軸方向に対する傾き(y軸周りの傾斜)及び被測定面Sのy軸方向に対する傾き(x軸周りの傾斜)を無くして、被測定面Sがx軸及びy軸に対して平行となるようにx軸及びy軸をレベリング調整するアライメントである。 The alignment of the tilt angle adjustment eliminates the tilt of the surface S to be measured with respect to the x-axis direction (tilt around the y-axis) and the tilt of the surface S to be measured with respect to the y-axis direction (tilt around the x-axis). This is an alignment that adjusts the leveling of the x-axis and the y-axis so that the surface S to be measured is parallel to the x-axis and the y-axis.

傾斜角度調整のアライメントの説明として、先ずx軸レベリング調整を行い、続いてy軸レベリング調整を行う場合で説明する。 As an explanation of the alignment of the inclination angle adjustment, a case where the x-axis leveling adjustment is first performed and then the y-axis leveling adjustment is performed will be described.

測定準備制御部18Aは、図12に示すように、撮像素子60の撮像面60Sのxy座標上の干渉縞においてx軸レベリング調整の基準とするx軸レベリング調整領域110であって、焦点調整において設定した基準領域100の中心とy座標値が一致し、かつ、基準領域100とx座標値が相違するx軸レベリング調整領域110を予め設定する。 As shown in FIG. 12, the measurement preparation control unit 18A is an x-axis leveling adjustment region 110 that is a reference for x-axis leveling adjustment in the interference fringes on the xy coordinates of the image pickup surface 60S of the image pickup element 60, and is used for focus adjustment. The x-axis leveling adjustment area 110 whose y-coordinate value is the same as the center of the set reference area 100 and whose x-coordinate value is different from that of the reference area 100 is set in advance.

ただし、基準領域100の中心とx軸レベリング調整領域110の中心とが必ずしも完全に一致している必要はなく、多少のずれは許容される。即ち、基準領域100の中心とx軸レベリング調整領域110の中心とのy座標値は、一致しているとみなせる程度の所定値以下の差であればよい。 However, the center of the reference region 100 and the center of the x-axis leveling adjustment region 110 do not necessarily have to completely coincide with each other, and some deviation is allowed. That is, the y-coordinate values between the center of the reference region 100 and the center of the x-axis leveling adjustment region 110 may be a difference of a predetermined value or less that can be regarded as matching.

このx軸レベリング調整領域は、事前に決められた領域としてもよいし、測定準備制御部18Aが図12のように表示部20に表示する撮像素子60の撮像面60Sのxy座標上の干渉縞における画素配列の画像を参照しながら操作者が入力部22により指定するようにしてもよい。また、x軸レベリング調整領域は、例えば、基準領域と同じ形状及び大きさの領域としてもよいし、2行2列の4つの画素を含む領域というように、事前に決まった形状及び大きさに固定してもよいし、操作者が指定する場合に任意の形状及び大きさの領域を指定できるようにしてもよい。更に1画素のみを含む領域であってもよい。 This x-axis leveling adjustment region may be a predetermined region, or an interference fringe on the xy coordinate of the image pickup surface 60S of the image pickup element 60 displayed on the display unit 20 by the measurement preparation control unit 18A as shown in FIG. The operator may specify by the input unit 22 while referring to the image of the pixel array in. Further, the x-axis leveling adjustment region may be a region having the same shape and size as the reference region, or may have a predetermined shape and size such as a region including four pixels in 2 rows and 2 columns. It may be fixed, or a region having an arbitrary shape and size may be specified when the operator specifies it. Further, it may be an area including only one pixel.

次に、測定準備制御部18Aは、焦点調整のアライメントの場合と同様に、図6のステップS10からステップS18までを行う。なお、x軸レベリング調整では、ステップS10において、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fであってx軸方向に対する傾き(y軸周りの傾斜)が所定角度傾斜θ2になるように傾斜させる。 Next, the measurement preparation control unit 18A performs steps S10 to S18 in FIG. 6 as in the case of focus adjustment alignment. In the x-axis leveling adjustment, in step S10, the surface S to be measured of the object to be measured P is a horizontal plane F orthogonal to the measurement optical axis Z-0, and the inclination with respect to the x-axis direction (inclination around the y-axis) is predetermined. It is tilted so that the angle tilt is θ2.

かかるx軸レベリング調整においても、測定対象物Pの被測定面Sを測定光軸Z−0に直交する水平面Fに対して設定傾斜角度θ2に傾斜させるステップS10を行うことによって、光学部2での画像取得間隔(画像サンプリング間隔)を広くする場合でも干渉縞を容易に探索することができる。 Also in such x-axis leveling adjustment, the optical unit 2 performs step S10 in which the surface S to be measured of the object to be measured P is tilted to the set tilt angle θ2 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0. Interference fringes can be easily searched even when the image acquisition interval (image sampling interval) is widened.

図13は、ステップS10を行った場合と、行わなかった場合とで傾斜角度調整のために必要な干渉縞位置の移動(位置の変化)を把握する容易性がどのように違うかを対比した模式図である。 FIG. 13 compares how the ease of grasping the movement (change in position) of the interference fringe position required for adjusting the tilt angle differs between the case where step S10 is performed and the case where step S10 is not performed. It is a schematic diagram.

図13の左の(A)の図は、ステップS10を行わずに、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して微小な傾斜角度θ1を有している場合である。一方、図13の右の(B)の図は、ステップS10を行って、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して傾斜角度θ1よりも大きな設定傾斜角度θ2を有している場合である。 The figure (A) on the left of FIG. 13 has a minute inclination angle θ1 with respect to the horizontal plane F in which the surface S to be measured of the object to be measured P is orthogonal to the measurement optical axis Z-0 without performing step S10. If you are. On the other hand, in the figure (B) on the right side of FIG. 13, step S10 is performed, and the measured surface S of the measurement object P is larger than the inclination angle θ1 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0. This is the case when the set inclination angle θ2 is provided.

図13(A)及び(B)ともに、干渉部14を測定対象物Pの被測定面Sの近接位置からz軸方向(走査軸方向)に沿って上昇走査させながら、同じ4つのz軸位置でそれぞれ画像(合計4枚)を撮像素子60の撮像面60Sに撮像したものである。 In both FIGS. 13A and 13B, the same four z-axis positions are scanned while the interference portion 14 is ascended along the z-axis direction (scanning axis direction) from a position close to the measured surface S of the measurement object P. Each image (4 images in total) was imaged on the image pickup surface 60S of the image pickup element 60.

図13の(A)及び(B)の対比から分かるように、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して微小な傾斜角度θ1を有している場合、画像取得間隔を広げると、図12の(A)のように4枚の画像から傾斜角度調整に必要な干渉縞位置の移動(位置の変化)を把握することが難しい。 As can be seen from the comparison of (A) and (B) of FIG. 13, the surface S to be measured of the object to be measured P has a minute inclination angle θ1 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0. If the image acquisition interval is widened, it is difficult to grasp the movement (change in position) of the interference fringe position required for adjusting the tilt angle from the four images as shown in FIG. 12A.

これに対して、ステップS10を行って測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して傾斜角度θ1よりも大きな設定傾斜角度θ2を有している場合には、図13の(B)に示すように、4枚の画像から傾斜角度調整に必要な干渉縞位置の移動(位置の変化)を容易に把握することができる。 On the other hand, when step S10 is performed and the surface S to be measured of the object P to be measured has a set inclination angle θ2 larger than the inclination angle θ1 with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0. As shown in FIG. 13B, the movement (change in position) of the interference fringe position required for adjusting the tilt angle can be easily grasped from the four images.

したがって、ステップS10を行うことによって、傾斜角度調整を短時間で行うために光学部2での画像取得間隔(画像サンプリング間隔)を広くする場合でも、干渉縞を容易、迅速、且つ正確に探索して傾斜角度調整に必要な干渉縞位置の移動(位置の変化)を検出することができる。 Therefore, by performing step S10, interference fringes can be easily, quickly, and accurately searched even when the image acquisition interval (image sampling interval) in the optical unit 2 is widened in order to adjust the tilt angle in a short time. It is possible to detect the movement (change in position) of the interference fringe position required for adjusting the tilt angle.

