JP4857619B2 - Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system - Google Patents

Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system Download PDF

Info

Publication number
JP4857619B2
JP4857619B2 JP2005183727A JP2005183727A JP4857619B2 JP 4857619 B2 JP4857619 B2 JP 4857619B2 JP 2005183727 A JP2005183727 A JP 2005183727A JP 2005183727 A JP2005183727 A JP 2005183727A JP 4857619 B2 JP4857619 B2 JP 4857619B2
Authority
JP
Japan
Prior art keywords
optical element
reflective
mirror
eccentricity
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005183727A
Other languages
Japanese (ja)
Other versions
JP2007003344A (en
Inventor
博伸 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005183727A priority Critical patent/JP4857619B2/en
Publication of JP2007003344A publication Critical patent/JP2007003344A/en
Application granted granted Critical
Publication of JP4857619B2 publication Critical patent/JP4857619B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、リッチー・クレチアン式、カセグレン式など、反射非球面光学素子を少なくとも1つ備えた光学系、及びその製造方法に関する。また、本発明は、その光学系を構成する反射非球面光学素子、及びその偏芯測定方法に関する。   The present invention relates to an optical system including at least one reflective aspherical optical element such as a Ritchie-Cretian type or a Cassegrain type, and a method for manufacturing the same. The present invention also relates to a reflective aspheric optical element constituting the optical system and a method for measuring the eccentricity thereof.

リッチー・クレチアン式、カセグレン式などの反射光学系には、収差を効果的に抑えるため、双曲面や放物面などの非球面ミラーが使用されている。光軸が1つしか存在しない非球面ミラーは、その組み立ての際に、ミラー裏面を基準に用いるなどの工夫が必要となる。
したがって、組み立てに先立ち、非球面ミラーの裏面を基準とした偏芯を、正確に測定しておくことが有効となる。それに類似した技術が、特許文献1に開示されている。特許文献1に記載されているのは、トワイマン・グリーン型、又はフィゾー型の干渉計において、被検レンズの波面収差を測定しながらその被検レンズの当て付け基準面の傾きを検出する機能を付加したものである。
Aspherical mirrors such as hyperboloids and paraboloids are used in reflection optical systems such as Ritchie-Cretian type and Cassegrain type in order to effectively suppress aberrations. An aspherical mirror having only one optical axis needs to be devised such as using the back surface of the mirror as a reference when assembling the aspherical mirror.
Therefore, it is effective to accurately measure the eccentricity with reference to the back surface of the aspherical mirror prior to assembly. A similar technique is disclosed in Patent Document 1. Patent Document 1 describes a function of detecting an inclination of a reference plane applied to a test lens while measuring a wavefront aberration of the test lens in a Twiman-Green type or Fizeau type interferometer. It is added.

また、組み立てに先立ち、非球面ミラーの偏芯が抑えられるよう、非球面ミラーの反射面と裏面とを高精度に加工しておくことも有効である。その高精度加工の技術は、特許文献2に開示されている。
特開2004−340693号公報 特開平5−57606号公報
Prior to assembly, it is also effective to process the reflecting surface and back surface of the aspherical mirror with high accuracy so that the eccentricity of the aspherical mirror can be suppressed. The technique of the high precision processing is disclosed in Patent Document 2.
JP 2004-340663 A JP-A-5-57606

しかし、特許文献1の技術を利用して非球面ミラーの偏芯を測定するには、その反射面(非球面)の形状に適合したヌル光学素子を干渉計の光路に挿入する必要があり、その場合、ヌル光学素子の光軸調整誤差が測定結果に重畳されるので、高精度な測定が難しい。また、特許文献2の技術を利用しても限界があり、偏芯は、研削機・研磨機の機械精度までしか抑えられない。   However, in order to measure the eccentricity of the aspherical mirror using the technique of Patent Document 1, it is necessary to insert a null optical element suitable for the shape of the reflecting surface (aspherical surface) into the optical path of the interferometer, In that case, since the optical axis adjustment error of the null optical element is superimposed on the measurement result, high-precision measurement is difficult. Moreover, even if the technique of Patent Document 2 is used, there is a limit, and the eccentricity can be suppressed only to the mechanical accuracy of the grinding machine / polishing machine.

