JP2008089356A - Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method - Google Patents

Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method Download PDF

Info

Publication number
JP2008089356A
JP2008089356A JP2006268745A JP2006268745A JP2008089356A JP 2008089356 A JP2008089356 A JP 2008089356A JP 2006268745 A JP2006268745 A JP 2006268745A JP 2006268745 A JP2006268745 A JP 2006268745A JP 2008089356 A JP2008089356 A JP 2008089356A
Authority
JP
Japan
Prior art keywords
light
measured
aspherical
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006268745A
Other languages
Japanese (ja)
Inventor
Nobuaki Ueki
伸明 植木
Hideo Kanda
秀雄 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2006268745A priority Critical patent/JP2008089356A/en
Publication of JP2008089356A publication Critical patent/JP2008089356A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aspheric surface measuring element capable of performing correction processing after the production as well as obtaining a stable measurement result having little adverse effect of unnecessary light or fluctuation of air on an optical path, and superior in working efficiency of alignment adjustment or the like; an lightwave interference measuring device and method using the aspheric surface measuring element; an aspheric surface correction processing method; and a system error correction method. <P>SOLUTION: An aspheric surface measuring element 6A comprising a single lens member is disposed between an optical measuring system and a measured aspheric surface 71A of a measured object 7A. The reference spherical surface 61A transmits a portion of measuring light entering almost vertically to the spherical surface and makes a reference light by reflecting the residue of the measuring light, while an aspheric surface 62A on the other side is shaped so that each ray of the measuring light passing from the reference spherical surface 61A to the measured aspheric surface 71A enters almost vertically to the measured aspheric surface 71A and the optical path length of each ray becomes almost constant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非球面レンズや非球面レンズ成形用の金型等の非球面形状を測定するために用いられる非球面測定用素子、該非球面測定用素子を用いた光波干渉測定装置と方法、該非球面測定用素子を用いて得られた測定結果を利用した非球面の形状補正方法、および光波干渉測定装置のシステム誤差補正方法に関する。   The present invention relates to an aspherical measurement element used for measuring an aspherical shape such as an aspherical lens or a mold for molding an aspherical lens, a light wave interference measuring apparatus and method using the aspherical measuring element, The present invention relates to an aspherical shape correction method using a measurement result obtained using a spherical measuring element, and a system error correction method of a lightwave interference measuring apparatus.

従来、被測定非球面の設計形状と相似な形状に形成された参照非球面を有する非球面測定用素子を、該参照非球面と被測定非球面とが対向するように近接配置し、該非球面測定用素子を介して被測定非球面に照射された光束の反射光と、参照非球面からの反射光との光干渉により得られる干渉縞に基づき、被測定非球面の形状を測定する方法が知られている(下記特許文献1参照)。   Conventionally, an aspherical measuring element having a reference aspherical surface formed in a shape similar to the design shape of the aspherical surface to be measured is disposed close to the reference aspherical surface and the aspherical surface to be measured so as to face each other. There is a method for measuring the shape of a measured aspheric surface based on interference fringes obtained by optical interference between reflected light of a light beam irradiated on the measured aspheric surface via a measuring element and reflected light from a reference aspheric surface. It is known (see Patent Document 1 below).

ここで用いられる非球面測定用素子はレンズ部材で構成されたものであるが、非球面測定用素子としてゾーンプレートを用いることも行われている。例えば、下記特許文献2には、被測定非球面の測定に対応する領域に同心状のリングパターンで構成された透過型の回折格子を有し、測定に対応しない領域にアライメント用の反射型の回折格子を有してなる非球面測定用素子を用いた測定方法が開示されている。この測定方法では、測定光学系から出力された球面波を、非球面測定用素子を介して被測定非球面に照射し、該被測定非球面からの反射光と、測定光学系に配された参照基準面からの参照光と光干渉させて得られる干渉縞に基づき、被測定非球面の形状を測定するようにしている。   The aspherical measuring element used here is constituted by a lens member, but a zone plate is also used as the aspherical measuring element. For example, in Patent Document 2 below, a transmission type diffraction grating composed of a concentric ring pattern is provided in a region corresponding to measurement of an aspheric surface to be measured, and a reflection type for alignment is provided in a region not corresponding to measurement. A measuring method using an aspherical measuring element having a diffraction grating is disclosed. In this measurement method, a spherical wave output from the measurement optical system is irradiated onto the measured aspheric surface via the aspherical measurement element, and the reflected light from the measured aspheric surface and the measurement optical system are arranged. The shape of the aspheric surface to be measured is measured on the basis of interference fringes obtained by optical interference with reference light from the reference standard surface.

特開平6−241743号公報JP-A-6-241743 特開平8−21712号公報JP-A-8-21712

しかしながら、上記特許文献1に記載された方法では、非球面測定用素子の参照非球面と被測定非球面とを極めて近接させて配置する必要があるので、アライメント時に非球面測定用素子と被測定非球面が接触することを避けるために細心の注意を払うことが強いられる。また、他の被測定非球面を測定する際には、被測定非球面と非球面測定用素子との間に所定のワークスペースを確保し、被測定非球面を配置してから再度アライメントしなければならないため作業性が悪いという問題もある。   However, in the method described in Patent Document 1, it is necessary to dispose the reference aspheric surface of the aspherical measurement element and the measured aspherical surface very close to each other. Great care must be taken to avoid contact of the aspheric surfaces. When measuring other aspheric surfaces to be measured, a predetermined work space must be secured between the aspheric surface to be measured and the aspheric measuring element, and the aspheric surface to be measured must be placed and aligned again. There is also a problem that workability is poor because it must be done.

一方、上記特許文献2に記載された方法では、非球面測定用素子と被測定非球面との間に必要なワークスペースを確保し易いが、被測定非球面と参照基準面との光学距離が長くなるので、光路上の空気の揺らぎにより測定誤差を生じる虞がある。また、この種のゾーンプレートで構成された非球面測定用素子は、不要な回折光が測定誤差の要因となる虞があり、測定精度の信頼性を確保することが難しい。さらに、製造された後に、実際に使用される測定システムに応じた補正加工を施すことが難しいという問題もある。   On the other hand, in the method described in Patent Document 2, it is easy to secure a necessary work space between the aspherical surface measuring element and the measured aspherical surface, but the optical distance between the measured aspherical surface and the reference reference surface is small. Since it becomes long, there is a possibility that a measurement error may occur due to fluctuation of air on the optical path. In addition, in an aspherical measuring element constituted by this type of zone plate, unnecessary diffracted light may cause measurement errors, and it is difficult to ensure the reliability of measurement accuracy. Furthermore, there is also a problem that it is difficult to perform correction processing according to the measurement system actually used after being manufactured.

本発明は、このような事情に鑑みなされたものであり、光路上の空気の揺らぎや不要光による悪影響を受け難く安定した測定結果を得ることができるとともに、アライメント調整等の作業性に優れ、かつ製造後における補正加工を行うことも可能な非球面測定用素子と、このような非球面測定用素子を用いた光波干渉測定装置と方法、非球面の補正加工方法、およびシステム誤差補正方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is capable of obtaining a stable measurement result that is hardly affected by air fluctuations and unnecessary light on the optical path, and is excellent in workability such as alignment adjustment, An aspherical measuring element capable of performing correction processing after manufacture, a light wave interference measuring apparatus and method using such an aspherical measuring element, an aspherical correction processing method, and a system error correction method The purpose is to provide.

本発明に係る非球面測定用素子は、球面波からなる測定光を出力する測定光学系と被測定非球面との間に配置されるものであって、以下の事項を特徴とするものである。   An aspherical measuring element according to the present invention is disposed between a measuring optical system that outputs measuring light composed of spherical waves and a measured aspherical surface, and has the following features. .

すなわち、単体のレンズ部材として構成されており、前記測定光学系と対向する側のレンズ面は、該レンズ面に対し略垂直に入射された前記測定光の一部を透過せしめるとともに、該測定光のその余を反射せしめて参照光となす参照基準球面(球面で形成された参照基準面)とされ、前記被測定非球面と対向する側のレンズ面は、前記参照基準球面から前記被測定非球面に至る前記測定光の各光線が該被測定非球面に略垂直に入射し、かつ該各光線の光路長が互いに略一定となるように形成された非球面形状とされている。   That is, the lens surface is configured as a single lens member, and the lens surface facing the measurement optical system transmits part of the measurement light incident substantially perpendicular to the lens surface, and the measurement light. A reference reference spherical surface (reference reference surface formed by a spherical surface) is reflected to reflect the remainder of the lens, and the lens surface facing the measured aspheric surface is separated from the reference standard spherical surface by the measured non-measured surface. Each light beam of the measurement light reaching the spherical surface is incident on the aspheric surface to be measured substantially perpendicularly, and the optical path length of each light beam is formed to be substantially constant.

本発明に係る非球面測定用素子において、測定光学系に対する傾き姿勢調整用の平面反射部を備えるようにすることが好ましい。   In the aspherical surface measuring element according to the present invention, it is preferable to provide a plane reflecting portion for adjusting the tilt posture with respect to the measuring optical system.

また、本発明に係る光波干渉測定装置は、光源部と、該光源部から射出された光束を球面波に変換して出力する測定光学系と、該測定光学系と被測定非球面との間に配置される、本発明に係る前記非球面測定用素子と、該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を撮像する撮像手段と、を備えていることを特徴とする。   The light wave interference measuring apparatus according to the present invention includes a light source unit, a measurement optical system that converts a light beam emitted from the light source unit into a spherical wave and outputs the spherical wave, and a space between the measurement optical system and the measured aspheric surface. The interference fringe obtained by optical interference between the aspherical measurement element according to the present invention and the reference light from the reference standard spherical surface of the aspherical measurement element and the return light from the measured aspherical surface. And imaging means for imaging.

本発明に係る光波干渉測定装置において、前記測定光学系は、前記非球面測定用素子と対向する位置に基準レンズ部を有しており、該基準レンズ部は、1つの光軸調整用球面と、該光軸調整用球面に対し前記光源部からの前記光束を略垂直に入射せしめるレンズ群とを有しているとすることができる。   In the light wave interference measuring apparatus according to the present invention, the measurement optical system includes a reference lens unit at a position facing the aspherical surface measuring element, and the reference lens unit includes one optical axis adjusting spherical surface. And a lens group that allows the light beam from the light source unit to enter the optical axis adjusting spherical surface substantially perpendicularly.