次に、検出した干渉縞位置から測定対象物Pの被測定面Sがz軸方向に直交するように調整する傾斜角度調整工程を行う(ステップS20)。即ち、測定準備制御部18Aは、基準領域に含まれる画素の各々、及び、x軸レベリング調整領域に含まれる画素の各々について、ピント位置のz座標値に対応付けられた輝度値に基づいて、図3の(D)に示したような干渉縞曲線を取得する。次に、測定準備制御部18Aは、基準領域に含まれる画素の各々、及び、x軸レベリング調整領域の画素の各々について取得した干渉縞曲線に基づいて、輝度値が最大値(包絡線の最大値)を示すときのピント位置のz座標値を求める。即ち、基準領域100の各画素とx軸レベリング調整領域110の各画素に対応する被測定面S上の各点のz座標値を求める。そして、基準領域100においてそのz座標値が最も大きくなる(最も突出した位置となる)1つの画素と、x軸レベリング調整領域110においてそのz座標値が最も大きくなる(最も突出した位置となる)1つの画素を選出画素として選出する。 Next, an inclination angle adjusting step of adjusting the measured surface S of the object to be measured P so as to be orthogonal to the z-axis direction from the detected interference fringe position is performed (step S20). That is, the measurement preparation control unit 18A has, for each of the pixels included in the reference region and each of the pixels included in the x-axis leveling adjustment region, based on the luminance value associated with the z-coordinate value of the focus position. The interference fringe curve as shown in FIG. 3D is acquired. Next, the measurement preparation control unit 18A has a maximum luminance value (maximum envelope) based on the interference fringe curve acquired for each of the pixels included in the reference region and each of the pixels in the x-axis leveling adjustment region. The z-coordinate value of the focus position when indicating the value) is obtained. That is, the z-coordinate value of each point on the measured surface S corresponding to each pixel of the reference region 100 and each pixel of the x-axis leveling adjustment region 110 is obtained. Then, one pixel having the largest z-coordinate value (which is the most protruding position) in the reference region 100 and the one pixel having the largest z-coordinate value (which is the most protruding position) in the x-axis leveling adjustment region 110. One pixel is elected as the elected pixel.

次に、測定準備制御部18Aは、基準領域100から選出した選出画素と、x軸レベリング調整領域110から選出した選出画素と、それらの選出画素の干渉縞曲線を表示部20に表示する。例えば、図12のように基準領域100の選出画素102とx軸レベリング調整領域110の選出画素112とを他の画素と識別可能なように配色した画素配列の画像を表示部20に表示する。また、図14のように基準領域100の選出画素102についての干渉縞曲線とx軸レベリング調整領域110の選出画素112についての干渉縞曲線をz座標値と輝度値との関係を表したグラフ上に描画した画像を表示部20に表示する。また、それらの干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zs、Zs1と、ピント位置の走査範囲の中心位置となるz座標値Zcとが容易に把握できるように表示することが望ましい。 Next, the measurement preparation control unit 18A displays the selected pixels selected from the reference region 100, the selected pixels selected from the x-axis leveling adjustment region 110, and the interference fringe curves of those selected pixels on the display unit 20. For example, as shown in FIG. 12, an image of a pixel array in which the selected pixels 102 in the reference region 100 and the selected pixels 112 in the x-axis leveling adjustment region 110 are arranged so as to be distinguishable from other pixels is displayed on the display unit 20. Further, as shown in FIG. 14, the interference fringe curve for the selected pixel 102 in the reference region 100 and the interference fringe curve for the selected pixel 112 in the x-axis leveling adjustment region 110 are shown on a graph showing the relationship between the z coordinate value and the brightness value. The image drawn in 1 is displayed on the display unit 20. Further, in those interference fringe curves, the z-coordinate values Zs and Zs1 of the focus position when the luminance value shows the maximum value and the z-coordinate value Zc which is the center position of the scanning range of the focus position can be easily grasped. It is desirable to display.

なお、自動アライメントの場合には、選出画素と、選出画素の干渉縞曲線の表示部20への表示は必ずしも必要ではない。 In the case of automatic alignment, it is not always necessary to display the selected pixels and the interference fringe curve of the selected pixels on the display unit 20.

次に、測定準備制御部18Aは、基準領域100の選出画素102の干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zsと、x軸レベリング調整領域110の選出画素112の干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zs1とが一致するように、図1のyアクチュエータ36を駆動してステージ10のステージ面10Sをy回転軸32の周りに回転させる。即ち、基準領域100の選出画素102に対応する被測定面S上の点のz位置(z座標値Zs)と、x軸レベリング調整領域110の選出画素112に対応する被測定面S上の点のz位置(z座標値Zs1)とが一致するようにステージ面10Sをy回転軸32の周りに回転させる(図7の(D)参照)。 Next, the measurement preparation control unit 18A determines the z-coordinate value Zs of the focus position when the luminance value shows the maximum value in the interference fringe curve of the selected pixel 102 of the reference region 100, and the selected pixel 112 of the x-axis leveling adjustment region 110. The y-operator 36 of FIG. 1 is driven to move the stage surface 10S of the stage 10 to the y-rotation axis 32 so that the z-coordinate value Zs1 of the focus position when the luminance value shows the maximum value in the interference fringe curve of FIG. Rotate around. That is, the z position (z coordinate value Zs) of the point on the measured surface S corresponding to the selected pixel 102 in the reference region 100 and the point on the measured surface S corresponding to the selected pixel 112 in the x-axis leveling adjustment region 110. The stage surface 10S is rotated around the y rotation axis 32 so as to coincide with the z position (z coordinate value Zs1) of (see FIG. 7D).

ここで、z座標値Zsとz座標値Zs1との差と、基準領域100の選出画素102とx軸レベリング調整領域110の選出画素112の各々からy回転軸32までのx軸方向の距離と、に基づいてステージ面10Sのy回転軸32周りの回転量を調整することでz座標値Zsとz座標値Zs1とを一致させることができる。これによって、被測定面Sがx軸に対して平行となり、x軸レベリング調整が終了する。 Here, the difference between the z-coordinate value Zs and the z-coordinate value Zs1 and the distance in the x-axis direction from each of the selected pixels 102 in the reference region 100 and the selected pixels 112 in the x-axis leveling adjustment region 110 to the y-rotation axis 32. By adjusting the amount of rotation of the stage surface 10S around the y-rotation axis 32 based on the above, the z-coordinate value Zs and the z-coordinate value Zs1 can be matched. As a result, the surface S to be measured becomes parallel to the x-axis, and the x-axis leveling adjustment is completed.

なお、ステップS20は、表示部20に表示された図14のような干渉縞曲線の表示を参照して、上述と同様に操作者が手動で行う形態とすることができる。 Note that step S20 can be manually performed by the operator in the same manner as described above with reference to the display of the interference fringe curve as shown in FIG. 14 displayed on the display unit 20.

続いて、y軸レベリング調整について説明する。 Subsequently, the y-axis leveling adjustment will be described.