そこで本発明は、反射非球面光学素子の偏芯を高精度に測定することのできる反射非球面光学素子の偏芯測定方法を提供することを目的とする。
また、本発明は、高性能な光学系を製造することのできる光学系の製造方法を提供することを目的とする。
また、本発明は、高精度に偏芯の測定された反射非球面光学素子、又は偏芯の抑えられた高精度な反射非球面光学素子を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for measuring the eccentricity of a reflective aspheric optical element that can measure the eccentricity of the reflective aspheric optical element with high accuracy.
Another object of the present invention is to provide an optical system manufacturing method capable of manufacturing a high-performance optical system.
It is another object of the present invention to provide a reflective aspheric optical element whose eccentricity is measured with high accuracy or a highly accurate reflective aspheric optical element whose eccentricity is suppressed.

また、本発明は、高性能な光学系を提供することを目的とする。   Another object of the present invention is to provide a high-performance optical system.

本発明の偏芯測定方法は、第1基準面を持った反射非球面光学素子と、第2基準面を持ったヌル光学素子とを、干渉計の測定光束中に配置する手順と、前記反射非球面光学素子と前記ヌル素子との配置関係を保った状態で、前記反射非球面光学素子の反射非球面、前記第1基準面、及び前記第2基準面の各々を、前記干渉計の共通の参照面で検出する手順と、前記各検出の結果に基づき、前記第1基準面を基準とした前記反射非球面光学素子の偏芯を求める手順とを含むことを特徴とする。
The eccentricity measuring method of the present invention includes a procedure of disposing a reflective aspherical optical element having a first reference surface and a null optical element having a second reference surface in a measurement light beam of an interferometer, and the reflection The reflection aspheric surface, the first reference surface, and the second reference surface of the reflection aspheric optical element are shared by the interferometer while maintaining the positional relationship between the aspheric optical element and the null element. And a procedure for obtaining the eccentricity of the reflective aspherical optical element based on the first reference surface based on the result of each detection.

なお、前記第1基準面は、前記反射非球面光学素子の裏面と平行に固定された平面であり、前記第2基準面は、前記ヌル素子の光軸と垂直に固定された平面であることが望ましい。また、前記干渉計の光源は、出射光の波長を変調可能な光源であることが望ましい。
また、本発明の光学系の製造方法は、反射非球面光学素子を少なくとも1つ備えた光学系の製造方法であって、前記光学系を構成する少なくとも1つの反射非球面光学素子の偏芯を、本発明の何れかの反射非球面光学素子の偏芯測定方法で測定する手順と、前記測定の結果に応じて前記光学系を組み立てる手順とを含むことを特徴とする。なお、この光学系の製造方法において、前記測定の結果に応じて前記反射非球面光学素子を再加工する手順をさらに含んでもよい。
The first reference plane is a plane fixed in parallel with the back surface of the reflective aspheric optical element, and the second reference plane is a plane fixed perpendicular to the optical axis of the null element. Is desirable. The light source of the interferometer is preferably a light source capable of modulating the wavelength of the emitted light.
The optical system manufacturing method of the present invention is an optical system manufacturing method including at least one reflective aspherical optical element, wherein the eccentricity of at least one reflective aspherical optical element constituting the optical system is determined. The method includes the steps of measuring with the eccentricity measuring method of any reflective aspherical optical element of the present invention, and assembling the optical system according to the result of the measurement. The optical system manufacturing method may further include a step of reworking the reflective aspherical optical element according to the measurement result.