また、前記光源部は、射出する前記光束の可干渉距離が短い低可干渉光源部であり、前記測定光学系は、前記低可干渉光源部から射出された光束を2光束に分岐するとともに、一方の光束を他方の光束に対して迂回させた後に該2光束を再合成し、分岐されてから再合成されるまでの該2光束の各光路長の差を調整する迂回路部を有してなるものとしてもよい。   Further, the light source unit is a low coherence light source unit that has a short coherence distance of the emitted light beam, and the measurement optical system branches the light beam emitted from the low coherence light source unit into two light beams, A detour unit that adjusts the difference between the optical path lengths of the two light beams after the one light beam is detoured with respect to the other light beam and then the two light beams are recombined and recombined It may be made up of.

また、前記迂回路部は、前記分岐されてから再合成されるまでの2光束の各光路長の差を、前記参照基準球面から前記被測定非球面までの往復光路長に略一致した状態と、前記参照球面から前記参照基準球面までの往復光路長に略一致した状態とに切替え可能に構成されていることが好ましい。   Further, the detour unit substantially matches the difference between the optical path lengths of the two light beams from the branching to the recombining with the round-trip optical path length from the reference standard spherical surface to the measured aspherical surface. It is preferable that the switch is configured to be switchable to a state that substantially matches the reciprocal optical path length from the reference spherical surface to the reference standard spherical surface.

また、前記迂回路部において、前記2光束の各光路長の差を微小変化させることにより、フリンジスキャン測定を行うように構成することもできる。   Further, the detour unit may be configured to perform fringe scan measurement by minutely changing the difference between the optical path lengths of the two light beams.

または、前記光源部として、射出する前記光束の波長を走査可能な波長走査光源部を用い、該波長走査光源部からの光束の波長を走査することにより、フリンジスキャン測定を行うように構成するようにしてもよい。   Alternatively, as the light source unit, a wavelength scanning light source unit capable of scanning the wavelength of the emitted light beam is used, and the fringe scan measurement is performed by scanning the wavelength of the light beam from the wavelength scanning light source unit. It may be.

また、前記参照基準球面には、少なくとも1層の光反射吸収層と少なくとも1層の誘電体反射防止層とが積層されてなる多層膜構造の光量比調整膜が着設されてなり、該光量比調整膜は、前記測定光学系側からの入射光に対してはその一部を反射し、残余の一部を吸収した後にその余を前記被測定非球面に向けて射出する機能を有するとともに、前記被測定非球面側から入射する前記戻り光に対してはその一部を吸収する一方で反射は抑制し残余を射出する機能を有する膜構成とされているとしてもよい。   The reference standard spherical surface is provided with a light amount ratio adjustment film having a multilayer structure in which at least one light reflection / absorption layer and at least one dielectric antireflection layer are laminated, and the light amount The ratio adjusting film has a function of reflecting a part of incident light from the measurement optical system side and absorbing the remaining part and then emitting the remaining part toward the aspheric surface to be measured. The return light incident from the aspherical surface to be measured may have a function of absorbing a part of the return light and suppressing the reflection and emitting the remainder.

本発明に係る光波干渉測定方法は、光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、本発明に係る非球面測定用素子を配置し、該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析することにより、前記被測定非球面の位相情報を求めることを特徴とする。   In the light wave interference measuring method according to the present invention, the aspherical surface measuring element according to the present invention is disposed between the measuring optical system that converts the light beam emitted from the light source unit into a spherical wave and outputs it, and the measured aspherical surface. The phase information of the measured aspheric surface is obtained by analyzing interference fringes obtained by optical interference between the reference light from the reference standard sphere of the aspherical measurement element and the return light from the measured aspheric surface. It is characterized by seeking.

本発明に係る光波干渉測定方法において、前記干渉縞を解析する際に、ディストーションを補正する座標変換処理を行うことができる。   In the light wave interference measuring method according to the present invention, when the interference fringes are analyzed, a coordinate conversion process for correcting distortion can be performed.

また、前記被測定非球面を複数の被測定領域に分割し、該分割された被測定領域毎に測定を行い、該被測定領域毎の測定結果を繋ぎ合わせるようにしてよい。   Further, the aspheric surface to be measured may be divided into a plurality of measurement regions, the measurement is performed for each of the divided measurement regions, and the measurement results for the measurement regions may be connected.

本発明に係る非球面の形状補正方法は、光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、本発明に係る非球面測定用素子を配置し、該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析し、該解析結果に基づき前記非球面測定用素子の非球面の形状を補正加工することを特徴とする。   The aspherical shape correction method according to the present invention includes an aspherical surface measuring element according to the present invention between a measuring optical system that converts a light beam emitted from a light source unit into a spherical wave and outputs the spherical wave. And analyzing interference fringes obtained by optical interference between the reference light from the reference standard sphere of the aspherical measurement element and the return light from the measured aspherical surface, and based on the analysis result, measure the aspherical surface. The aspherical shape of the working element is corrected.

本発明に係る他の非球面の形状補正方法は、光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、本発明に係る非球面測定用素子を配置し、該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析し、該解析結果に基づき前記被測定非球面の形状を補正加工することを特徴とする。   In another aspherical shape correction method according to the present invention, an aspherical measurement according to the present invention is provided between a measuring optical system that converts a luminous flux emitted from a light source unit into a spherical wave and outputs the spherical wave, and a measured aspherical surface. And an interference fringe obtained by optical interference between the reference light from the reference standard spherical surface of the aspherical surface measuring element and the return light from the measured aspherical surface, and analyzing the interference target based on the analysis result. The shape of the measurement aspheric surface is corrected and processed.

本発明に係るシステム誤差補正方法は、光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、本発明に係る非球面測定用素子を配置し、該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析し、該解析結果に基づき光波干渉測定装置のシステム誤差を補正することを特徴とする。   In the system error correction method according to the present invention, the aspherical surface measuring element according to the present invention is disposed between the measuring optical system that converts the light beam emitted from the light source unit into a spherical wave and outputs the spherical wave, and the measured aspherical surface. Then, an interference fringe obtained by optical interference between the reference light from the reference standard sphere of the aspherical surface measuring element and the return light from the measured aspherical surface is analyzed, and the system of the lightwave interference measuring device is based on the analysis result It is characterized by correcting an error.

上記「単体のレンズ部材」とは、単体の部材として扱うことが可能な構成のレンズ部材を意味するものであり、複数のレンズを貼り合わせてなるいわゆる接合レンズや、屈折率分布が変化するGRINレンズ等のレンズを含む概念である。   The above "single lens member" means a lens member having a structure that can be handled as a single member, a so-called cemented lens formed by bonding a plurality of lenses, or a GRIN in which the refractive index distribution changes. It is a concept including a lens such as a lens.

本発明に係る非球面測定用素子は、上記構成を備えたことにより以下のような効果を奏する。
すなわち、非球面測定用素子自体が、光波干渉測定における参照基準面(参照基準球面)を備えているので、参照基準面が素子とは別に離れた位置に設定されることを前提としたものに比べ、光路上の空気の揺らぎの影響を受け難く、測定結果に対する信頼性が高い。また、単体のレンズ部材として構成されているので、ゾーンプレートを用いた従来技術のもののように、不要な回折光が発生するという問題がなく、このような従来技術のものに比しても、安定した測定結果を得ることが可能となる。さらには、ゾーンプレートでは難しいとされる製造後の補正加工を行うことも可能である。
The aspherical surface measuring element according to the present invention has the following effects due to the above configuration.
In other words, since the aspherical measurement element itself has a reference standard surface (reference standard spherical surface) in the light wave interference measurement, it is assumed that the reference standard surface is set at a position apart from the element. Compared to the influence of air fluctuations on the optical path, the measurement results are highly reliable. In addition, since it is configured as a single lens member, there is no problem that unnecessary diffracted light is generated, as in the prior art using a zone plate. Stable measurement results can be obtained. Furthermore, it is also possible to perform post-manufacture correction processing, which is difficult with a zone plate.

また、測定光学系と対向する側のレンズ面が、該レンズ面に対し略垂直に入射された測定光の一部を透過せしめるとともに、該測定光のその余を反射せしめて参照光となす参照基準球面とされているので、球面波を出力するように構成された干渉計装置(例えば、球面形状測定用の干渉計装置)に対して組み込むことが容易であり、また組み込むことによって、非球面の測定が可能となる。さらに、干渉計装置側の測定光学系に配される参照球面からの光束と、素子側の参照基準球面からの光束との光干渉により得られる干渉縞に基づき、測定光学系に対する素子のアライメント調整を容易に行うことも可能である。特に、測定光学系に対する傾き姿勢調整用の平面反射部を備えたものによれば、光軸の傾き調整を容易に行うことができるので、アライメント調整をより迅速に行うことが可能となる。   In addition, the lens surface facing the measurement optical system transmits a part of the measurement light incident substantially perpendicular to the lens surface, and reflects the remainder of the measurement light to serve as reference light. Since it is a reference spherical surface, it can be easily incorporated into an interferometer device configured to output a spherical wave (for example, an interferometer device for measuring a spherical shape), and by incorporating it, an aspherical surface is obtained. Can be measured. Furthermore, alignment adjustment of the element with respect to the measurement optical system is performed based on interference fringes obtained by optical interference between the light beam from the reference spherical surface arranged in the measurement optical system on the interferometer device side and the light beam from the reference standard spherical surface on the element side. Can also be easily performed. In particular, according to the apparatus provided with the plane reflection unit for adjusting the tilt posture with respect to the measurement optical system, the tilt adjustment of the optical axis can be easily performed, so that the alignment adjustment can be performed more quickly.

また、本発明の非球面測定用素子において、被測定非球面と対向する側のレンズ面の非球面形状は、参照基準球面から被測定非球面に至る測定光の各光線が該被測定非球面に略垂直に入射し、かつ該各光線の光路長が互いに略一定となるように形成されるものなので、被測定非球面との間に所定のワークスペースを設定し得るように非球面形状を決定することが可能であり、従来技術のように、被測定非球面と相似な形状を持つようにして、これを被測定非球面に近接配置するといった必要がない。したがって、このような従来技術のものに比べて、扱いが容易でありアライメント等の作業性が格段に向上する。   In the aspherical measuring element of the present invention, the aspherical shape of the lens surface facing the measured aspherical surface is such that each light beam of the measuring light from the reference standard spherical surface to the measured aspherical surface is the measured aspherical surface. Are formed so that the optical path lengths of the respective light beams are substantially constant with each other, and an aspheric shape is formed so that a predetermined work space can be set between the measured aspheric surfaces. It is possible to determine this, and it is not necessary to have a shape similar to the measured aspherical surface and to place it close to the measured aspherical surface as in the prior art. Therefore, it is easy to handle and the workability such as alignment is remarkably improved as compared with the prior art.