測定準備制御部18Aは、図15に示すように干渉縞(撮像素子60の撮像面)においてy軸レベリング調整の基準とするy軸レベリング調整領域120であって、上記設定した基準領域100の中心と、上記設定したx軸レベリング調整領域の中心とに対して少なくともy座標値が相違する中心を有するy軸レベリング調整領域120を設定する。このy軸レベリング調整領域は、事前に決められた領域、たとえば、基準領域の中心とx軸レベリング調整領域の中心とy軸レベリング調整領域の中心とが正三角形の頂点となるような領域としてもよいし、測定準備制御部18Aが図15のように表示部20に表示する干渉縞(撮像素子60の撮像面)における画素配列の画像を参照しながら操作者が入力部22により指定するようにしてもよい。また、y軸レベリング調整領域は、例えば、基準領域と同じ形状及び大きさの領域としてもよいし、2行2列の4つの画素を含む領域というように、事前に決まった形状及び大きさに固定してもよいし、操作者が指定する場合に任意の形状及び大きさの領域を指定できるようにしてもよい。更に1画素のみを含む領域であってもよい。 As shown in FIG. 15, the measurement preparation control unit 18A is a y-axis leveling adjustment region 120 as a reference for y-axis leveling adjustment in the interference fringe (imaging surface of the image sensor 60), and is the center of the set reference region 100. And the y-axis leveling adjustment region 120 having a center whose y-coordinate value is at least different from the center of the x-axis leveling adjustment region set above are set. This y-axis leveling adjustment region may be a predetermined region, for example, a region in which the center of the reference region, the center of the x-axis leveling adjustment region, and the center of the y-axis leveling adjustment region are the vertices of an equilateral triangle. Alternatively, the operator may specify by the input unit 22 while referring to the image of the pixel arrangement on the interference fringes (imaging surface of the imaging element 60) displayed on the display unit 20 by the measurement preparation control unit 18A as shown in FIG. You may. Further, the y-axis leveling adjustment region may be a region having the same shape and size as the reference region, or may have a predetermined shape and size such as a region including four pixels in 2 rows and 2 columns. It may be fixed, or a region having an arbitrary shape and size may be specified when the operator specifies it. Further, it may be an area including only one pixel.

次に、測定準備制御部18Aは、x軸レベリング調整の場合と同様に、図6のステップS10からステップS18までを行う。なお、y軸レベリング調整では、ステップS10において、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fであってy軸方向に対する傾き(x軸周りの傾斜)が所定角度傾斜θ2になるように傾斜させる。 Next, the measurement preparation control unit 18A performs steps S10 to S18 in FIG. 6 as in the case of the x-axis leveling adjustment. In the y-axis leveling adjustment, in step S10, the surface S to be measured of the object to be measured P is a horizontal plane F orthogonal to the measurement optical axis Z-0, and the inclination with respect to the y-axis direction (inclination around the x-axis) is predetermined. It is tilted so that the angle tilt is θ2.

かかるy軸レベリング調整においても図13で示したx軸レベリング調整のときと同様に、測定対象物Pの被測定面Sを測定光軸Z−0に直交する水平面Fに対して設定傾斜角度θ2に傾斜させるステップS10を行うことによって、光学部2での画像取得間隔(画像サンプリング間隔)を広くする場合でも干渉縞を容易に探索して干渉縞位置の移動を明瞭に把握することができる。 In the y-axis leveling adjustment as well, as in the case of the x-axis leveling adjustment shown in FIG. 13, the set inclination angle θ2 is set with respect to the horizontal plane F orthogonal to the measurement optical axis Z-0 with respect to the surface S to be measured of the measurement object P. By performing step S10 inclining to, the interference fringes can be easily searched and the movement of the interference fringe position can be clearly grasped even when the image acquisition interval (image sampling interval) in the optical unit 2 is widened.

次に、検出した干渉縞位置から測定対象物Pの被測定面Sがz軸方向に直交するように調整する傾斜角度調整工程を行う(ステップS20)。即ち、測定準備制御部18Aは、基準領域に含まれる画素の各々、x軸レベリング調整領域に含まれる画素の各々、及びy軸レベリング調整領域に含まれる画素の各々について、ピント位置のz座標値に対応付けられた輝度値に基づいて、図3の(D)に示したような干渉縞曲線を取得する。 Next, an inclination angle adjusting step of adjusting the measured surface S of the object to be measured P so as to be orthogonal to the z-axis direction from the detected interference fringe position is performed (step S20). That is, the measurement preparation control unit 18A has the z-coordinate value of the focus position for each of the pixels included in the reference region, each of the pixels included in the x-axis leveling adjustment region, and each of the pixels included in the y-axis leveling adjustment region. Based on the luminance value associated with, the interference fringe curve as shown in FIG. 3D is acquired.

次に、測定準備制御部18Aは、基準領域に含まれる画素の各々、x軸レベリング調整領域の画素の各々、及び、y軸レベリング調整領域の画素の各々について取得した干渉縞曲線に基づいて、輝度値が最大値(包絡線の最大値)を示すときのピント位置のz座標値を求める。即ち、基準領域の各画素とx軸レベリング調整領域の各画素とy軸レベリング調整領域の各画素に対応する被測定面S上の各点のz座標値を求める。 Next, the measurement preparation control unit 18A is based on the interference fringe curve acquired for each of the pixels included in the reference region, each of the pixels in the x-axis leveling adjustment region, and each of the pixels in the y-axis leveling adjustment region. The z-coordinate value of the focus position when the luminance value indicates the maximum value (maximum value of the envelope) is obtained. That is, the z-coordinate value of each point on the measured surface S corresponding to each pixel in the reference region, each pixel in the x-axis leveling adjustment region, and each pixel in the y-axis leveling adjustment region is obtained.

そして、基準領域においてそのz座標値が最も大きくなる(最も突出した位置となる)1つの画素と、x軸レベリング調整領域においてそのz座標値が最も大きくなる(最も突出した位置となる)1つの画素と、y軸レベリング調整領域においてそのz座標値が最も大きくなる(最も突出した位置となる)1つの画素を選出画素として選出する。 Then, one pixel having the largest z-coordinate value (the most prominent position) in the reference region and one pixel having the largest z-coordinate value (the most prominent position) in the x-axis leveling adjustment region. A pixel and one pixel having the largest z-coordinate value (the most prominent position) in the y-axis leveling adjustment region are selected as selected pixels.

次に、測定準備制御部18Aは、基準領域から選出した選出画素と、x軸レベリング調整領域から選出した選出画素と、y軸レベリング調整領域から選出した選出画素と、それらの選出画素の干渉縞曲線を表示部20に表示する。例えば、図15のように基準領域100の選出画素102とx軸レベリング調整領域110の選出画素112とy軸レベリング調整領域120の選出画素122と、を他の画素と識別可能なように配色した画素配列の画像を表示部20に表示する。また、図16のように基準領域の選出画素についての干渉縞曲線とx軸レベリング調整領域の選出画素についての干渉縞曲線とy軸レベリング調整領域の選出画素についての干渉縞曲線とをz座標値と輝度値との関係を表したグラフ上に描画した画像を表示部20に表示する。また、それらの干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zs、Zs1、Zs2と、ピント位置の走査範囲の中心位置となるz座標値Zcとが容易に把握できるように表示することが望ましい。 Next, the measurement preparation control unit 18A includes selected pixels selected from the reference region, selected pixels selected from the x-axis leveling adjustment region, selected pixels selected from the y-axis leveling adjustment region, and interference fringes of those selected pixels. The curve is displayed on the display unit 20. For example, as shown in FIG. 15, the selected pixels 102 in the reference area 100, the selected pixels 112 in the x-axis leveling adjustment area 110, and the selected pixels 122 in the y-axis leveling adjustment area 120 are colored so as to be distinguishable from other pixels. The image of the pixel arrangement is displayed on the display unit 20. Further, as shown in FIG. 16, the z-coordinate value of the interference fringe curve for the selected pixel in the reference region, the interference fringe curve for the selected pixel in the x-axis leveling adjustment region, and the interference fringe curve for the selected pixel in the y-axis leveling adjustment region are The image drawn on the graph showing the relationship between the brightness value and the brightness value is displayed on the display unit 20. Further, the z-coordinate values Zs, Zs1 and Zs2 of the focus position when the luminance value shows the maximum value in those interference fringe curves and the z-coordinate value Zc which is the center position of the scanning range of the focus position can be easily grasped. It is desirable to display as.

なお、自動アライメントの場合には、選出画素と、選出画素の干渉縞曲線の表示部20への表示は必ずしも必要ではない。 In the case of automatic alignment, it is not always necessary to display the selected pixels and the interference fringe curve of the selected pixels on the display unit 20.