また、本発明の反射非球面光学素子は、本発明の何れかの反射非球面光学素子の偏芯測定方法で測定されたことを特徴とする。
また、本発明の反射非球面光学素子は、本発明の何れかの反射非球面光学素子の偏芯測定方法で測定され、かつその測定の結果に応じて再加工されたことを特徴とする。
また、本発明の光学系は、本発明の何れかの光学系の製造方法により製造されたことを特徴とする。
The reflective aspheric optical element of the present invention is measured by the eccentricity measuring method for any of the reflective aspheric optical elements of the present invention.
The reflective aspherical optical element of the present invention is characterized by being measured by the eccentricity measuring method for any of the reflective aspherical optical elements of the present invention and reworked according to the measurement result.
The optical system of the present invention is manufactured by any one of the optical system manufacturing methods of the present invention.

本発明によれば、反射非球面光学素子の偏芯を高精度に測定することのできる反射非球面光学素子の偏芯測定方法が実現する。
また、本発明によれば、高性能な光学系を製造することのできる光学系の製造方法が実現する。
また、本発明によれば、高精度に偏芯の測定された反射非球面光学素子、又は偏芯の抑えられた高精度な反射非球面光学素子が実現する。
ADVANTAGE OF THE INVENTION According to this invention, the eccentricity measuring method of the reflective aspherical optical element which can measure the eccentricity of a reflective aspherical optical element with high precision is implement | achieved.
In addition, according to the present invention, an optical system manufacturing method capable of manufacturing a high-performance optical system is realized.
In addition, according to the present invention, a reflective aspherical optical element whose eccentricity is measured with high accuracy or a highly accurate reflective aspherical optical element with reduced eccentricity is realized.

また、本発明によれば、高性能な光学系が実現する。   Further, according to the present invention, a high-performance optical system is realized.

以下、図面を参照して本発明の実施形態を説明する。本実施形態は、リッチー・クレチアン式の反射光学系の製造方法の実施形態である。
図1は、実施形態で製造する反射光学系を示す図である。図1に示すように、この反射光学系には、凹の非球面ミラーである主鏡11と、凸の非球面ミラーである副鏡12とが備えられる。このうち、主鏡11は、穴開きミラーである。また、リッチー・クレチアン式なので、主鏡11の反射面11aと副鏡12の反射面12aとは、それぞれ双曲面に近い高次非球面である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present embodiment is an embodiment of a manufacturing method of a Ritchie-Cretian reflective optical system.
FIG. 1 is a diagram illustrating a reflective optical system manufactured in the embodiment. As shown in FIG. 1, the reflecting optical system includes a primary mirror 11 that is a concave aspherical mirror and a secondary mirror 12 that is a convex aspherical mirror. Of these, the primary mirror 11 is a perforated mirror. Further, because of the Richie-Cretian equation, the reflecting surface 11a of the primary mirror 11 and the reflecting surface 12a of the secondary mirror 12 are higher-order aspheric surfaces that are close to hyperboloids, respectively.

図2は、製造方法の全体の流れを示すフローチャートである。図2に示すように、本製造方法には、加工工程S1、測定工程S2、組み立て工程S3とが含まれる。
加工工程S1では、主鏡11、副鏡12の各々を加工する。その加工では、主鏡11の反射面11a、副鏡12の反射面12aだけでなく、主鏡11の裏面11b、副鏡12の裏面12bも加工される。その際、それらの裏面は、滑らかな平面となるように研磨される。また、その加工では、主鏡11の反射面11aの光軸(非球面軸)と主鏡11の裏面11bとが垂直に近づけられ、かつ、副鏡12の反射面12aの光軸(非球面軸)と副鏡12の裏面12bとが垂直に近づけられる。
FIG. 2 is a flowchart showing the overall flow of the manufacturing method. As shown in FIG. 2, the manufacturing method includes a processing step S1, a measurement step S2, and an assembly step S3.
In the processing step S1, each of the primary mirror 11 and the secondary mirror 12 is processed. In the processing, not only the reflecting surface 11a of the primary mirror 11 and the reflecting surface 12a of the secondary mirror 12, but also the back surface 11b of the primary mirror 11 and the back surface 12b of the secondary mirror 12 are processed. In that case, those back surfaces are polished so as to be a smooth plane. In the processing, the optical axis (aspheric surface axis) of the reflecting surface 11a of the primary mirror 11 and the back surface 11b of the primary mirror 11 are brought close to each other vertically, and the optical axis (aspherical surface) of the reflecting surface 12a of the secondary mirror 12 is obtained. Axis) and the back surface 12b of the secondary mirror 12 are brought close to vertical.