一方、本発明に係る光波干渉測定装置および方法によれば、上述のような本発明の非球面測定用素子を用いているので、被検非球面設置時等のアライメント調整作業が容易であり、かつ被検非球面の測定を高精度に安定して行うことが可能となる。   On the other hand, according to the light wave interference measuring apparatus and method according to the present invention, since the aspherical measuring element of the present invention as described above is used, alignment adjustment work at the time of installation of the test aspherical surface is easy, In addition, the measurement of the test aspheric surface can be performed stably with high accuracy.

また、本発明に係る非球面の形状補正方法によれば、本発明の非球面測定用素子を用いて得られる干渉縞情報に基づき補正加工を行うので、非球面測定用素子の非球面形状や被検非球面の形状を高精度に補正加工することが可能となる。   Further, according to the aspherical shape correction method of the present invention, correction processing is performed based on interference fringe information obtained using the aspherical measurement element of the present invention. It becomes possible to correct and process the shape of the aspheric surface to be detected with high accuracy.

さらに、本発明に係るシステム誤差補正方法によれば、本発明の非球面測定用素子を用いて得られる干渉縞情報に基づきシステムの誤差補正を行うので、光波干渉測定装置のシステム誤差を高精度に補正することが可能となる。   Furthermore, according to the system error correction method of the present invention, the system error correction is performed based on the interference fringe information obtained by using the aspherical surface measuring element of the present invention, so that the system error of the optical interference measuring apparatus is highly accurate. It becomes possible to correct to.

以下、本発明の実施形態について図面を用いて説明する。図1は本発明の一実施形態に係る非球面測定用素子の形状および作用を示す断面図であり、図2は本発明の一実施形態に係る光波干渉測定装置の構成を概略的に示す図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the shape and action of an aspherical surface measuring element according to an embodiment of the present invention, and FIG. 2 is a diagram schematically showing the configuration of a lightwave interference measuring apparatus according to an embodiment of the present invention. It is.

図1に示す非球面測定用素子6Aは、球面波からなる測定光を出力する測定光学系(図示略)と被測定体7Aの被測定非球面71Aとの間に配置されるものであって、単体のレンズ部材として構成されている。測定光学系と対向する側のレンズ面(図中左側のレンズ面)は、該レンズ面に対し略垂直に入射された測定光の一部を透過せしめるとともに、該測定光のその余を反射せしめて参照光となす参照基準球面61Aとされており、被測定非球面71Aと対向する側のレンズ面(図中右側のレンズ面)は、上記参照基準球面61Aから被測定非球面71A(厳密には、設計通りに形成された理想的な面)に至る測定光の各光線(光線軌跡を図示)が該被測定非球面71Aに略垂直に入射し、かつ該各光線の光路長が互いに略一定となるように形状設定がなされた非球面62Aとされている。また、この非球面測定用素子6Aは、測定光学系に対する傾き姿勢調整用の平面反射部63A(図中1点鎖線で示す光軸に対し垂直な面で、図中右方から見ると円環状をなしている)を備えている。なお、図中の点Pは、上記参照基準球面61Aの曲率中心である。   The aspherical measuring element 6A shown in FIG. 1 is disposed between a measuring optical system (not shown) that outputs measuring light composed of spherical waves and a measured aspherical surface 71A of the measured body 7A. It is configured as a single lens member. The lens surface facing the measurement optical system (the lens surface on the left side in the figure) transmits part of the measurement light incident substantially perpendicular to the lens surface and reflects the remainder of the measurement light. A reference standard spherical surface 61A serving as a reference light is provided, and the lens surface (the lens surface on the right side in the drawing) facing the measured aspheric surface 71A is measured from the reference standard spherical surface 61A to the measured aspheric surface 71A (strictly, Is an ideal surface formed as designed) and each light ray of the measurement light (ray locus is shown) is substantially perpendicularly incident on the aspheric surface 71A to be measured, and the optical path lengths of the respective light rays are substantially equal to each other. The aspherical surface 62A is shaped so as to be constant. Further, the aspherical surface measuring element 6A includes a plane reflecting portion 63A for adjusting the tilt posture with respect to the measuring optical system (a surface perpendicular to the optical axis indicated by a one-dot chain line in the figure and viewed from the right side in the figure as an annular shape ). The point P in the figure is the center of curvature of the reference standard spherical surface 61A.

一方、図2に示す光波干渉測定装置は、被測定体7が有する被測定非球面71の形状を、非球面測定用素子6を用いて測定するものであり、干渉計本体部1とポジショニング調整部3と画像解析処理部5とを備えてなる。なお、図2に示す非球面測定用素子6は、図1に示すものと形状が異なるものであるが、基本的な構成(参照基準面61、非球面62、平面反射部63を備えている)および作用は図1に示す非球面測定用素子6Aと同じである。また、図2に示す被測定体7は、図1に示す被測定体7Aとは異なるものであり、被測定非球面71の他に、測定光学系に対する傾き姿勢調整用の平面反射部72を備えている。なお、この被測定体7は、非球面レンズ成形用の金型を想定したものであるが、被測定体としてはこれに限定されるものではなく、非球面レンズ自体を被測定体とすることも可能である。   On the other hand, the light wave interference measuring apparatus shown in FIG. 2 measures the shape of the measured aspheric surface 71 of the measured object 7 using the aspherical surface measuring element 6 and adjusts the positioning with the interferometer body 1. Unit 3 and image analysis processing unit 5. The aspherical measuring element 6 shown in FIG. 2 is different in shape from that shown in FIG. 1, but has a basic configuration (reference reference surface 61, aspherical surface 62, and planar reflecting portion 63). ) And the operation are the same as those of the aspherical surface measuring element 6A shown in FIG. The measured object 7 shown in FIG. 2 is different from the measured object 7A shown in FIG. 1. In addition to the measured aspherical surface 71, a plane reflecting portion 72 for adjusting the tilt posture with respect to the measuring optical system is provided. I have. The object to be measured 7 is assumed to be a mold for molding an aspheric lens, but the object to be measured is not limited to this, and the aspheric lens itself is the object to be measured. Is also possible.

上記干渉計本体部1には、発光ダイオード(LED)やスーパー・ルミネッセント・ダイオード(SLD)、ハロゲンランプ等により構成された低可干渉光源部11L(主に測定の際に用いられる)と、ヘリウム・ネオンレーザや半導体レーザ(LD)等により構成された高可干渉光源部11H(主に光軸調整の際に用いられる)とが択一的に切替え可能に配されている。また、この干渉計本体部1は、上記低可干渉光源部11Lから射出された後、低可干渉光束用のコリメータレンズ12Lにより平行光とされた低可干渉光束を2光束に分岐するとともに、一方の光束を他方の光束に対して迂回させた後に該2光束を再合成し、分岐されてから再合成されるまでの該2光束の各光路長の差を調整する迂回路部10を有してなる。   The interferometer body 1 includes a low coherence light source 11L (mainly used for measurement) composed of a light emitting diode (LED), a super luminescent diode (SLD), a halogen lamp, etc., and helium. A high coherence light source unit 11H (mainly used for adjusting the optical axis) constituted by a neon laser, a semiconductor laser (LD), or the like is arranged to be selectively switchable. In addition, the interferometer main body 1 branches the low coherent light beam that has been emitted from the low coherent light source unit 11L and then made parallel light by the collimator lens 12L for the low coherent light beam into two light beams, A bypass unit 10 is provided that adjusts the difference in optical path length of the two light beams after the one light beam is detoured with respect to the other light beam and then the two light beams are recombined. Do it.

本実施形態において上記迂回路部10は、上記コリメータレンズ12Lを介して上記低可干渉光源部11Lから射出された光束を、図中左方に反射される第1の光束と図中上方に透過する第2の光束とに分岐するハーフミラー13と、上記第1の光束を再帰反射する第1の反射ミラー14と、上記第2の光束の光路上に配された光路長補償用の補償板15と、該補償板15を透過した上記第2の光束を再帰反射する第2の反射ミラー16と、上記第1の反射ミラー14を保持する位置調整手段20とを備えてなる。上記位置調整手段20は、パルスステージ等により構成されており、上記第1の反射ミラー14から上記ハーフミラー13までの距離を変更することにより、上記低可干渉光束を用いた光干渉測定や光軸調整の際に必要となる干渉縞情報が得られるように、ハーフミラー13において分岐され、第1および第2の反射ミラー14,16によりそれぞれ反射されて再びハーフミラー13において再合成されるまでの上記第1および第2の光束の各光路長の差を調整し得るように構成されている。また、上記位置調整手段20は、フリンジスキャン測定を行う際に上記第1の反射ミラー14を光軸方向に微動し得るように構成されている。   In the present embodiment, the detour unit 10 transmits the light beam emitted from the low coherence light source unit 11L via the collimator lens 12L and the first light beam reflected leftward in the drawing and the upper side in the drawing. A half mirror 13 that branches into a second light beam, a first reflection mirror 14 that retroreflects the first light beam, and an optical path length compensation compensator arranged on the optical path of the second light beam. 15, a second reflecting mirror 16 that retroreflects the second light flux that has passed through the compensation plate 15, and a position adjusting means 20 that holds the first reflecting mirror 14. The position adjusting means 20 is constituted by a pulse stage or the like, and by changing the distance from the first reflecting mirror 14 to the half mirror 13, optical interference measurement or light using the low coherent light beam can be performed. Until the interference fringe information necessary for the axis adjustment is obtained, it is branched by the half mirror 13, reflected by the first and second reflecting mirrors 14 and 16, respectively, and recombined in the half mirror 13 again. The difference between the optical path lengths of the first and second light beams is adjustable. The position adjusting means 20 is configured to be able to finely move the first reflecting mirror 14 in the optical axis direction when performing fringe scan measurement.

また、上記干渉計本体部1は、上記迂回路部10の光路上に挿脱可能に配された第3の反射ミラー18および遮光板19を備えている。この第3の反射ミラー18および遮光板19は、上記低可干渉光源部11Lが使用される際には光路外に配置され、上記高可干渉光源部11Hが使用される際に光路上に配置されるようになっている。上記第3の反射ミラー18は、上記高可干渉光源部11Hから高可干渉光束用のコリメータレンズ12Hおよび戻り光防止用のアイソレータ17を介して図中左方に出力された高可干渉光束を図中上方に反射して、上記低可干渉光束と同じ光路上に導くものであり、上記遮光板19は、上記ハーフミラー13および上記補償板15を透過した高可干渉光束が上記第2の反射ミラー16に入射することを阻止するものである。   The interferometer body 1 includes a third reflection mirror 18 and a light shielding plate 19 that are detachably arranged on the optical path of the bypass unit 10. The third reflection mirror 18 and the light shielding plate 19 are disposed outside the optical path when the low coherence light source unit 11L is used, and are disposed on the optical path when the high coherence light source unit 11H is used. It has come to be. The third reflecting mirror 18 receives the high coherent light beam output from the high coherent light source unit 11H to the left in the drawing through the collimator lens 12H for high coherent light beam and the isolator 17 for preventing return light. The light is reflected upward in the figure and guided onto the same optical path as the low coherent light beam. The light shielding plate 19 has the high coherent light beam transmitted through the half mirror 13 and the compensation plate 15 as the second coherent light beam. This prevents the light from entering the reflection mirror 16.