次に、図17に示すように、測定準備制御部18Aは、基準領域の選出画素の干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zs、又は、x軸レベリング調整領域の選出画素の干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zs1と、y軸レベリング調整領域の選出画素の干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値Zs2とが一致するように、図1のxアクチュエータ34を駆動してステージ10のステージ面10Sをx回転軸30の周りに回転させる(図7の(D)参照)。 Next, as shown in FIG. 17, the measurement preparation control unit 18A adjusts the z-coordinate value Zs of the focus position when the brightness value shows the maximum value in the interference fringe curve of the selected pixel in the reference region, or the x-axis leveling adjustment. The z-coordinate value Zs1 of the focus position when the brightness value shows the maximum value in the interference fringe curve of the selected pixel in the area, and the focus when the brightness value shows the maximum value in the interference fringe curve of the selected pixel in the y-axis leveling adjustment area. The x actuator 34 of FIG. 1 is driven to rotate the stage surface 10S of the stage 10 around the x rotation axis 30 so that the z coordinate value Zs2 of the position matches (see (D) of FIG. 7).

即ち、基準領域の選出画素に対応する被測定面S上の点のz位置(z座標値Zs)と、y軸レベリング調整領域の選出画素に対応する被測定面S上の点のz位置(z座標値Zs2)とが一致するようにステージ面10Sをx回転軸30の周りに回転させる。 That is, the z position (z coordinate value Zs) of the point on the measured surface S corresponding to the selected pixel in the reference region and the z position of the point on the measured surface S corresponding to the selected pixel in the y-axis leveling adjustment region (z position). The stage surface 10S is rotated around the x rotation axis 30 so as to coincide with the z coordinate value Zs2).

ここで、z座標値Zs又はz座標値Zs1と、z座標値Zs2との差と、基準領域の選出画素又はx軸レベリング調整領域の選出画素とy軸レベリング調整領域の選出画素の各々からx回転軸30までのy軸方向の距離とに基づいてステージ面10Sのx回転軸30周りの回転量を調整することでz座標値Zs又はz座標値Zs1と、z座標値Zs2とを一致させることができる。これによって、被測定面Sがy軸に対して平行となり、y軸レベリング調整が終了する。 Here, x from each of the difference between the z-coordinate value Zs or the z-coordinate value Zs1 and the z-coordinate value Zs2, the selected pixel in the reference region, the selected pixel in the x-axis leveling adjustment region, and the selected pixel in the y-axis leveling adjustment region. By adjusting the amount of rotation of the stage surface 10S around the x-rotation axis 30 based on the distance to the rotation axis 30 in the y-axis direction, the z-coordinate value Zs or the z-coordinate value Zs1 and the z-coordinate value Zs2 are made to match. be able to. As a result, the surface S to be measured becomes parallel to the y-axis, and the y-axis leveling adjustment is completed.

なお、自動アライメントの場合には、選出画素と、選出画素の干渉縞曲線の表示部20への表示は必ずしも必要ではない。 In the case of automatic alignment, it is not always necessary to display the selected pixels and the interference fringe curve of the selected pixels on the display unit 20.

このように、測定対象物Pを設定傾斜角度θ2に意図的に傾斜させるステップS10を行うことによって、傾斜角度調整を操作者の習熟度によらず、かつ装置コストの増加を招くことなく、簡単、迅速、かつ正確に行うことができる。 By performing step S10 in which the measurement object P is intentionally tilted to the set tilt angle θ2 in this way, the tilt angle adjustment can be easily performed regardless of the proficiency level of the operator and without increasing the device cost. Can be done quickly and accurately.

また、自動アライメントの場合には、干渉部14をz軸方向(走査軸方向)に沿って走査中に干渉縞を明瞭かつ確実に検出できることが重要であり、特にオートフォーカス機構を実装した装置において本発明は有効である。 Further, in the case of automatic alignment, it is important that the interference portion 14 can clearly and surely detect the interference fringes during scanning along the z-axis direction (scanning axis direction), especially in a device equipped with an autofocus mechanism. The present invention is valid.

なお、上記した傾斜角度調整のアライメントは、x軸傾斜角度調整とy軸傾斜角度調整とのそれぞれにおいて、測定対象物Pの被測定面Sが測定光軸Z−0に直交する水平面Fに対して設定傾斜角度θ2になるように傾斜させた。即ち、x軸傾斜角度調整とy軸傾斜角度調整とにおいて、ステップS10を個別に行った。 In the above-mentioned alignment of the tilt angle adjustment, in each of the x-axis tilt angle adjustment and the y-axis tilt angle adjustment, the measured surface S of the measurement object P is relative to the horizontal plane F orthogonal to the measurement optical axis Z-0. It was tilted so that the set tilt angle θ2 was obtained. That is, in the x-axis tilt angle adjustment and the y-axis tilt angle adjustment, step S10 was performed individually.

しかし、x軸傾斜角度調整とy軸傾斜角度調整とにおいて、ステップS10を個別に行と、それだけ時間を要する。また、x軸方向(又はy軸方向)のみについてステップS10を行い、y軸方向(x軸方向)の修正傾斜角度を計算で求めることもできるが、計算が難しくなる。 However, in the x-axis tilt angle adjustment and the y-axis tilt angle adjustment, it takes time to perform step S10 individually. Further, it is possible to perform step S10 only in the x-axis direction (or y-axis direction) and obtain the correction inclination angle in the y-axis direction (x-axis direction) by calculation, but the calculation becomes difficult.

これらを防止するために、意図的傾斜工程において、測定対象物Pの被測定面Sのx軸とy軸とで形成される直角を2等分する2等分軸に対する傾斜角度を予め設定された設定傾斜角度に意図的に傾斜させて、干渉縞探索工程S14から傾斜角度調整工程S20までを行うことが好ましい。 In order to prevent these, in the intentional tilting step, the tilt angle with respect to the bisector axis that divides the right angle formed by the x-axis and the y-axis of the surface S to be measured of the measurement object P into two equal parts is set in advance. It is preferable to intentionally incline the set inclination angle and perform the interference fringe search step S14 to the inclination angle adjustment step S20.

図18は、2等分軸に対する傾斜角度を設定傾斜角度θ2に傾斜させて干渉部14をz軸方向に移動させたときに撮像素子60の撮像面60Sに撮像される干渉縞を示したものである。図18の符号Nは2等分軸を示す。 FIG. 18 shows interference fringes imaged on the image pickup surface 60S of the image pickup device 60 when the interference portion 14 is moved in the z-axis direction by inclining the inclination angle with respect to the bisector axis to the set inclination angle θ2. Is. Reference numeral N in FIG. 18 indicates a bisector.

図18に示すように、干渉縞が2等分軸Nに対して直交して形成され、干渉縞位置が2等分軸Nに沿って移動するので、x軸レベリング調整やy軸レベリング調整の場合と同様に傾斜角度調整に必要な干渉縞位置の移動(位置の変化)を明瞭に把握することができる。したがって、検出した干渉縞位置から測定対象物Pの被測定面Sがz軸方向に直交するように調整する傾斜角度調整工程を行う(ステップS20)ことで、x軸レベリング調整とy軸レベリング調整と、を一度に行うことができる。 As shown in FIG. 18, since the interference fringes are formed orthogonal to the bisection axis N and the interference fringe position moves along the bisection axis N, the x-axis leveling adjustment and the y-axis leveling adjustment can be performed. As in the case, the movement (change in position) of the interference fringe position required for adjusting the tilt angle can be clearly grasped. Therefore, the x-axis leveling adjustment and the y-axis leveling adjustment are performed by performing an inclination angle adjusting step (step S20) for adjusting the measured surface S of the object to be measured P so as to be orthogonal to the z-axis direction from the detected interference fringe position. And can be done at once.

また、図6から分かるように、焦点調整と傾斜角度調整においてステップS10〜ステップS18までは同じステップであり、かつステップS20の焦点調整と傾斜角度調整は同時並行的に行うことができる。したがって、2等分軸Nに対してステップS10を行い、x軸傾斜角度調整とy軸傾斜角度調整とを一度に行うことによって、焦点調整と傾斜角度調整とのアライメントを同時並行的に行うことができる。 Further, as can be seen from FIG. 6, in the focus adjustment and the tilt angle adjustment, steps S10 to S18 are the same steps, and the focus adjustment and the tilt angle adjustment in step S20 can be performed in parallel. Therefore, by performing step S10 on the bisector axis N and performing the x-axis tilt angle adjustment and the y-axis tilt angle adjustment at the same time, the focus adjustment and the tilt angle adjustment are aligned in parallel. Can be done.