測定工程S2では、裏面11bを基準とした主鏡11の偏芯と、裏面12bを基準とした副鏡12の偏芯とを、それぞれ測定する。ここでは、特に、偏芯として、光軸と裏面法線との角度ずれを測定する。よって、以下では、「偏芯」を、その角度ずれの意味で使用する。主鏡11の偏芯測定、及び副鏡12の偏芯測定の詳細は、後述する。
組み立て工程S3では、主鏡11と副鏡12との位置関係を、両者の裏面11b,12bを基準として調整する。その際、測定工程S2で測定した主鏡11の偏芯の情報と、副鏡12の偏芯の情報とを用いて、両者の光軸同士が平行になるように、裏面11b,12bの位置関係が調整される。さらに、両者の姿勢を保ちながら、主鏡11と副鏡12との相対位置をシフトさせて、両者の光軸を一致させる。その後、主鏡11と副鏡12とを組み立てて、反射光学系(図1)を完成させる。
In the measurement step S2, the eccentricity of the primary mirror 11 with respect to the back surface 11b and the eccentricity of the secondary mirror 12 with respect to the back surface 12b are measured. Here, in particular, the angular deviation between the optical axis and the back surface normal is measured as the eccentricity. Therefore, in the following, “eccentricity” is used to mean the angular deviation. Details of the eccentricity measurement of the primary mirror 11 and the eccentricity measurement of the secondary mirror 12 will be described later.
In the assembly step S3, the positional relationship between the primary mirror 11 and the secondary mirror 12 is adjusted with reference to the back surfaces 11b and 12b of both. At that time, using the information on the eccentricity of the primary mirror 11 measured in the measurement step S2 and the information on the eccentricity of the secondary mirror 12, the positions of the back surfaces 11b and 12b are set so that the optical axes of both are parallel to each other. The relationship is adjusted. Further, the relative positions of the primary mirror 11 and the secondary mirror 12 are shifted while maintaining the postures of the two so that the optical axes of the two mirrors coincide. Thereafter, the primary mirror 11 and the secondary mirror 12 are assembled to complete the reflection optical system (FIG. 1).

<主鏡11の偏芯測定>
以下、主鏡11の偏芯測定を詳細に説明する。
図3は、主鏡11の偏芯測定を説明する図である。その偏芯測定では、図3に示すように、トワイマン・グリーン型の干渉計が用いられる。干渉計には、光源21、コリメータレンズ22、ビームスプリッタ23、参照面24aを持つ参照板24、観察レンズ25、撮像素子26、不図示のモニタ、不図示のコンピュータなどが備えられる。
<Eccentricity measurement of primary mirror 11>
Hereinafter, the eccentricity measurement of the primary mirror 11 will be described in detail.
FIG. 3 is a diagram for explaining the eccentricity measurement of the primary mirror 11. In the eccentricity measurement, as shown in FIG. 3, a Twiman-Green interferometer is used. The interferometer includes a light source 21, a collimator lens 22, a beam splitter 23, a reference plate 24 having a reference surface 24a, an observation lens 25, an image sensor 26, a monitor (not shown), a computer (not shown), and the like.

この干渉計の測定光束中に、ヌル光学素子13と主鏡11とが所定の位置関係で配置される。ヌル光学素子13は、干渉計からの測定光束の波面(平面)を、主鏡11の反射面11aに対し略垂直に入射する波面(非球面)に変換する素子であり、屈折レンズ、回折光学素子、或いは屈折レンズと回折光学素子との組み合わせなどで構成される。
この干渉計において、ヌル光学素子13を介し主鏡11の反射面11aへ入射した測定光束は、反射面11aで反射すると、その光路を折り返し、ヌル光学素子13を介して干渉計へと戻る。
The null optical element 13 and the main mirror 11 are arranged in a predetermined positional relationship in the measurement light beam of the interferometer. The null optical element 13 is an element that converts the wavefront (plane) of the measurement light beam from the interferometer into a wavefront (aspherical surface) incident substantially perpendicular to the reflecting surface 11a of the main mirror 11, and includes a refractive lens and diffractive optics. An element or a combination of a refractive lens and a diffractive optical element is used.
In this interferometer, when the measurement light beam incident on the reflecting surface 11 a of the main mirror 11 via the null optical element 13 is reflected by the reflecting surface 11 a, the optical path is folded back and returned to the interferometer via the null optical element 13.