さらに、上記干渉計本体部1には、ビーム径拡大用レンズ21、ビームスプリッタ22、コリメータレンズ23、基準板24、結像レンズ25、および光検出面を有する撮像手段26が配されている。上記基準板24は、高精度に平滑化されてなる基準平面24aと、該基準平面24aと平行に配された裏面24bとを備えた平行平板であり、該裏面24bには反射防止膜が着設されている。また、この基準板24は、図示せぬ2軸傾き調整手段に保持されており、後述のアライメント調整段階において、上記コリメータレンズ23の光軸に対する傾き調整が行われるように構成されている。さらに、この基準板24は、後述のアライメント調整段階において、光路外に退出可能に構成されている。   Further, the interferometer main body 1 is provided with a beam diameter enlarging lens 21, a beam splitter 22, a collimator lens 23, a reference plate 24, an imaging lens 25, and an imaging means 26 having a light detection surface. The reference plate 24 is a parallel plate provided with a reference plane 24a smoothed with high accuracy and a back surface 24b arranged in parallel with the reference plane 24a, and an antireflection film is attached to the back surface 24b. It is installed. Further, the reference plate 24 is held by a biaxial tilt adjusting means (not shown), and is configured such that tilt adjustment with respect to the optical axis of the collimator lens 23 is performed in an alignment adjusting step described later. Further, the reference plate 24 is configured to be able to exit out of the optical path in an alignment adjustment stage described later.

一方、上記ポジショニング調整部3は、上記干渉計本体部1から図中上方に出力された平行光束を球面波に変換する基準レンズ部30と、該基準レンズ部30から出射された球面波の光路を開閉可能に構成されたシャッター34と、上記非球面測定用素子6が載置保持される第1の載置台35と、上記被測定体7が載置保持される第2の載置台36とを備えてなる。   On the other hand, the positioning adjusting unit 3 includes a reference lens unit 30 that converts the parallel light beam output from the interferometer body unit 1 upward in the drawing into a spherical wave, and an optical path of the spherical wave emitted from the reference lens unit 30. A shutter 34 configured to be openable and closable, a first mounting table 35 on which the aspherical measuring element 6 is mounted and held, and a second mounting table 36 on which the measured object 7 is mounted and held. It is equipped with.

上記基準レンズ部30は、上記干渉計本体部1に配された各光学部材と共に測定光学系を構成するものであり、上記非球面測定用素子6と対向する側に光軸調整用球面32aを有する対物レンズ32と、該光軸調整用球面32aに対し上記干渉計本体部1からの平行光束を略垂直に入射せしめるレンズ群31(図では1つのレンズとして示されている)とが鏡筒33内に配されてなり、上記干渉計本体部1と上記非球面測定用素子6との間の光路上に挿脱されるように構成されている。また、この基準レンズ部30は、2軸傾き調整手段および3軸位置調整手段(いずれも図示略)を介して保持されており、後述のアライメント調整段階において、上記干渉計本体部1に対する光軸の傾き調整、および上記非球面測定用素子6に対する位置調整が行われるようになっている。   The reference lens unit 30 constitutes a measurement optical system together with each optical member arranged in the interferometer body unit 1, and an optical axis adjusting spherical surface 32 a is provided on the side facing the aspherical surface measuring element 6. An objective lens 32 and a lens group 31 (shown as one lens in the drawing) that allows the parallel light beam from the interferometer main body 1 to enter the optical axis adjusting spherical surface 32a substantially perpendicularly. 33, and is configured to be inserted into and removed from the optical path between the interferometer main body 1 and the aspherical surface measuring element 6. Further, the reference lens unit 30 is held via a biaxial tilt adjusting unit and a triaxial position adjusting unit (both not shown), and the optical axis with respect to the interferometer body unit 1 in the alignment adjustment stage described later. Tilt adjustment and position adjustment with respect to the aspherical surface measuring element 6 are performed.

上記第1の載置台35は、例えば、図3(第1の載置台35の平面図)に示すように構成される。この第1の載置台35は、図2に示すように上記非球面測定用素子6の参照基準球面61が上記基準レンズ部30の光軸調整用球面32aと対向するように該非球面測定用素子6を保持するものであり、上記非球面測定用素子6の平面反射部63を3点支持する支持部35aと、該非球面測定用素子6を保持した状態において上記参照基準球面61を臨めるように開設された中央窓部35bと、同じく保持状態において上記平面反射部63が臨めるように開設された3つの周辺窓部35cとを備えてなる(図3参照)。また、この第1の載置台35は、図示せぬ2軸傾き調整手段に保持されており、後述のアライメント調整段階において、保持した上記非球面測定用素子6の傾き姿勢の調整を行えるように構成されている。   The first mounting table 35 is configured as shown in FIG. 3 (plan view of the first mounting table 35), for example. As shown in FIG. 2, the first mounting table 35 includes the aspherical surface measuring element 6 so that the reference standard spherical surface 61 of the aspherical surface measuring element 6 faces the optical axis adjusting spherical surface 32a of the standard lens unit 30. 6 so that the reference reference spherical surface 61 can be faced in a state where the aspherical measurement element 6 is held, and a support part 35a that supports the plane reflecting part 63 of the aspherical measurement element 6 at three points. The center window portion 35b is opened, and three peripheral window portions 35c are opened so that the planar reflection portion 63 can face the same in the holding state (see FIG. 3). The first mounting table 35 is held by a biaxial inclination adjusting means (not shown) so that the inclination posture of the held aspherical measuring element 6 can be adjusted in the alignment adjustment stage described later. It is configured.

上記第2の載置台36は、図2に示すように上記被測定体7の上記被測定非球面71が上記非球面測定用素子6の非球面62と対向するように該被測定体7を保持するものであり、該被測定体7を保持した状態において該被測定体7の上記被測定非球面71および上記平面反射部72を図中下方よりそれぞれ臨めるように構成されている。また、この第2の載置台36は、図示せぬ3軸位置調整手段を介して保持されており、後述のアライメント調整段階において、保持した上記被測定非球面71の位置調整を行えるように構成されている。   As shown in FIG. 2, the second mounting table 36 holds the measured object 7 so that the measured aspheric surface 71 of the measured object 7 faces the aspherical surface 62 of the element 6 for measuring the aspheric surface. In the state where the measured object 7 is held, the measured aspherical surface 71 and the planar reflecting portion 72 of the measured object 7 can be viewed from below in the figure. Further, the second mounting table 36 is held via a triaxial position adjusting means (not shown), and is configured so that the position of the held measured aspheric surface 71 can be adjusted in the alignment adjustment stage described later. Has been.

なお、上記第1および第2の載置台35,36については、非球面測定用素子6および被測定体7をそれぞれ吸引保持するような構成のものとすることも可能である。   The first and second mounting tables 35 and 36 may be configured to suck and hold the aspherical surface measuring element 6 and the measured object 7 respectively.

また、上記画像解析処理部5は、上記撮像手段26により撮像された画像についての画像処理、各種演算処理および各種調整手段の駆動制御を行なうコンピュータ51と、干渉縞画像等を表示するモニタ装置52と、コンピュータ27に対する各種入力を行うための入力装置53とを備えている。   The image analysis processing unit 5 includes a computer 51 that performs image processing on the image captured by the imaging unit 26, various arithmetic processes, and drive control of various adjustment units, and a monitor device 52 that displays an interference fringe image and the like. And an input device 53 for making various inputs to the computer 27.

次に、図2に示す光波干渉測定装置において、測定に先立って行われるアライメント調整について説明する。図4はアライメント調整の手順を(a)〜(f)の順に段階的に示す図である。なお、以下のアライメント調整においては、上記高可干渉光源部11Hから射出された高可干渉光束が用いられる(図2において、反射ミラー18および遮光板19が迂回路部10の光路上に配置される)。   Next, alignment adjustment performed prior to measurement in the optical interference measuring apparatus shown in FIG. 2 will be described. FIG. 4 is a diagram showing the alignment adjustment procedure step by step in the order of (a) to (f). In the following alignment adjustment, the high coherence light beam emitted from the high coherence light source unit 11H is used (in FIG. 2, the reflection mirror 18 and the light shielding plate 19 are arranged on the optical path of the detour unit 10). )

(1)まず、図4(a)に示すように、コーナーキューブ81を用いて上記コリメータレンズ23と上記基準板24との光軸調整を行う。この光軸調整は、基準板24を保持する2軸傾き調整手段(図示略)を用いて、コリメータレンズ23に対する基準板24の傾きを変化させることにより行われる。   (1) First, as shown in FIG. 4A, the optical axes of the collimator lens 23 and the reference plate 24 are adjusted using a corner cube 81. This optical axis adjustment is performed by changing the inclination of the reference plate 24 with respect to the collimator lens 23 using biaxial inclination adjusting means (not shown) that holds the reference plate 24.

(2)次に、図4(b)に示すように、上記第2の載置台36にマスター用の被測定体7(被測定非球面71が高精度に形成されており形状測定の際の基準となるもの)を載置し、該被測定体7の被測定非球面71と干渉計本体部1との光軸調整を行う。この光軸調整は、基準板24の基準平面24aから反射された戻り光と、基準板24を透過した後に被測定体7の平面反射部72から反射された戻り光との光干渉により得られる干渉縞がヌル縞状態となるように、干渉計本体部1に設置された2軸傾き調整手段82を用いて、被測定体7に対する干渉計本体部1の傾きを変化させることにより行われる。   (2) Next, as shown in FIG. 4 (b), the measurement object 7 for measurement (measured aspheric surface 71 is formed with high accuracy on the second mounting table 36, and the shape measurement is performed. And the optical axis of the measured aspherical surface 71 of the measured object 7 and the interferometer main body 1 are adjusted. This optical axis adjustment is obtained by optical interference between the return light reflected from the reference plane 24a of the reference plate 24 and the return light reflected from the plane reflecting portion 72 of the measured object 7 after passing through the reference plate 24. This is performed by changing the tilt of the interferometer body 1 with respect to the measured object 7 using the biaxial tilt adjusting means 82 installed in the interferometer body 1 so that the interference fringes are in a null fringe state.