なお、ステージ10に備えた傾動手段35は、z軸に対して測定対象物Pの被測定面Sを相対的に傾動させてz軸に対する被測定面Sの傾斜角度を変更するものであればよく、上述のようにステージ10を傾斜させる傾動手段35を備えている場合に限らない。例えば、ステージ10を傾動させる代わりに、ステージ10に対して光学部2を傾動させることにより、z軸を傾動させてz軸に対する被測定面Sの傾斜角度を調整するようにしてもよい。 If the tilting means 35 provided in the stage 10 tilts the measured surface S of the measurement object P relative to the z-axis to change the tilt angle of the measured surface S with respect to the z-axis. Often, it is not limited to the case where the tilting means 35 for tilting the stage 10 is provided as described above. For example, instead of tilting the stage 10, the optical unit 2 may be tilted with respect to the stage 10 to tilt the z-axis and adjust the tilt angle of the surface S to be measured with respect to the z-axis.

以上、上記実施の形態では、基準領域、x軸レベリング調整領域、及び、y軸レベリング調整領域の設定が異なるタイミングで行われるが、基準領域の設定時においてx軸レベリング調整領域及びy軸レベリング調整領域の設定も行うようにしてもよい。 As described above, in the above embodiment, the reference area, the x-axis leveling adjustment area, and the y-axis leveling adjustment area are set at different timings, but the x-axis leveling adjustment area and the y-axis leveling adjustment are performed when the reference area is set. The area may also be set.

また、上記実施の形態では、基準領域、x軸レベリング調整領域、及び、y軸レベリング調整領域の各々から1つの画素を選出画素として選出し、その選出画素に対応する被測定面S上の点のz座標値を各領域に対応する被測定面S上の領域のz座標値とするものであるが、被測定面S上の領域のz座標値は他の方法により求めてもよい。例えば、各領域の全ての画素に対応する被測定面S上の全ての点のz座標値の平均値を各領域に対応する被測定面S上の領域のz座標値とすることもできる。 Further, in the above embodiment, one pixel is selected as a selected pixel from each of the reference region, the x-axis leveling adjustment region, and the y-axis leveling adjustment region, and a point on the measured surface S corresponding to the selected pixel is selected. The z-coordinate value of the region on the measured surface S corresponding to each region is used as the z-coordinate value of the region on the measured surface S, but the z-coordinate value of the region on the measured surface S may be obtained by another method. For example, the average value of the z-coordinate values of all the points on the measured surface S corresponding to all the pixels in each region can be set as the z-coordinate value of the region on the measured surface S corresponding to each region.

また、上記実施の形態では、干渉縞に対して、基準領域、x軸レベリング調整領域、及び、y軸レベリング調整領域の3つの調整領域を特定の条件に従って設定し、それらの調整領域に対応する被測定面S上の領域のz位置が一致するように被測定面S(ステージ面10S)の傾斜角度を調整するものであったが、本発明はこれに限らない。即ち、本発明は、干渉縞に対して少なくとも3箇所(3箇所以上)の領域を調整領域として設定し、それらの調整領域に対応する被測定面S上の領域のz座標値を上記実施の形態と同様にピント位置の走査により検出する。そして、それらの調整領域に対応する被測定面S上の領域のz座標値が一致するように、被測定面S(ステージ面10S)の傾斜角度を調整するものを含む。なお、干渉縞に対して調整領域を設定するとは、その領域に対応する被測定面S上に調整領域を設定することと等しい。 Further, in the above embodiment, three adjustment regions of a reference region, an x-axis leveling adjustment region, and a y-axis leveling adjustment region are set for the interference fringes according to specific conditions, and the adjustment regions correspond to those adjustment regions. The inclination angle of the surface to be measured S (stage surface 10S) is adjusted so that the z positions of the regions on the surface to be measured S match, but the present invention is not limited to this. That is, in the present invention, at least three regions (three or more locations) are set as adjustment regions with respect to the interference fringes, and the z-coordinate value of the region on the measured surface S corresponding to those adjustment regions is set as described above. It is detected by scanning the focus position as in the form. Then, the tilt angle of the measured surface S (stage surface 10S) is adjusted so that the z-coordinate values of the regions on the measured surface S corresponding to those adjustment regions match. Setting the adjustment area for the interference fringes is equivalent to setting the adjustment area on the surface S to be measured corresponding to the area.

[表面形状測定の全体フロー]
図19は、上記説明した測定準備アライメントのステップを含む表面形状測定の全体フローの一例である。
[Overall flow of surface shape measurement]
FIG. 19 is an example of the overall flow of surface shape measurement including the measurement preparation alignment step described above.

図19に示すように、先ず、測定対象物をステージ10上に載置する(ステップS100)。 As shown in FIG. 19, first, the object to be measured is placed on the stage 10 (step S100).

次に、処理部18の測定準備制御部18Aは、上記のステップS10〜ステップS20で説明した焦点調整及び傾斜角度調整の測定準備アライメント(ステップS200)を実施する。 Next, the measurement preparation control unit 18A of the processing unit 18 carries out the measurement preparation alignment (step S200) of the focus adjustment and the tilt angle adjustment described in steps S10 to S20 above.

次に、処理部18は、干渉縞(撮像素子60の撮像面)の全ての画素について取得される干渉縞曲線の輝度値が適切な大きさとなるように測定光量等の調整を行う(ステップS300)。即ち、光源部12の光源40の強さ、撮像素子60における電子シャッタの速度(電荷蓄積時間の長さ)、撮像素子60により得られる画像信号に対するゲイン等を調整する。 Next, the processing unit 18 adjusts the amount of measured light and the like so that the brightness values of the interference fringe curves acquired for all the pixels of the interference fringes (imaging surface of the image sensor 60) have an appropriate magnitude (step S300). ). That is, the strength of the light source 40 of the light source unit 12, the speed of the electronic shutter in the image sensor 60 (the length of the charge accumulation time), the gain for the image signal obtained by the image sensor 60, and the like are adjusted.

以上の調整処理が終了すると、処理部18は、ステージ10に載置された測定対象物Pの表面形状の測定を開始することができる。しかし、表面形状測定の高速化を図るには、測定走査範囲(干渉部14をz軸方向に移動させる範囲)を必要最小限に短くするように、測定開始前に、測定走査範囲の設定(予備測定)のステップ(ステップS400)を行うことが好ましい。このステップは、予め測定対象物の表面形状の概要を把握することで測定走査範囲を必要最小限に短くするもので、例えば特開2016−136091号公報に記載されるようにカメラを別途設ける方法等を採用できる。 When the above adjustment process is completed, the processing unit 18 can start measuring the surface shape of the measurement object P placed on the stage 10. However, in order to speed up the surface shape measurement, the measurement scanning range is set before the start of measurement so as to shorten the measurement scanning range (the range in which the interference portion 14 is moved in the z-axis direction) to the minimum necessary. It is preferable to perform the step (step S400) of (preliminary measurement). In this step, the measurement scanning range is shortened to the minimum necessary by grasping the outline of the surface shape of the object to be measured in advance. For example, a method of separately providing a camera as described in Japanese Patent Application Laid-Open No. 2016-136091. Etc. can be adopted.

これらの処理が終了したら、処理部18は、測定対象物Pの表面形状の測定を開始する(ステップS500)。表面形状の測定方法としては、測定対象物Pの被測定面Sの各点に照射される測定光の光路長を変化させながら撮影部16により取得される干渉縞に基づいて被測定面Sの各点のz軸方向の干渉縞位置を検出することで測定対象物Pの表面形状を測定する方法であれば、どのような方法でもよい。 When these processes are completed, the process unit 18 starts measuring the surface shape of the object P to be measured (step S500). As a method for measuring the surface shape, the measured surface S is measured based on the interference fringes acquired by the photographing unit 16 while changing the optical path length of the measurement light applied to each point of the measured surface S of the measurement object P. Any method may be used as long as it is a method of measuring the surface shape of the object P to be measured by detecting the position of the interference fringes in the z-axis direction of each point.