ここで、主鏡11の裏面11bには、基準平面14aを持つ基準ミラー14が固定される。基準ミラー14は、その基準平面14aを裏面11bに押し当てることによって、その基準平面14aの光軸を裏面11bの法線に一致させている。この基準平面14aの少なくとも1部は、ヌル光学素子13の側へ露出している。
一方、ヌル光学素子13の周囲には、基準平面15aを持つ輪帯ミラー15が固定される。輪帯ミラー15は、平行度の高い平行平面板からなり、そのヌル光学素子13に対して、基準平面15aが干渉計側を向き、かつその基準平面15aがヌル光学素子13の光軸と垂直になるように予め調整されている。
Here, a reference mirror 14 having a reference plane 14 a is fixed to the back surface 11 b of the primary mirror 11. The reference mirror 14 presses the reference plane 14a against the back surface 11b, thereby matching the optical axis of the reference plane 14a with the normal line of the back surface 11b. At least a part of the reference plane 14a is exposed to the null optical element 13 side.
On the other hand, an annular mirror 15 having a reference plane 15 a is fixed around the null optical element 13. The annular mirror 15 is composed of a parallel plane plate having a high degree of parallelism, the reference plane 15 a faces the interferometer side with respect to the null optical element 13, and the reference plane 15 a is perpendicular to the optical axis of the null optical element 13. It is adjusted in advance to become.

但し、ヌル光学素子13には、偏芯が残留している可能性があるので、輪帯ミラー15を取り付ける際には、ヌル光学素子13の保持部材をそのまま基準に用いると、輪帯ミラー15の基準平面15aとヌル光学素子13の光軸とが正確に垂直にならない可能性がある。このため、本実施形態では、図4に示すように、ヌル光学素子13を回転ステージにのせて回転させながら光を投光し、その焦点位置の振れがなくなるようにヌル光学素子13自体の芯出しをしてから、輪帯ミラー15を取り付けることが望ましい。   However, since there is a possibility that eccentricity may remain in the null optical element 13, when the annular mirror 15 is attached, if the holding member of the null optical element 13 is used as it is as a reference, the annular mirror 15 The reference plane 15a and the optical axis of the null optical element 13 may not be exactly perpendicular. For this reason, in the present embodiment, as shown in FIG. 4, the null optical element 13 itself is cored so that light is projected while the null optical element 13 is rotated on a rotating stage and the focal position does not fluctuate. It is desirable to attach the annular mirror 15 after taking out.

さて、図3に示す輪帯ミラー15は、干渉計からヌル光学素子13の周囲へ向かった測定光束の一部をその基準平面15aで反射する。そこで反射した測定光束は、その光路を折り返して干渉計へ戻る。
また、基準ミラー14は、干渉計からヌル光学素子13を経ずに主鏡11の側へ向かった測定光束をその基準平面14aで反射する。そこで反射した測定光束は、その光路を折り返して、ヌル光学素子13を経ずに干渉計へと戻る。
Now, the annular mirror 15 shown in FIG. 3 reflects a part of the measurement light beam traveling from the interferometer to the periphery of the null optical element 13 by its reference plane 15a. The reflected measurement light beam then returns to the interferometer by turning back its optical path.
Further, the reference mirror 14 reflects the measurement light beam traveling from the interferometer toward the main mirror 11 without passing through the null optical element 13 at the reference plane 14a. Then, the reflected measurement light beam returns its optical path and returns to the interferometer without passing through the null optical element 13.