(3)次いで、図4(c)に示すように、上記第1の載置台35に非球面測定用素子6を載置し、該非球面測定用素子6と干渉計本体部1との光軸調整を行う。この光軸調整は、基準板24の基準平面24aから反射された戻り光と、基準板24を透過した後に非球面測定用素子6の平面反射部63から反射された戻り光との光干渉により得られる干渉縞がヌル縞状態となるように、第1の載置台35を保持する2軸傾き調整手段(図示略)を用いて、干渉計本体部1に対する非球面測定用素子6の傾きを変化させることにより行われる。   (3) Next, as shown in FIG. 4C, the aspherical surface measuring element 6 is placed on the first mounting table 35, and the optical axis between the aspherical surface measuring element 6 and the interferometer body 1. Make adjustments. This optical axis adjustment is based on optical interference between the return light reflected from the reference plane 24 a of the reference plate 24 and the return light reflected from the plane reflection portion 63 of the aspherical surface measuring element 6 after passing through the reference plate 24. The biaxial inclination adjusting means (not shown) that holds the first mounting table 35 is used to adjust the inclination of the aspherical surface measuring element 6 with respect to the interferometer body 1 so that the obtained interference fringes are in a null fringe state. This is done by changing.

(4)次に、図4(d)に示すように、第1の載置台35と干渉計本体部1との間の光路上に基準レンズ部30を配置し、該基準レンズ部30と干渉計本体部1との光軸調整を行う。この光軸調整は、シャッター34により基準レンズ部30と非球面測定用素子6との間の光路を閉鎖した状態において、基準板24の基準平面24aから反射された戻り光と、基準板24を透過して基準レンズ部30に入射され、さらに基準レンズ部30の光軸調整用球面32aから反射された戻り光との光干渉により得られる干渉縞がヌル縞状態となるように、基準レンズ部30を保持する2軸傾き調整手段(図示略)を用いて、干渉計本体部1に対する基準レンズ部30の傾きを変化させることにより行われる。   (4) Next, as shown in FIG. 4 (d), a reference lens unit 30 is arranged on the optical path between the first mounting table 35 and the interferometer body 1, and interferes with the reference lens unit 30. Optical axis adjustment with the meter body 1 is performed. In this optical axis adjustment, in the state where the optical path between the reference lens unit 30 and the aspherical surface measuring element 6 is closed by the shutter 34, the return light reflected from the reference plane 24a of the reference plate 24 and the reference plate 24 are adjusted. The reference lens unit so that the interference fringes obtained by light interference with the return light that is transmitted and incident on the reference lens unit 30 and reflected from the optical axis adjusting spherical surface 32a of the reference lens unit 30 are in a null-striped state. This is performed by changing the inclination of the reference lens unit 30 with respect to the interferometer body 1 using a biaxial inclination adjusting means (not shown) that holds the reference numeral 30.

(5)次いで、図4(e)に示すように、基準レンズ部30と非球面測定用素子6との光軸調整を行う。この光軸調整は、図4(d)に示すシャッター34が開放された状態(図4(e),(f)では図示略)、かつ基準板24が光路外に退出された状態(図4(e),(f)ではこの状態を2点鎖線で示す)において、基準レンズ部30に入射され、該基準レンズ部30の光軸調整用球面32aから反射された戻り光と、基準レンズ部30を透過して非球面測定用素子6の参照基準球面61から反射された戻り光との光干渉により得られる干渉縞がヌル縞状態となるように、基準レンズ部30を保持する3軸位置調整手段(図示略)を用いて、非球面測定用素子6に対する基準レンズ部30の位置を変化させることにより行われる。この光軸調整により、基準レンズ部30を透過した球面波の各光線が非球面測定用素子6の参照基準球面61に対し略垂直に入射するようになる。   (5) Next, as shown in FIG. 4E, the optical axes of the reference lens unit 30 and the aspherical surface measuring element 6 are adjusted. In this optical axis adjustment, the shutter 34 shown in FIG. 4D is opened (not shown in FIGS. 4E and 4F), and the reference plate 24 is moved out of the optical path (FIG. 4). In (e) and (f), this state is indicated by a two-dot chain line) and the return light incident on the reference lens unit 30 and reflected from the optical axis adjusting spherical surface 32a of the reference lens unit 30 and the reference lens unit A triaxial position for holding the reference lens unit 30 so that the interference fringes obtained by optical interference with the return light transmitted through 30 and reflected from the reference standard spherical surface 61 of the aspherical surface measuring element 6 are in a null fringe state. This is done by changing the position of the reference lens unit 30 with respect to the aspherical surface measuring element 6 using an adjusting means (not shown). By this optical axis adjustment, each light beam of the spherical wave transmitted through the reference lens unit 30 enters the reference standard spherical surface 61 of the aspherical surface measuring element 6 substantially perpendicularly.

(6)次に、図4(f)に示すように、非球面測定用素子6と被測定体7の被測定非球面71との光軸調整を行う。この光軸調整は、図4(d)に示すシャッター34が開放された状態、かつ基準板24が光路外に退出された状態において、基準レンズ部30を介して非球面測定用素子6に入射され、さらに非球面測定用素子6の参照基準球面61から反射された参照光と、基準レンズ部30および非球面測定用素子6を介して被測定体7の被測定非球面71に入射され、該被測定非球面71から反射された戻り光との光干渉により得られる干渉縞がヌル縞状態となるように、第2の載置台36を保持する3軸位置調整手段(図示略)を用いて、基準レンズ部30に対する被測定非球面71の位置を変化させることにより行われる。この光軸調整により、非球面測定用素子6を透過した非球面波の各光線が被測定非球面71に対し略垂直に入射するようになる。   (6) Next, as shown in FIG. 4 (f), optical axis adjustment of the aspherical surface measuring element 6 and the measured aspherical surface 71 of the measured object 7 is performed. This optical axis adjustment is performed on the aspherical surface measuring element 6 via the reference lens unit 30 in a state where the shutter 34 shown in FIG. 4D is opened and the reference plate 24 is retracted out of the optical path. Further, the reference light reflected from the reference standard spherical surface 61 of the aspherical surface measuring element 6 is incident on the measured aspherical surface 71 of the measured body 7 via the standard lens unit 30 and the aspherical surface measuring element 6. Triaxial position adjusting means (not shown) that holds the second mounting table 36 is used so that interference fringes obtained by optical interference with the return light reflected from the measured aspheric surface 71 are in a null fringe state. Thus, the measurement is performed by changing the position of the aspheric surface 71 to be measured with respect to the reference lens unit 30. By this optical axis adjustment, each light beam of the aspherical wave transmitted through the aspherical surface measuring element 6 enters the measured aspherical surface 71 substantially perpendicularly.

なお、上記手順では、被測定体7をマスター用のものとしているが、測定対象となるサンプルの被測定体7を用いてアライメント調整を行うことも可能である。また、アライメント調整はマスター用のものを用いて行い、マスター用のものとサンプルとを置き換えて測定を行うことも可能である。   In the above procedure, the measured object 7 is used for the master, but it is also possible to perform alignment adjustment using the measured object 7 of the sample to be measured. In addition, the alignment adjustment is performed using the master, and the measurement can be performed by replacing the master and the sample.

上記(1)〜(6)の手順によりアライメント調整が終了し、本実施形態の光波干渉測定装置による測定の準備が整うこととなる。以下、本実施形態の光波干渉測定装置を用いた光波干渉測定方法、非球面の形状補正方法およびシステム誤差補正方法について説明する。   The alignment adjustment is completed by the above procedures (1) to (6), and preparations for measurement by the light wave interference measuring apparatus of this embodiment are completed. Hereinafter, a light wave interference measurement method, an aspherical shape correction method, and a system error correction method using the light wave interference measurement apparatus of the present embodiment will be described.

これらの方法は、得られた干渉縞情報をどのように利用するのかという点で互いに異なるものであり、干渉縞情報を得るまでの手順は共通しているので、以下では、光波干渉測定方法について手順を説明し、非球面の形状補正方法およびシステム誤差補正方法については、補足的に説明する。   These methods are different from each other in how the obtained interference fringe information is used, and the procedure until obtaining the interference fringe information is common. The procedure will be described, and an aspheric shape correction method and a system error correction method will be supplementarily described.

(A)まず、図2において、反射ミラー18および遮光板19を迂回路部10の光路上から退出させるとともに、使用する光源部を高可干渉光源部11Hから低可干渉光源部11Lに切替える。   (A) First, in FIG. 2, the reflection mirror 18 and the light shielding plate 19 are retracted from the optical path of the detour unit 10, and the light source unit to be used is switched from the high coherence light source unit 11H to the low coherence light source unit 11L.

(B)次に、迂回路部10において光路長差の調整を行う。この調整は、低可干渉光源部11Lから射出された後、ハーフミラー13で分岐され、さらに第1の反射ミラー14から再帰反射されてハーフミラー13に戻る第1の光束と、ハーフミラー13で分岐された後、第2の反射ミラー16から再帰反射されてハーフミラー13に戻る第2の光束との各光路長の差を、非球面測定用素子6の参照基準球面61から被測定体7の被測定非球面71までの往復光路長に略一致した状態となるように、位置調整手段20を用いて第1の反射ミラー14の位置を変更することにより行われる。   (B) Next, the optical path length difference is adjusted in the detour unit 10. This adjustment is performed by the half mirror 13 and the first light flux that is emitted from the low coherence light source 11L, branched by the half mirror 13, and then retroreflected from the first reflecting mirror 14 and returned to the half mirror 13. After branching, the difference in optical path length from the second light beam retroreflected from the second reflecting mirror 16 and returning to the half mirror 13 is determined from the reference standard spherical surface 61 of the aspherical surface measuring element 6 to the measured object 7. This is performed by changing the position of the first reflecting mirror 14 using the position adjusting means 20 so as to be in a state that substantially matches the reciprocating optical path length to the measured aspheric surface 71.