これらの処理が終了したら、処理部18は、測定対象物Pの表面形状の測定を開始する(ステップS600)。 When these processes are completed, the process unit 18 starts measuring the surface shape of the object P to be measured (step S600).

最後に、処理部18は、表面形状の測定結果を表示部20等に出力する。 Finally, the processing unit 18 outputs the measurement result of the surface shape to the display unit 20 and the like.

P…測定対象物、Q,Q1,Q2,Q3…干渉縞曲線、S…被測定面、Z−0,Z−1…光軸、1…表面形状測定装置、2…光学部、10…ステージ、10S…ステージ面、12…光源部、14…干渉部、16…撮影部、18…処理部、18A…測定準備制御部、20…表示部、22…入力部、30…x回転軸、32…y回転軸、34…xアクチュエータ、35…傾動手段、36…yアクチュエータ、40…光源、42…コレクタレンズ、44,54…ビームスプリッタ、50…対物レンズ、52…参照ミラー、56…干渉部アクチュエータ、60…撮像素子、60S…撮像面、62…結像レンズ、70…zアクチュエータ、100…基準領域、102,112,122…選出画素、110…x軸レベリング調整領域、120…y軸レベリング調整領域、N…2等分割軸、F…水平面 P ... Measurement target, Q, Q1, Q2, Q3 ... Interference fringe curve, S ... Measured surface, Z-0, Z-1 ... Optical axis, 1 ... Surface shape measuring device, 2 ... Optical unit, 10 ... Stage 10, S ... Stage surface, 12 ... Light source unit, 14 ... Interference unit, 16 ... Imaging unit, 18 ... Processing unit, 18A ... Measurement preparation control unit, 20 ... Display unit, 22 ... Input unit, 30 ... x rotation axis, 32 ... y rotation axis, 34 ... x actuator, 35 ... tilting means, 36 ... y actuator, 40 ... light source, 42 ... collector lens, 44, 54 ... beam splitter, 50 ... objective lens, 52 ... reference mirror, 56 ... interference unit Actuator, 60 ... imaging element, 60S ... imaging surface, 62 ... imaging lens, 70 ... z actuator, 100 ... reference region, 102, 112, 122 ... selected pixels, 110 ... x-axis leveling adjustment region, 120 ... y-axis leveling Adjustment area, N ... bisected axis, F ... horizontal plane

Claims (7)