なお、以下では、図3に示したように、輪帯ミラー15が透過性部材(測定光束に対し透過性のある部材)からなり、その輪帯ミラー15を透過した測定光束が主鏡11の穴開き部分へ入射し、その穴開き部分に設けられた基準平面14aが、そこへ入射した測定光束を反射するとして説明する。
干渉計へ戻った各測定光束は、干渉計の観察面26a(撮像素子26の撮像面)へ向かい、参照面24aで反射した参照光束と干渉する。その結果、観察面26aには、図5に示すような2種類の領域に干渉縞が形成される。
In the following, as shown in FIG. 3, the annular mirror 15 is made of a transmissive member (a member that is transparent to the measurement light beam), and the measurement light beam transmitted through the annular mirror 15 The description will be made assuming that the light is incident on the perforated portion and the reference plane 14a provided on the perforated portion reflects the measurement light beam incident thereon.
Each measurement light beam returned to the interferometer is directed to the observation surface 26a of the interferometer (the imaging surface of the image sensor 26) and interferes with the reference light beam reflected by the reference surface 24a. As a result, interference fringes are formed in two types of regions as shown in FIG. 5 on the observation surface 26a.

図5(A)・・・観察面26aの中央の円形領域E1に形成される干渉縞である。この干渉縞は、反射面11aの形状を示す。この干渉縞は、参照面24aで反射した光と、反射面11aで反射した光とが、円形領域E1に到達して互いに干渉することで形成したものである。
図5(B)・・・観察面26aのうち、円形領域E1の周囲の輪帯状領域E2に形成される干渉縞である。この干渉縞は、主に、参照面24aに対する主鏡11、及びヌル光学素子13の傾きを示す。この干渉縞は、参照面24aで反射した光、輪帯ミラー15を透過して基準平面14aで反射した光、及び、輪帯ミラー15を反射した光が、輪帯状領域E2に到達して相互に干渉することで形成したものである。輪体状領域E2に到達して干渉する光を具体的に挙げると、少なくとも、
(1)参照面24aで反射した光、
(2)基準平面14aで反射した光、
(3)基準平面15aで反射した光、
(4)輪帯ミラー15の裏面15bで反射した光(ノイズ光)
の4つの光がある。因みに、主鏡11の裏面11bの傾きを示すのは、(1),(2)の2つの光が成す干渉縞であり、ヌル光学素子13の傾きを示すのは、(1),(3)の2つの光が成す干渉縞である。
FIG. 5A is an interference fringe formed in a circular area E1 at the center of the observation surface 26a. The interference fringes indicate the shape of the reflecting surface 11a. The interference fringes are formed by the light reflected by the reference surface 24a and the light reflected by the reflecting surface 11a reaching the circular region E1 and interfering with each other.
FIG. 5B is an interference fringe formed in the ring-shaped region E2 around the circular region E1 in the observation surface 26a. This interference fringe mainly indicates the inclination of the primary mirror 11 and the null optical element 13 with respect to the reference surface 24a. The interference fringes are such that the light reflected by the reference surface 24a, the light transmitted through the annular mirror 15 and reflected by the reference plane 14a, and the light reflected by the annular mirror 15 reach the annular zone E2 and interact with each other. It is formed by interfering with. Specifically, the light that reaches and interferes with the ring-shaped region E2 is at least:
(1) light reflected by the reference surface 24a,
(2) light reflected by the reference plane 14a,
(3) light reflected by the reference plane 15a,
(4) Light reflected from the back surface 15b of the annular mirror 15 (noise light)
There are four lights. Incidentally, the inclination of the back surface 11b of the primary mirror 11 is an interference fringe formed by the two lights (1) and (2), and the inclination of the null optical element 13 is indicated by (1), (3 ) Are two interference fringes.