この光路長差の調整により、迂回路部10から出力され、ビーム径拡大用レンズ21、ビームスプリッタ22、コリメータレンズ23、および基準レンズ部30を介して非球面測定用素子6に入射した低可干渉光束のうち、参照基準球面61から反射される光束の一部と、非球面測定用素子6を透過して、被測定体7の被測定非球面71から反射される光束の一部との光路長が互いに略一致することとなり(例えば、第1の光束の光路長が第2の光束の光路長よりも長い場合には、非球面測定用素子6に至る第1の光束のうちで参照基準球面61から反射される光束と、非球面測定用素子6に至る第2の光束のうちで非球面測定用素子6を透過して被測定体7の被測定非球面71から反射される光束とが互いに干渉する)、これらの光束間で生じる光干渉による干渉縞情報を担持した波面が形成される。   By adjusting the optical path length difference, the low pass rate output from the detour unit 10 and incident on the aspherical surface measuring element 6 through the beam diameter expanding lens 21, the beam splitter 22, the collimator lens 23, and the reference lens unit 30. Of the interference light beam, a part of the light beam reflected from the reference standard spherical surface 61 and a part of the light beam transmitted through the aspherical surface measuring element 6 and reflected from the measured aspherical surface 71 of the measured object 7. The optical path lengths substantially coincide with each other (for example, when the optical path length of the first light beam is longer than the optical path length of the second light beam, reference is made to the first light beam reaching the aspherical surface measuring element 6. Of the luminous flux reflected from the reference spherical surface 61 and the second luminous flux reaching the aspherical surface measuring element 6, the luminous flux transmitted through the aspherical surface measuring element 6 and reflected from the measured aspherical surface 71 of the measured object 7. Between these luminous fluxes) Wavefront carrying interference fringes information by Hikari Jiru interference is formed.

(C)次いで、干渉縞情報を担持した波面を撮像手段26により取り込み、干渉縞画像を撮像する。なお、干渉縞画像の撮像に際しては、位置調整手段20を用いて第1の反射ミラー14の位置を所定距離ずつ微動させ、複数枚の干渉縞画像を得るフリンジスキャン測定の手法を用いることが好ましい。   (C) Next, the wavefront carrying the interference fringe information is captured by the imaging means 26 and an interference fringe image is captured. It is to be noted that, when the interference fringe image is picked up, it is preferable to use a fringe scan measurement method for obtaining a plurality of interference fringe images by finely moving the position of the first reflecting mirror 14 by a predetermined distance using the position adjusting means 20. .

(D)次に、撮像手段26により撮像された干渉縞画像をコンピュータ51において解析し、被測定非球面71の形状情報を得るとともに、この数値データや画像データ等をモニタ装置52に表示する。なお、解析に際しては、被測定非球面71上の座標系と撮像手段26の光検出面(撮像素子)上の座標系との間の対応関係の歪み(ディストーション)を補正する座標変換処理を行う。   (D) Next, the interference fringe image picked up by the image pickup means 26 is analyzed by the computer 51 to obtain the shape information of the aspheric surface 71 to be measured, and this numerical data, image data, etc. are displayed on the monitor device 52. In the analysis, a coordinate conversion process for correcting the distortion (distortion) of the correspondence between the coordinate system on the measured aspherical surface 71 and the coordinate system on the light detection surface (imaging device) of the imaging unit 26 is performed. .

なお、干渉縞画像の解析結果に基づき、被測定非球面71の設計値からの形状誤差情報を求め、この形状誤差情報に基づき、被測定非球面71の形状を補正加工することが可能である(本発明に係る非球面の形状補正方法の一実施形態)。   It is possible to obtain shape error information from the design value of the measured aspheric surface 71 based on the analysis result of the interference fringe image and correct the shape of the measured aspheric surface 71 based on the shape error information. (One Embodiment of the shape correction method of the aspherical surface which concerns on this invention).

また、マスター用の被測定体7を用いて上記と同様の測定解析を行い、その解析結果に基づき、非球面測定用素子6の非球面62の形状誤差情報を求め、この形状誤差情報に基づき、非球面測定用素子6の非球面62の形状を補正加工することも可能である(本発明に係る非球面の形状補正方法の他の実施形態)。   Further, the measurement analysis similar to the above is performed using the measurement object 7 for master, and based on the analysis result, the shape error information of the aspheric surface 62 of the aspheric surface measuring element 6 is obtained, and based on this shape error information. It is also possible to correct the shape of the aspherical surface 62 of the aspherical surface measuring element 6 (another embodiment of the aspherical shape correcting method according to the present invention).

さらに、マスター用の被測定体7を用いて上記と同様の測定解析を行い、その解析結果に基づき、光干渉測定装置のシステム誤差情報を求め、このシステム誤差情報に基づき、光干渉測定装置のシステム誤差を補正することも可能である(本発明に係るシステム誤差補正方法の一実施形態)。例えば、システム誤差情報を記憶しておき、サンプルの測定結果をシステム誤差情報に基づき補正することが可能である。   Further, the same measurement analysis as described above is performed using the measurement object 7 for master, and system error information of the optical interference measurement apparatus is obtained based on the analysis result. Based on the system error information, the optical interference measurement apparatus It is also possible to correct the system error (one embodiment of the system error correction method according to the present invention). For example, it is possible to store system error information and correct the measurement result of the sample based on the system error information.

なお、これまでの説明では、1つの非球面測定用素子を用いて被測定非球面の全域を1度に測定し得ることを前提としているが、被測定非球面の形状によっては、被測定非球面から非球面測定用素子に戻る光線が交わってしまうため、このような測定ができない場合も想定される。   In the above description, it is assumed that the entire area of the measured aspheric surface can be measured at one time using one aspheric measuring element, but depending on the shape of the measured aspheric surface, Since the light rays returning from the spherical surface to the aspherical surface measuring element intersect, there may be a case where such a measurement cannot be performed.

以下では、このような場合を想定した際の測定方法について説明する。図5は2つの非球面測定用素子を用い、測定を2回に分けて行う態様を示している。
図5に示す態様は、被測定体7Bの被測定非球面71B(凹面と凸面とが組み合わせてなる)を、図5(a)において実線で示す領域(周辺部領域)と、図5(b)において実線で示す領域(中央部領域)とに分けるとともに、各領域の測定を2つの非球面測定用素子6B,6Cを用いて別個に行うものである。
Below, the measurement method at the time of assuming such a case is demonstrated. FIG. 5 shows a mode in which two aspherical measuring elements are used and measurement is performed in two steps.
In the embodiment shown in FIG. 5, the measured aspheric surface 71B (combined with a concave surface and a convex surface) of the measured object 7B is shown in FIG. 5A as a region (peripheral region) indicated by a solid line, and FIG. ) Are divided into regions (center regions) indicated by solid lines, and each region is measured separately using two aspherical surface measuring elements 6B and 6C.

すなわち、1回目の測定では、図5(a)に示す非球面測定用素子6B(参照基準球面61B、非球面62Bおよび平面反射部63Bを有する)を用いて被測定非球面71Bの周辺部領域の測定を行う。この非球面測定用素子6Bは、参照基準球面61Bおよび非球面62Bにおいて、図中実線で示す領域のみを使用するものであり、図中点線で示す領域の形状は問わない。なお、この1回目の測定では、非球面測定用素子6Bを介して被測定非球面71Bの中央部領域に測定光が入射し、この反射光が迷光となることを防止するために、非球面測定用素子6Bの図中左側または非球面測定用素子6Bと被測定体7Bとの間の所定位置にマスクが設定される。   That is, in the first measurement, the peripheral region of the measured aspheric surface 71B using the aspherical surface measuring element 6B (having the reference standard spherical surface 61B, the aspherical surface 62B, and the planar reflecting portion 63B) shown in FIG. Measure. This aspherical surface measuring element 6B uses only the region indicated by the solid line in the drawing in the reference standard spherical surface 61B and the aspherical surface 62B, and the shape of the region indicated by the dotted line in the drawing does not matter. In this first measurement, in order to prevent the measurement light from entering the central region of the measured aspheric surface 71B via the aspheric measurement element 6B and the reflected light from becoming stray light, the aspheric surface is used. A mask is set on the left side of the measuring element 6B in the drawing or at a predetermined position between the aspherical measuring element 6B and the measured object 7B.

次に、図5(b)に示す非球面測定用素子6C(参照基準球面61C、非球面62Cおよび平面反射部63Cを有する)を用いて、被測定非球面71Bの中央部領域に係る2回目の測定を行う。この2回目の測定に際しては、非球面測定用素子6Cのアライメント調整が行われる。また、非球面測定用素子6Cを介して被測定非球面71Bの周辺部領域に測定光が入射し、この反射光が迷光となることを防止するために、非球面測定用素子6Cの図中左側または非球面測定用素子6Cと被測定体7Bとの間の所定位置にマスクが設定される。
次いで、1回目の測定と2回目の測定により得られたデータを繋ぎ合わせることにより、被測定非球面71の全域の形状情報を求める。
Next, using the aspherical surface measuring element 6C (having the reference standard spherical surface 61C, the aspherical surface 62C, and the planar reflecting portion 63C) shown in FIG. 5B, the second time relating to the central region of the measured aspherical surface 71B. Measure. In the second measurement, alignment adjustment of the aspherical surface measuring element 6C is performed. In addition, in order to prevent measurement light from entering the peripheral region of the measured aspheric surface 71B via the aspheric measurement element 6C and the reflected light from becoming stray light, FIG. A mask is set at a predetermined position between the left side or the aspherical surface measuring element 6C and the measured object 7B.
Next, the shape information of the entire area of the aspheric surface 71 to be measured is obtained by connecting the data obtained by the first measurement and the second measurement.

以上、本発明の実施形態について説明したが、本発明はかかる実施形態に限られるものではなく、種々に態様を変更することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, A mode can be variously changed.

例えば、上記態様では、高可干渉光束を用いてアライメント調整を行うようにしているが、アライメント調整の一部を、低可干渉光束を用いて行うようにしてもよい。例えば、上記アライメント調整手順(5)に記載の基準レンズ部30と非球面測定用素子6との光軸調整を、低可干渉光束を用いて行うことができる。ただし、この場合には、迂回路部10における光路長差の調整が必要となる。すなわち、迂回路部10における上記第1および第2の光束の各光路長の差を、基準レンズ部30の光軸調整用球面32aから非球面測定用素子6の参照基準球面61までの往復光路長に略一致した状態に予め設定しておく必要がある。一方、高可干渉光束を用いる場合に必要となる基準板24の光路外への移動は不要となる。   For example, in the above aspect, the alignment adjustment is performed using the high coherent light beam, but a part of the alignment adjustment may be performed using the low coherent light beam. For example, the optical axis adjustment between the reference lens unit 30 and the aspherical surface measuring element 6 described in the alignment adjustment procedure (5) can be performed using a low coherent light beam. However, in this case, it is necessary to adjust the optical path length difference in the detour unit 10. That is, the difference between the optical path lengths of the first and second light beams in the detour unit 10 is determined as the reciprocating optical path from the optical axis adjusting spherical surface 32 a of the reference lens unit 30 to the reference standard spherical surface 61 of the aspherical surface measuring element 6. It is necessary to set in advance a state that substantially matches the length. On the other hand, it is not necessary to move the reference plate 24 out of the optical path, which is necessary when using a high coherence beam.