測定対象物を支持する支持部であって且つ前記測定対象物を載置する平坦面を有する支持部と、
白色光を出射する光源部、前記光源部からの白色光を測定光と参照光とに分割して前記測定光を測定光軸に沿って前記測定対象物の被測定面に照射するとともに前記参照光を参照面に照射し、前記被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部、及び前記被測定面の各点に照射された前記測定光と前記参照光との干渉光の輝度信号を取得する輝度信号取得部を有する光学部と、を備え、
前記被測定面の各点に照射される前記測定光の光路長を変化させながら前記輝度信号取得部により取得される前記被測定面の各点の輝度信号に基づいて前記被測定面の各点の前記測定光軸方向の位置である光軸方向位置を検出することで前記測定対象物の表面形状を測定する表面形状測定装置の測定準備アライメント方法であって、
前記平坦面を水平面に平行な水平姿勢から傾斜させることで、前記水平面に対する前記被測定面の傾斜角度を予め設定した設定傾斜角度に斜させる斜工程と、
前記設定傾斜角度に傾斜された前記被測定面の各点に照射される前記測定光の光路長を変化させながら前記輝度信号取得部によって前記被測定面の各点の前記輝度信号取得する輝度信号取得工程と、
前記輝度信号取得工程で取得された前記被測定面の各点の前記輝度信号から前記被測定面の各点の前記光軸方向位置を検出する光軸方向位置検出工程と、
前記光軸方向位置検出工程の検出結果に基づき、前記被測定面を前記測定光軸に対して校正するための修正角度を求め、求めた修正角度に基づいて前記被測定面の傾斜角度を調整する傾斜角度調整工程と、を有する表面形状測定装置の測定準備アライメント方法。
A support portion that supports the object to be measured and has a flat surface on which the object to be measured is placed, and a support portion.
The light source unit that emits white light, the white light from the light source unit is divided into measurement light and reference light, and the measurement light is irradiated to the measured surface of the measurement object along the measurement optical axis, and the reference is also made. The reference surface was irradiated with light, and the interference portion that generated the interference light in which the measurement light returning from the measured surface and the reference light returning from the reference surface interfered with each other, and each point of the measured surface were irradiated. and an optical unit having a luminance signal acquisition unit that acquires the luminance signal of the interference light between the measurement light and the reference light,
On the basis of the luminance signal of each point of the surface to be measured acquired by the luminance signal acquisition unit while changing the optical path length of the measuring light applied to each point of the surface to be measured, each of the surface to be measured It is a measurement preparation alignment method of a surface shape measuring device that measures the surface shape of the object to be measured by detecting the position in the optical axis direction, which is the position of the point in the measurement optical axis direction.
And said flat surface by tilting from the horizontal posture parallel to the horizontal plane, inclined swash step of inclination obliquely to the preset set tilt angle the tilt angle of the surface to be measured with respect to the horizontal plane,
The brightness of acquiring the luminance signal at each point of the surface to be measured by the luminance signal acquisition unit while changing the optical path length of the measurement light applied to each point of the surface to be measured inclined to the set inclination angle. Signal acquisition process and
An optical axis direction position detection step of detecting the optical axis direction position of each point of the measured surface from the luminance signal of each point of the measured surface acquired in the luminance signal acquisition step.
Based on the detection result of the optical axis direction position detection step, a correction angle for calibrating the surface to be measured with respect to the measurement optical axis is obtained, and the inclination angle of the surface to be measured is adjusted based on the obtained correction angle. An inclination angle adjusting step, and a measurement preparation alignment method for a surface shape measuring device.
測定対象物を支持する支持部であって且つ前記測定対象物を載置する平坦面を有する支持部と、
白色光を出射する光源部、前記光源部からの白色光を測定光と参照光とに分割して前記測定光を測定光軸に沿って前記測定対象物の被測定面に照射するとともに前記参照光を参照面に照射し、前記被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部、及び前記被測定面の各点に照射された前記測定光と前記参照光との干渉光の輝度信号を取得する輝度信号取得部を有する光学部と、を備え、
前記被測定面の各点に照射される前記測定光の光路長を変化させながら前記輝度信号取得部により取得される前記被測定面の各点の輝度信号に基づいて前記被測定面の各点の前記測定光軸方向の位置である光軸方向位置を検出することで前記測定対象物の表面形状を測定する表面形状測定装置の測定準備アライメント方法であって、
前記平坦面を水平面に平行な水平姿勢から傾斜させることで、前記水平面に対する前記被測定面の傾斜角度を予め設定した設定傾斜角度に斜させる斜工程と、
前記設定傾斜角度に傾斜された前記被測定面の各点に照射される前記測定光の光路長を変化させながら前記輝度信号取得部によって前記被測定面の各点の前記輝度信号取得する輝度信号取得工程と、
前記輝度信号取得工程で取得された前記被測定面の各点の前記輝度信号から、前記被測定面内に予め設定された基準領域内及びレベリング調整領域内の各点の前記光軸方向位置を検出する光軸方向位置検出工程と、
前記光軸方向位置検出工程の検出結果に基づき、前記基準領域内の前記光軸方向位置に前記光学部のピント位置が合うように調整する焦点調整工程と、
前記光軸方向位置検出工程が検出した前記基準領域内の各点の前記光軸方向位置の検出結果と、前記レベリング調整領域内の各点の前記光軸方向位置の検出結果とに基づき、前記被測定面を前記測定光軸に対して校正するための修正角度を求め、求めた修正角度に基づいて前記被測定面の傾斜角度を調整する傾斜角度調整工程と、を有する表面形状測定装置の測定準備アライメント方法。
A support portion that supports the object to be measured and has a flat surface on which the object to be measured is placed, and a support portion.
The light source unit that emits white light, the white light from the light source unit is divided into measurement light and reference light, and the measurement light is irradiated to the measured surface of the measurement object along the measurement optical axis, and the reference is also made. The reference surface was irradiated with light, and the interference portion that generated the interference light in which the measurement light returning from the measured surface and the reference light returning from the reference surface interfered with each other, and each point of the measured surface were irradiated. and an optical unit having a luminance signal acquisition unit that acquires the luminance signal of the interference light between the measurement light and the reference light,
On the basis of the luminance signal of each point of the surface to be measured acquired by the luminance signal acquisition unit while changing the optical path length of the measuring light applied to each point of the surface to be measured, each of the surface to be measured It is a measurement preparation alignment method of a surface shape measuring device that measures the surface shape of the object to be measured by detecting the position in the optical axis direction, which is the position of the point in the measurement optical axis direction.
And said flat surface by tilting from the horizontal posture parallel to the horizontal plane, inclined swash step of inclination obliquely to the preset set tilt angle the tilt angle of the surface to be measured with respect to the horizontal plane,
The brightness of acquiring the luminance signal at each point of the surface to be measured by the luminance signal acquisition unit while changing the optical path length of the measurement light applied to each point of the surface to be measured inclined to the set inclination angle. Signal acquisition process and
From the luminance signal of each point of the surface to be measured acquired in the luminance signal acquisition step, the position in the optical axis direction of each point in the reference region and the leveling adjustment region preset in the surface to be measured is determined. Optical axis direction position detection process to be detected and
Based on the detection result of the optical axis direction position detection step, a focus adjustment step of adjusting the focus position of the optical unit to the optical axis direction position in the reference region, and a focus adjustment step.
Based on the detection result of the optical axis direction position of each point in the reference region detected by the optical axis direction position detection step and the detection result of the optical axis direction position of each point in the leveling adjustment region, the said A surface shape measuring device having an inclination angle adjusting step of obtaining a correction angle for calibrating the surface to be measured with respect to the measurement optical axis and adjusting the inclination angle of the surface to be measured based on the obtained correction angle. Measurement preparation alignment method.
前記水平面に平行で且つ互いに直交する軸をx軸及びy軸とした場合において、
前記傾斜工程は、
y軸方向から見た場合に、前記被測定面のx軸方向に対する傾斜角度を予め設定された設定傾斜角度傾斜させて前記輝度信号取得工程から前記傾斜角度調整工程までを行うx軸傾斜角度調整と、
x軸方向から見た場合に、前記被測定面のy軸方向に対する傾斜角度を予め設定された設定傾斜角度傾斜させて前記輝度信号取得工程から前記傾斜角度調整工程までを行うy軸傾斜角度調整と、の少なくとも一方を含むことを特徴とする請求項1又は2に記載の表面形状測定装置の測定準備アライメント方法。
When the axes parallel to the horizontal plane and orthogonal to each other are the x-axis and the y-axis,
The tilting step is
When viewed from the y-axis direction, x-axis tilt angle of performing is tilted to a preset angle of inclination angle of inclination from said luminance signal acquisition step to the tilt angle adjustment step for the x-axis direction of the measurement surface Adjustment and
when viewed from the x-axis direction, y-axis tilt angle of performing is tilted to a preset angle of inclination angle of inclination from said luminance signal acquisition step to the tilt angle adjustment step for the y-axis direction of the measurement surface The measurement preparation alignment method of the surface shape measuring apparatus according to claim 1 or 2 , which comprises at least one of adjustment.
前記水平面に平行で且つ互いに直交する軸をx軸及びy軸とし、前記x軸と前記y軸とで形成される直角を2等分する軸を2等分軸とし、前記水平面に平行で且つ前記2等分軸に対して垂直な軸を垂直軸とした場合に、前記傾斜工程において、前記平坦面を前記垂直軸の軸周りに傾動させて、前記被測定面の前記2等分軸に対する傾斜角度を予め設定された設定傾斜角度に斜させ
前記輝度信号取得工程から前記傾斜角度調整工程までを行うことによって、x軸傾斜角度調整とy軸傾斜角度調整とを同時に行う請求項1に記載の表面形状測定装置の測定準備アライメント方法。
The axes parallel to the horizontal plane and orthogonal to each other are defined as the x-axis and the y-axis, and the axis formed by the x-axis and the y-axis is divided into two equal parts. When the axis perpendicular to the bisection axis is defined as the vertical axis , the flat surface is tilted around the axis of the vertical axis in the tilting step, and the surface to be measured is tilted with respect to the bisection axis of the surface to be measured. to a preset tilt angle the tilt angle on an angle,
The measurement preparation alignment method of the surface shape measuring apparatus according to claim 1, wherein the x-axis tilt angle adjustment and the y-axis tilt angle adjustment are performed at the same time by performing the brightness signal acquisition step to the tilt angle adjusting step.
前記水平面に平行で且つ互いに直交する軸をx軸及びy軸とし、前記x軸と前記y軸とで形成される直角を2等分する軸を2等分軸とし、前記水平面に平行で且つ前記2等分軸に対して垂直な軸を垂直軸とした場合に、前記傾斜工程において、前記平坦面を前記垂直軸の軸周りに傾動させて、前記被測定面の前記2等分軸に対する傾斜角度を予め設定された設定傾斜角度に斜させ
前記輝度信号取得工程から前記傾斜角度調整工程までを行うことによって、焦点調整とx軸傾斜角度調整とy軸傾斜角度調整とを同時に行う請求項2に記載の表面形状測定装置の測定準備アライメント方法。
The axes parallel to the horizontal plane and orthogonal to each other are defined as the x-axis and the y-axis, and the axis formed by the x-axis and the y-axis is divided into two equal parts. When the axis perpendicular to the bisection axis is defined as the vertical axis , the flat surface is tilted around the axis of the vertical axis in the tilting step, and the surface to be measured is tilted with respect to the bisection axis of the surface to be measured. to a preset tilt angle the tilt angle on an angle,
The measurement preparation alignment method of the surface shape measuring apparatus according to claim 2, wherein the focus adjustment, the x-axis tilt angle adjustment, and the y-axis tilt angle adjustment are simultaneously performed by performing the luminance signal acquisition step to the tilt angle adjustment step. ..
前記設定傾斜角度は、tan(θ2)=N*λ/Lの式から求める請求項1からの何れか1項に記載の表面形状測定装置の測定準備アライメント方法。
ただし、θ2:設定傾斜角度、N:撮像面に観察したい干渉縞の本数、λ:測定光の中心波長、L:撮像面のx軸方向(又はy軸方向)の視野長さ
The measurement preparation alignment method of the surface shape measuring apparatus according to any one of claims 1 to 5 , wherein the set inclination angle is obtained from the equation of tan (θ2) = N * λ / L.
However, θ2: set tilt angle, N: number of interference fringes to be observed on the imaging surface, λ: center wavelength of measurement light, L: viewing length in the x-axis direction (or y-axis direction) of the imaging surface.
測定対象物を支持する支持部であって前記測定対象物を載置する平坦面を有する支持部と、
白色光を出射する光源部、前記光源部からの白色光を測定光と参照光とに分割して前記測定光を測定光軸に沿って前記測定対象物の被測定面に照射するとともに前記参照光を参照面に照射し、前記被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部、及び前記被測定面の各点に照射された前記測定光と前記参照光との干渉光の輝度信号を取得する輝度信号取得部を有する光学部と、
水平面に対して前記平坦面を相対的に傾動させる傾動手段と、を備え、
前記被測定面の各点に照射される前記測定光の光路長を変化させながら前記輝度信号取得部により取得される前記被測定面の各点の輝度信号に基づいて前記被測定面の各点の前記測定光軸方向の位置である光軸方向位置を検出することで前記測定対象物の表面形状を測定する表面形状測定装置であって、
前記傾動手段が、前記平坦面を前記水平面に平行な水平姿勢から傾斜させることで、前記水平面に対する前記被測定面の傾斜角度を予め設定した設定傾斜角度に斜させる傾斜動作と、
前記設定傾斜角度に傾斜された前記被測定面の各点に照射される前記測定光の光路長を変化させながら前記輝度信号取得部によって前記被測定面の各点の前記輝度信号取得する輝度信号取得動作と、
前記輝度信号取得動作で取得された前記被測定面の各点の前記輝度信号から、前記被測定面内に予め設定された基準領域内及びレベリング調整領域内の各点の前記光軸方向位置を検出する光軸方向位置検出動作と
前記光軸方向位置検出動作の検出結果に基づき、前記基準領域内の前記光軸方向位置に前記光学部のピント位置が合うように調整する焦点調整動作と、
前記光軸方向位置検出動作で検出した前記基準領域内の各点の前記光軸方向位置の検出結果と、前記レベリング調整領域内の各点の前記光軸方向位置の検出結果とに基づき、前記被測定面を前記測定光軸に対して校正するための修正角度を求めて前記傾動手段を前記求めた修正角度分駆動して前記被測定面の傾斜角度を調整する傾斜角度調整動作と、の測定準備動作プログラムを制御する測定準備制御部を有する表面形状測定装置。
A support portion that supports the object to be measured and has a flat surface on which the object to be measured is placed, and a support portion that supports the object to be measured.
The light source unit that emits white light, the white light from the light source unit is divided into measurement light and reference light, and the measurement light is irradiated to the measured surface of the measurement object along the measurement optical axis, and the reference is also made. The reference surface was irradiated with light, and the interference portion that generated the interference light in which the measurement light returning from the measured surface and the reference light returning from the reference surface interfered with each other, and each point of the measured surface were irradiated. an optical portion having a luminance signal acquisition unit that acquires the luminance signal of the interference light between the measurement light and the reference light,
A tilting means for tilting the flat surface relative to the horizontal plane is provided.
Each point of the surface to be measured is based on the brightness signal of each point of the surface to be measured acquired by the luminance signal acquisition unit while changing the optical path length of the measurement light applied to each point of the surface to be measured. A surface shape measuring device that measures the surface shape of the object to be measured by detecting the position in the optical axis direction, which is the position in the measurement optical axis direction.
The tilting means, said planar surface by tilting from the horizontal posture parallel to the horizontal plane, the tilting to be inclined obliquely to the setting angle of inclination which is set in advance the inclination angle of the surface to be measured with respect to the horizontal plane,
Brightness for acquiring the luminance signal at each point on the surface to be measured by the luminance signal acquisition unit while changing the optical path length of the measurement light applied to each point on the surface to be measured inclined to the set tilt angle. Signal acquisition operation and
From the luminance signal of each point of the surface to be measured acquired by the luminance signal acquisition operation, the position in the optical axis direction of each point in the reference region and the leveling adjustment region preset in the surface to be measured is determined. With the optical axis position detection operation to be detected
Based on the detection result of the optical axis direction position detection operation, a focus adjustment operation for adjusting the focus position of the optical unit to the optical axis direction position in the reference region, and a focus adjustment operation.
Based on the detection result of the optical axis direction position of each point in the reference region detected by the optical axis direction position detection operation and the detection result of the optical axis direction position of each point in the leveling adjustment region, the said An inclination angle adjusting operation of obtaining a correction angle for calibrating the surface to be measured with respect to the measurement optical axis and driving the tilting means by the obtained correction angle to adjust the inclination angle of the surface to be measured. A surface shape measuring device having a measurement preparation control unit that controls a measurement preparation operation program.
JP2017007742A 2017-01-19 2017-01-19 Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device Active JP6882651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017007742A JP6882651B2 (en) 2017-01-19 2017-01-19 Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017007742A JP6882651B2 (en) 2017-01-19 2017-01-19 Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device