そして、以上の干渉縞が形成される観察面26aは、撮像素子26によって撮像され、撮像素子26が取得した画像データは、不図示のモニタ上にリアルタイムで表示される。よって、測定者は、干渉縞をリアルタイムで目視することができる。
なお、干渉縞のコントラストを高めるため、少なくとも、基準平面14aの反射率、基準平面15aの反射率、及び参照面24aの反射率は、略同じ(例えば4%)に設定されていることが望ましい。一般に、或る2面で反射した2つの光が成す干渉縞のコントラストを高めるには、その2面の反射率を近づければよい。また、ノイズとなる干渉縞のコントラストを下げるため、輪帯ミラー15の裏面15bに反射防止膜を施して、その反射率を下げておく(例えば0.1%にする)ことが望ましい。
The observation surface 26a on which the above interference fringes are formed is imaged by the image sensor 26, and the image data acquired by the image sensor 26 is displayed on a monitor (not shown) in real time. Therefore, the measurer can view the interference fringes in real time.
In order to increase the contrast of the interference fringes, it is desirable that at least the reflectance of the reference plane 14a, the reflectance of the reference plane 15a, and the reflectance of the reference surface 24a are set to be substantially the same (for example, 4%). . In general, in order to increase the contrast of interference fringes formed by two light beams reflected by a certain two surfaces, the reflectances of the two surfaces should be close to each other. In order to reduce the contrast of interference fringes that become noise, it is desirable to apply an antireflection film to the back surface 15b of the annular mirror 15 to reduce its reflectance (for example, 0.1%).

(配置調整)
最初に、参照面24aに対するヌル光学素子13の傾きが調整される。この傾き調整の段階では、主鏡11は干渉計の測定光束の光路から外れているか、又は、図6に示すように遮光手段16によって遮光されている。この状態で、測定者は、観察面26aの輪帯状領域E2から、ヌル光学素子13の傾きを示す干渉縞を目視することができる。
(Placement adjustment)
First, the inclination of the null optical element 13 with respect to the reference surface 24a is adjusted. In this tilt adjustment stage, the primary mirror 11 is out of the optical path of the measurement light beam of the interferometer, or is shielded by the light shielding means 16 as shown in FIG. In this state, the measurer can visually observe the interference fringes indicating the inclination of the null optical element 13 from the annular region E2 of the observation surface 26a.

測定者は、その干渉縞を目視しながらヌル光学素子13の傾きを調整し、その干渉縞がワンカラーになった時点で、ヌル光学素子13を固定する。この調整により、ヌル光学素子13の傾き誤差は、或る程度抑えられる。
なお、この傾き調整時、輪帯状領域E2には、輪帯ミラー15の裏面15bで反射した光(ノイズ光)も到達するので、必要な干渉縞(参照面24a及び基準平面15aの反射光が成す干渉縞)だけでなくノイズとなる干渉縞も生起しているが、裏面15bの反射率は低いため、必要な干渉縞の方がコントラストが高く、識別が可能である。
The measurer adjusts the inclination of the null optical element 13 while visually checking the interference fringes, and fixes the null optical element 13 when the interference fringes become one color. By this adjustment, the tilt error of the null optical element 13 is suppressed to some extent.
At the time of this tilt adjustment, the light (noise light) reflected by the back surface 15b of the annular mirror 15 also reaches the annular region E2, so that necessary interference fringes (reflected light from the reference surface 24a and the reference plane 15a are reflected). In addition to the interference fringes), noise interference fringes also occur, but since the reflectance of the back surface 15b is low, the necessary interference fringes have higher contrast and can be identified.

続いて、干渉計に対する主鏡11の位置及び傾きが調整される。このとき、測定者は、観察面26aの円形領域E1から、反射面11aの形状を示す干渉縞(図5(A)参照)を目視することができる。
測定者は、その干渉縞を目視しながら主鏡11の位置及び傾きを調整し、その干渉縞がワンカラーになった時点で、主鏡11の位置及び傾きを固定する。この調整により、主鏡11の配置誤差は、或る程度抑えられる。
Subsequently, the position and tilt of the primary mirror 11 with respect to the interferometer are adjusted. At this time, the measurer can visually observe interference fringes (see FIG. 5A) indicating the shape of the reflecting surface 11a from the circular region E1 of the observation surface 26a.
The measurer adjusts the position and inclination of the primary mirror 11 while viewing the interference fringes, and fixes the position and inclination of the primary mirror 11 when the interference fringes become one color. By this adjustment, an arrangement error of the primary mirror 11 is suppressed to some extent.