また、上記態様では、迂回路部10において分岐された第1および第2の光束の各光路長の差を微小変化させることにより、フリンジスキャン測定を行うように構成されているが、射出する光束の波長を走査可能な波長走査光源部を用いて、該波長走査光源部からの光束の波長を走査することにより、フリンジスキャン測定を行うように構成することも可能である。このような波長走査光源部を用いる技術としては、例えば、特表2005−512075号公報に記載がある。   In the above aspect, the fringe scan measurement is performed by minutely changing the difference between the optical path lengths of the first and second light beams branched in the detour unit 10. It is also possible to perform a fringe scan measurement by scanning a wavelength of a light beam from the wavelength scanning light source unit by using a wavelength scanning light source unit capable of scanning the wavelength of. A technique using such a wavelength scanning light source unit is described in, for example, Japanese Translation of PCT International Publication No. 2005-512075.

また、被測定非球面71が高反射面であり、被測定非球面71からの戻り光と参照基準球面61からの参照光との光干渉により得られる干渉縞のコントラストが低下するような場合には、参照基準球面61に光量比調整膜を着設することによりコントラストの向上を図ることが好ましい。この光量比調整膜は、少なくとも1層の光反射吸収層と少なくとも1層の誘電体反射防止層とが積層されてなる多層膜構造の膜であって、基準レンズ部30側からの入射光に対してはその一部を反射し、残余の一部を吸収した後にその余を被測定非球面71に向けて射出する機能を有するとともに、被測定非球面71側から入射する戻り光に対してはその一部を吸収する一方で反射は抑制し残余を射出する機能を有するものである。このような光量比調整膜を用いる技術としては、例えば、特開2006−90829号公報に記載がある。   Further, when the measured aspheric surface 71 is a highly reflective surface and the contrast of interference fringes obtained by the optical interference between the return light from the measured aspheric surface 71 and the reference light from the reference standard spherical surface 61 decreases. It is preferable to improve the contrast by attaching a light amount ratio adjusting film to the reference standard spherical surface 61. This light quantity ratio adjusting film is a film having a multilayer structure in which at least one light reflection / absorption layer and at least one dielectric antireflection layer are laminated, and is used for incident light from the reference lens unit 30 side. On the other hand, it has a function of reflecting a part thereof, absorbing a part of the remainder and then emitting the remainder toward the measured aspheric surface 71, and for returning light incident from the measured aspheric surface 71 side. Has a function of absorbing part of the light and suppressing reflection and emitting the remainder. For example, Japanese Patent Application Laid-Open No. 2006-90829 discloses a technique using such a light amount ratio adjusting film.

また、上記態様のものは、低可干渉光束を用いて測定を行うようにしており、これにより高精度な測定結果を得ることが可能となるものであるが、高可干渉光束を用いて測定を行うようにしてもよい。この場合には、光源部が1つで済み、また迂回路部が不要となるので、装置構成の簡易化および低コスト化を図ることが可能となる。   In the above aspect, the measurement is performed using the low coherent light beam, and it is possible to obtain a highly accurate measurement result. However, the measurement is performed using the high coherent light beam. May be performed. In this case, only one light source unit is required and no detour unit is required, so that the apparatus configuration can be simplified and the cost can be reduced.

本発明の一実施形態に係る非球面測定用素子の形状および作用を示す断面図Sectional drawing which shows the shape and effect | action of the element for aspherical surface which concerns on one Embodiment of this invention 本発明の一実施形態に係る光波干渉測定装置を示す概略構成図1 is a schematic configuration diagram showing an optical interference measuring apparatus according to an embodiment of the present invention. 図2に示す第1の載置台の平面図The top view of the 1st mounting base shown in FIG. アライメント調整の手順を(a)〜(f)の順に段階的に示す図The figure which shows the procedure of alignment adjustment in steps of (a)-(f) 2つの非球面測定用素子を用い、測定を2回に分けて行う態様を示す図The figure which shows the aspect which uses two aspherical surface measurement elements and performs measurement twice.

符号の説明Explanation of symbols

1 干渉計本体部
3 ポジショニング調整部
5 画像解析処理部
6,6A〜6C 非球面測定用素子
7,7A,7B 被測定体
10 迂回路部
11L 低可干渉光源部
11H 高可干渉光源部
12L,12H,23 コリメータレンズ
13 ハーフミラー
14 第1の反射ミラー
15 補償板
16 第2の反射ミラー
17 アイソレータ
18 第3の反射ミラー
19 遮光板
20 位置調整手段
21 ビーム径拡大用レンズ
22 ビームスプリッタ
25 結像レンズ
24 基準板
24a 基準平面
24b 裏面
25 結像レンズ
26 撮像手段
30 被検体ポジショニング部
31 レンズ群
32 対物レンズ
32a 光軸調整用球面
33 鏡筒
34 シャッター
35 第1の載置台
35a 支持部
35b 中央窓部
35c 周辺窓部
36 第2の載置台
51 コンピュータ
52 モニタ装置
53 入力装置
61,61A,61B,61C 参照基準球面
62,62A,62B,62C 非球面
63,63A,63B,63C 平面反射部
71,71A,71B 被測定非球面
72 平面反射部
81 コーナーキューブ
82 2軸傾き調整手段
P (参照基準球面の)曲率中心
DESCRIPTION OF SYMBOLS 1 Interferometer main-body part 3 Positioning adjustment part 5 Image analysis process part 6, 6A-6C Aspherical surface measurement element 7, 7A, 7B Measured object 10 Detour part 11L Low coherence light source part 11H High coherence light source part 12L, 12H, 23 Collimator lens 13 Half mirror 14 First reflection mirror 15 Compensation plate 16 Second reflection mirror 17 Isolator 18 Third reflection mirror 19 Shading plate 20 Position adjusting means 21 Beam diameter expanding lens 22 Beam splitter 25 Imaging Lens 24 Reference plate 24a Reference plane 24b Back surface 25 Imaging lens 26 Imaging means 30 Subject positioning unit 31 Lens group 32 Objective lens 32a Optical axis adjusting spherical surface 33 Lens barrel 34 Shutter 35 First mounting table 35a Support unit 35b Central window Part 35c peripheral window part 36 second mounting table 51 computer 52 Monitor device 53 Input device 61, 61A, 61B, 61C Reference reference spherical surface 62, 62A, 62B, 62C Aspherical surface 63, 63A, 63B, 63C Planar reflection portion 71, 71A, 71B Aspheric surface to be measured 72 Planar reflection portion 81 Corner cube 82 Biaxial tilt adjustment means P Center of curvature (of the reference spherical surface)

Claims (16)