Publications (2)

Publication Number Publication Date
JP2018115988A JP2018115988A (en) 2018-07-26
JP6882651B2 true JP6882651B2 (en) 2021-06-02

Family

ID=62984062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017007742A Active JP6882651B2 (en) 2017-01-19 2017-01-19 Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device

Country Status (1)

Country Link
JP (1) JP6882651B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203529B2 (en) * 2018-08-01 2023-01-13 株式会社ミツトヨ Interferometer and arrangement adjustment method
CN109883355B (en) * 2019-03-05 2020-09-11 深圳市中图仪器股份有限公司 Method and device for automatically searching interference fringes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608744B2 (en) * 1988-01-21 1997-05-14 旭光学工業株式会社 Interferometer alignment detector
JP3206948B2 (en) * 1991-02-18 2001-09-10 旭光学工業株式会社 Interferometer and interferometer alignment method
JP3299359B2 (en) * 1993-11-17 2002-07-08 松下電器産業株式会社 Tilt angle positioning device
JP2002198301A (en) * 2000-12-27 2002-07-12 Mitsutoyo Corp Aligner
JP2004347426A (en) * 2003-05-21 2004-12-09 Ricoh Co Ltd Shape measuring apparatus and measuring method
US20070127036A1 (en) * 2005-12-07 2007-06-07 Chroma Ate Inc. Interference measurement system self-alignment method
JP2007212268A (en) * 2006-02-09 2007-08-23 Epson Imaging Devices Corp Inspection device, inspection method of substrate for electro-optical device, and manufacturing method of substrate for electro-optical device
JP4191201B2 (en) * 2006-04-25 2008-12-03 アンリツ株式会社 3D shape measuring device
JP2008089356A (en) * 2006-09-29 2008-04-17 Fujinon Corp Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method
JP2010185844A (en) * 2009-02-13 2010-08-26 Tokyo Institute Of Technology Surface profile measuring method, and apparatus using the same
JP2013160742A (en) * 2012-02-09 2013-08-19 Tohoku Univ Calibration method of three-dimensional interferometer reference surface using diffraction grating, and three-dimensional interferometer
JP6355023B2 (en) * 2014-10-20 2018-07-11 株式会社東京精密 Measuring object alignment method and surface shape measuring apparatus in surface shape measuring apparatus
JP6417645B2 (en) * 2015-02-27 2018-11-07 株式会社東京精密 Alignment method for surface profile measuring device

Also Published As

Publication number Publication date
JP2018115988A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6417645B2 (en) Alignment method for surface profile measuring device
JP5638517B2 (en) Optical inspection probe
JP6355023B2 (en) Measuring object alignment method and surface shape measuring apparatus in surface shape measuring apparatus
JP7093915B2 (en) Surface shape measurement method
JP6461609B2 (en) Interference objective lens and optical interference measurement apparatus
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
JP6945415B2 (en) How to adjust the image measuring device
KR20130102465A (en) Height measuring method and height measuring device
JP6882651B2 (en) Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device
JPWO2014073262A1 (en) Image sensor position detector
JP7085725B2 (en) Surface shape measuring device and surface shape measuring method
JP2023176026A (en) Method for determining scan range
JP6820516B2 (en) Surface shape measurement method
JP2018066767A (en) Shape measuring device, structure manufacturing system, and shape measuring method
JP6820515B2 (en) Surface shape measuring device and surface shape measuring method
TWI685639B (en) Shape measuring device and coating device equipped with the device
JPH10122823A (en) Positioning method and height measuring device using the method
JP6880396B2 (en) Shape measuring device and shape measuring method
KR20180092514A (en) Height Measuring Method Using Laser Displacement Measuring Apparatus
JP7304513B2 (en) SURFACE PROFILE MEASURING DEVICE AND SURFACE PROFILE MEASURING METHOD
JP2012242085A (en) Measured object holding position correction method of curvature radius measuring instrument and curvature radius measuring instrument
JP2011085402A (en) Surface property measuring instrument
WO2016204062A1 (en) Shape measurement device and coating device equipped with same
JP7170204B2 (en) Lens magnification recognition method and measuring device
JPH07208917A (en) Automatic focusing method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6882651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250