球面波からなる測定光を出力する測定光学系と被測定非球面との間に配置される非球面測定用素子であって、
単体のレンズ部材として構成されており、
前記測定光学系と対向する側のレンズ面は、該レンズ面に対し略垂直に入射された前記測定光の一部を透過せしめるとともに、該測定光のその余を反射せしめて参照光となす参照基準球面とされ、
前記被測定非球面と対向する側のレンズ面は、前記参照基準球面から前記被測定非球面に至る前記測定光の各光線が該被測定非球面に略垂直に入射し、かつ該各光線の光路長が互いに略一定となるように形成された非球面形状とされていることを特徴とする非球面測定用素子。
An aspherical measuring element disposed between a measuring optical system that outputs measuring light composed of spherical waves and a measured aspherical surface,
It is configured as a single lens member,
The lens surface facing the measurement optical system transmits a part of the measurement light incident substantially perpendicular to the lens surface, and reflects the remainder of the measurement light to serve as reference light. A reference spherical surface,
The lens surface on the side facing the measured aspheric surface has each light beam of the measurement light from the reference standard spherical surface to the measured aspheric surface incident on the measured aspheric surface substantially perpendicularly, and An aspherical surface measuring element having an aspherical shape formed such that optical path lengths are substantially constant.
前記測定光学系に対する傾き姿勢調整用の平面反射部を備えていることを特徴とする請求項1記載の非球面測定用素子。   The aspherical surface measuring element according to claim 1, further comprising a plane reflecting portion for adjusting an inclination posture with respect to the measuring optical system. 光源部と、
該光源部から射出された光束を球面波に変換して出力する測定光学系と、
該測定光学系と被測定非球面との間に配置される請求項1または2記載の非球面測定用素子と、
該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を撮像する撮像手段と、を備えていることを特徴とする光波干渉測定装置。
A light source unit;
A measuring optical system that converts the luminous flux emitted from the light source unit into a spherical wave and outputs the spherical wave;
The aspherical measuring element according to claim 1, which is disposed between the measuring optical system and the measured aspherical surface,
An optical device comprising: imaging means for imaging interference fringes obtained by optical interference between reference light from the reference standard spherical surface of the aspherical measuring element and return light from the measured aspherical surface; Interference measurement device.
前記測定光学系は、前記非球面測定用素子と対向する位置に基準レンズ部を有しており、
該基準レンズ部は、1つの光軸調整用球面と、該光軸調整用球面に対し前記光源部からの前記光束を略垂直に入射せしめるレンズ群とを有していることを特徴とする請求項3記載の光波干渉測定装置。
The measurement optical system has a reference lens portion at a position facing the aspherical measurement element,
The reference lens unit includes one optical axis adjusting spherical surface and a lens group that allows the light beam from the light source unit to enter the optical axis adjusting spherical surface substantially perpendicularly. Item 4. The optical interference measuring apparatus according to Item 3.
前記光源部は、射出する前記光束の可干渉距離が短い低可干渉光源部であり、
前記測定光学系は、前記低可干渉光源部から射出された光束を2光束に分岐するとともに、一方の光束を他方の光束に対して迂回させた後に該2光束を再合成し、分岐されてから再合成されるまでの該2光束の各光路長の差を調整する迂回路部を有してなることを特徴とする請求項3または4記載の光波干渉測定装置。
The light source unit is a low coherence light source unit having a short coherence distance of the emitted light beam,
The measurement optical system splits the light beam emitted from the low coherence light source unit into two light beams, re-synthesizes the two light beams after diverting one light beam with respect to the other light beam, 5. The optical interference measuring apparatus according to claim 3, further comprising a detour unit that adjusts a difference between the optical path lengths of the two light beams from when the light beam is recombined.
射出する光束の可干渉距離が長い高可干渉光源部を備え、
前記低可干渉光源部から射出された低可干渉光束と、前記高可干渉光源部から射出された高可干渉光束とを、択一的に同じ光路上に出力可能に構成されていることを特徴とする請求項5記載の光波干渉測定装置。
Equipped with a high coherence light source that has a long coherence distance of the emitted light beam,
The low coherent light beam emitted from the low coherent light source unit and the high coherent light beam emitted from the high coherent light source unit can be alternatively output on the same optical path. 6. The light wave interference measuring apparatus according to claim 5, wherein:
前記迂回路部は、前記分岐されてから再合成されるまでの2光束の各光路長の差を、前記参照基準球面から前記被測定非球面までの往復光路長に略一致した状態と、前記光軸調整用球面から前記参照基準球面までの往復光路長に略一致した状態との間で切替え可能に構成されていることを特徴とする請求項5または6記載の光波干渉測定装置。   The detour unit has a state in which the difference between the optical path lengths of the two light beams from the branching to the recombination substantially coincides with the round-trip optical path length from the reference standard spherical surface to the measured aspheric surface, 7. The light wave interference measuring apparatus according to claim 5, wherein the optical wave interference measuring apparatus is configured to be switchable between a state where the reciprocal optical path length from the optical axis adjusting spherical surface to the reference standard spherical surface is substantially the same. 前記迂回路部において、前記2光束の各光路長の差を微小変化させることにより、フリンジスキャン測定を行うように構成されていることを特徴とする請求項5〜7までのうちいずれか1項記載の光波干渉測定装置。   8. The fringe scan measurement is performed by minutely changing a difference between the optical path lengths of the two light beams in the detour unit, wherein the detour unit is any one of claims 5 to 7. The light wave interference measuring apparatus described. 前記光源部は、射出する前記光束の波長を走査可能な波長走査光源部であり、
該波長走査光源部からの光束の波長を走査することにより、フリンジスキャン測定を行うように構成されていることを特徴とする請求項3または4記載の光波干渉測定装置。
The light source unit is a wavelength scanning light source unit capable of scanning the wavelength of the emitted light beam,
5. The light wave interference measuring apparatus according to claim 3, wherein fringe scanning measurement is performed by scanning the wavelength of the light beam from the wavelength scanning light source unit.
前記参照基準球面には、少なくとも1層の光反射吸収層と少なくとも1層の誘電体反射防止層とが積層されてなる多層膜構造の光量比調整膜が着設されてなり、
該光量比調整膜は、前記測定光学系側からの入射光に対してはその一部を反射し、残余の一部を吸収した後にその余を前記被測定非球面に向けて射出する機能を有するとともに、前記被測定非球面側から入射する前記戻り光に対してはその一部を吸収する一方で反射は抑制し残余を射出する機能を有する膜構成とされているものであることを特徴とする請求項3〜9までのうちいずれか1項記載の光波干渉測定装置。
The reference standard spherical surface is provided with a light quantity ratio adjustment film having a multilayer structure in which at least one light reflection / absorption layer and at least one dielectric antireflection layer are laminated,
The light quantity ratio adjusting film has a function of reflecting a part of incident light from the measurement optical system side and absorbing the remaining part and then emitting the remaining part toward the aspheric surface to be measured. And a film structure having a function of absorbing a part of the return light incident from the measured aspheric surface side while suppressing reflection and emitting the remainder. The light wave interference measuring apparatus according to any one of claims 3 to 9.
光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、請求項1または2記載の非球面測定用素子を配置し、
該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析することにより、前記被測定非球面の位相情報を求めることを特徴とする光波干渉測定方法。
The aspherical measuring element according to claim 1 or 2 is disposed between a measuring optical system that converts a luminous flux emitted from the light source unit into a spherical wave and outputs the spherical wave, and the measured aspherical surface.
The phase information of the aspheric surface to be measured is obtained by analyzing interference fringes obtained by the optical interference between the reference light from the reference standard spherical surface of the aspherical surface measuring element and the return light from the measured aspheric surface. A light wave interference measuring method characterized by the above.
前記干渉縞を解析する際に、ディストーションを補正する座標変換処理を行うことを特徴とする請求項11記載の光波干渉測定方法。   12. The light wave interference measuring method according to claim 11, wherein a coordinate transformation process for correcting distortion is performed when analyzing the interference fringes. 前記被測定非球面を複数の被測定領域に分割し、該分割された被測定領域毎に測定を行い、該被測定領域毎の測定結果を繋ぎ合わせることを特徴とする請求項11または12記載の光波干渉測定方法。   13. The measurement aspheric surface is divided into a plurality of measurement areas, the measurement is performed for each of the divided measurement areas, and the measurement results of the measurement areas are joined together. Lightwave interference measurement method. 光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、請求項1または2記載の非球面測定用素子を配置し、
該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析し、該解析結果に基づき前記非球面測定用素子の非球面の形状を補正加工することを特徴とする非球面の形状補正方法。
The aspherical measuring element according to claim 1 or 2 is disposed between a measuring optical system that converts a luminous flux emitted from the light source unit into a spherical wave and outputs the spherical wave, and the measured aspherical surface.
Interference fringes obtained by optical interference between the reference light from the reference standard spherical surface of the aspherical surface measuring element and the return light from the measured aspherical surface are analyzed, and the nonspherical surface of the aspherical surface measuring element is analyzed based on the analysis result. A method for correcting the shape of an aspherical surface, comprising correcting the shape of a spherical surface.
光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、請求項1または2記載の非球面測定用素子を配置し、
該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析し、該解析結果に基づき前記被測定非球面の形状を補正加工することを特徴とする非球面の形状補正方法。
The aspherical measuring element according to claim 1 or 2 is disposed between a measuring optical system that converts a luminous flux emitted from the light source unit into a spherical wave and outputs the spherical wave, and the measured aspherical surface.
An interference fringe obtained by optical interference between the reference light from the reference standard sphere of the aspherical surface measuring element and the return light from the measured aspherical surface is analyzed, and the shape of the measured aspherical surface is determined based on the analysis result. A method for correcting the shape of an aspherical surface, wherein correction processing is performed.
光源部から射出された光束を球面波に変換して出力する測定光学系と被測定非球面との間に、請求項1または2記載の非球面測定用素子を配置し、
該非球面測定用素子の前記参照基準球面からの参照光と前記被測定非球面からの戻り光との光干渉により得られる干渉縞を解析し、該解析結果に基づき光波干渉測定装置のシステム誤差を補正することを特徴とするシステム誤差補正方法。
The aspherical measuring element according to claim 1 or 2 is disposed between a measuring optical system that converts a luminous flux emitted from the light source unit into a spherical wave and outputs the spherical wave, and the measured aspherical surface.
An interference fringe obtained by optical interference between the reference light from the reference standard sphere of the aspherical measuring element and the return light from the measured aspherical surface is analyzed, and the system error of the lightwave interference measuring apparatus is calculated based on the analysis result. A system error correction method characterized by correcting.
JP2006268745A 2006-09-29 2006-09-29 Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method Withdrawn JP2008089356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268745A JP2008089356A (en) 2006-09-29 2006-09-29 Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268745A JP2008089356A (en) 2006-09-29 2006-09-29 Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method

Publications (1)

Publication Number Publication Date
JP2008089356A true JP2008089356A (en) 2008-04-17

Family

ID=39373672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268745A Withdrawn JP2008089356A (en) 2006-09-29 2006-09-29 Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method

Country Status (1)

Country Link
JP (1) JP2008089356A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288051A (en) * 2008-05-29 2009-12-10 Canon Inc Measurement method
JP2010025649A (en) * 2008-07-17 2010-02-04 Fujinon Corp Thickness measuring method of parallel flat plate
JP2010025648A (en) * 2008-07-17 2010-02-04 Fujinon Corp Aberration measurement and error correction method
JP2011242221A (en) * 2010-05-17 2011-12-01 Fujifilm Corp Rotationally symmetrical aspherical shape measuring instrument
CN102591031A (en) * 2012-03-02 2012-07-18 浙江大学 Aligning device and aligning method for partial compensating lens during detection of aspheric surface and nonzero digit interference
CN104930971A (en) * 2015-06-12 2015-09-23 浙江大学 Partial compensation lens and detected surface alignment device and alignment method in non-null detection
JP2018115988A (en) * 2017-01-19 2018-07-26 株式会社東京精密 Front face shape measurement device measurement preparation alignment method, and front face shape measurement device
US11391564B2 (en) * 2019-09-30 2022-07-19 Opto-Alignment Technology, Inc. Active alignment technique for measuring tilt errors in aspheric surfaces during optical assembly using lens alignment station (LAS)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288051A (en) * 2008-05-29 2009-12-10 Canon Inc Measurement method
JP2010025649A (en) * 2008-07-17 2010-02-04 Fujinon Corp Thickness measuring method of parallel flat plate
JP2010025648A (en) * 2008-07-17 2010-02-04 Fujinon Corp Aberration measurement and error correction method
JP2011242221A (en) * 2010-05-17 2011-12-01 Fujifilm Corp Rotationally symmetrical aspherical shape measuring instrument
CN102591031A (en) * 2012-03-02 2012-07-18 浙江大学 Aligning device and aligning method for partial compensating lens during detection of aspheric surface and nonzero digit interference
CN104930971A (en) * 2015-06-12 2015-09-23 浙江大学 Partial compensation lens and detected surface alignment device and alignment method in non-null detection
JP2018115988A (en) * 2017-01-19 2018-07-26 株式会社東京精密 Front face shape measurement device measurement preparation alignment method, and front face shape measurement device
US11391564B2 (en) * 2019-09-30 2022-07-19 Opto-Alignment Technology, Inc. Active alignment technique for measuring tilt errors in aspheric surfaces during optical assembly using lens alignment station (LAS)

Similar Documents

Publication Publication Date Title
EP2150770B1 (en) Optical distance sensor
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
US6882433B2 (en) Interferometer system of compact configuration
JP6622116B2 (en) Optical imaging device for determining imaging errors
EP2369319B1 (en) Aspheric object measuring method and apparatus
JP2008089356A (en) Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method
US20140340691A1 (en) Enhancements to integrated optical assembly
CN102385170B (en) Optical system for measuring and regulating center deviation of optics lens at high precision
US7492468B2 (en) Free-form optical surface measuring apparatus and method
US20200408505A1 (en) Arrangement and Method for Robust Single-Shot Interferometry
JP2009162539A (en) Light wave interferometer apparatus
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2005201703A (en) Interference measuring method and system
US11333487B2 (en) Common path mode fiber tip diffraction interferometer for wavefront measurement
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
JP4857619B2 (en) Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system
JP2010223775A (en) Interferometer
EP2538169B1 (en) Grazing incidence interferometer
JP2004101427A (en) Interferometer apparatus
JP5135183B2 (en) 3D shape measuring device
JP6445755B2 (en) Surface shape measuring device or wavefront aberration measuring device
JP2009210303A (en) Alignment adjusting method and device of wave front measuring optical system
JPH0453242B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201