(干渉測定)
干渉測定では、配置調整後の状態を保ったまま、撮像素子26で観察面26aを撮像する。その撮像素子26が取得した画像データは、不図示のコンピュータへ取り込まれる。
コンピュータは、取り込まれた画像データから、反射面11aの形状を示す干渉縞(図5(A)参照)、ヌル光学素子13の傾きを示す干渉縞、及び主鏡11の裏面11bの傾きを示す干渉縞(図5(B)参照)を、個別に認識する。
(Interference measurement)
In the interference measurement, the observation surface 26a is imaged by the image sensor 26 while maintaining the state after the arrangement adjustment. The image data acquired by the image sensor 26 is taken into a computer (not shown).
The computer indicates, from the captured image data, an interference fringe indicating the shape of the reflecting surface 11a (see FIG. 5A), an interference fringe indicating the inclination of the null optical element 13, and the inclination of the back surface 11b of the primary mirror 11. Interference fringes (see FIG. 5B) are individually recognized.

このうち、反射面11aの形状を示す干渉縞は、図5(A)に示したように、円形領域E1に単独で形成されるので、円形領域E1の画像データから、直接的に認識することができる。
一方、ヌル光学素子13の傾きを示す干渉縞と、主鏡11の裏面11bの傾きを示す干渉縞とは、図5(B)に示したように、同じ輪帯状領域E2に重畳されるので、それらの干渉縞については、その輪帯状領域E2の画像データから直接認識することはできない。
Among these, the interference fringes indicating the shape of the reflecting surface 11a are formed independently in the circular area E1, as shown in FIG. 5A, and therefore can be directly recognized from the image data of the circular area E1. Can do.
On the other hand, the interference fringes indicating the inclination of the null optical element 13 and the interference fringes indicating the inclination of the back surface 11b of the primary mirror 11 are superimposed on the same annular region E2 as shown in FIG. These interference fringes cannot be directly recognized from the image data of the annular region E2.

しかも、その輪帯状領域E2上では、少なくとも、上述した(1),(2),(3),(4)の4つの光による干渉(4光束干渉)が生じている。
このうち、特定の2つの光が成す干渉縞のデータのみを、他の干渉縞のデータから分離するには、例えば、以下の分離方法が適用可能である。
(干渉縞の分離方法)
予め、干渉計の光源21(図3参照)の波長を可変にしておく。そのため、光源21には半導体レーザを用いるとよい。半導体レーザの注入電流を制御すれば、干渉計の波長を制御することができる。
Moreover, at least the interference (four-beam interference) caused by the four lights (1), (2), (3), and (4) described above occurs on the annular zone E2.
Among these, in order to separate only the interference fringe data formed by two specific lights from the other interference fringe data, for example, the following separation method can be applied.
(Interference fringe separation method)
The wavelength of the light source 21 (see FIG. 3) of the interferometer is previously made variable. Therefore, a semiconductor laser is preferably used for the light source 21. The wavelength of the interferometer can be controlled by controlling the injection current of the semiconductor laser.

干渉測定では、その注入電流を適切に制御して所定の変調波形で波長を変調させながら、撮像素子26による撮像を繰り返し、複数フレーム分の画像データを取得する。光源21に波長830nmの半導体レーザを用いると共に10mm厚の輪帯ミラー15を用いるとき、その波長変調幅は、例えば、0.025nm以上である。取得された複数フレーム分の画像データは、コンピュータへ取り込まれる。   In the interference measurement, imaging by the image sensor 26 is repeated while appropriately controlling the injection current and modulating the wavelength with a predetermined modulation waveform, thereby acquiring image data for a plurality of frames. When a semiconductor laser having a wavelength of 830 nm is used as the light source 21 and the annular mirror 15 having a thickness of 10 mm is used, the wavelength modulation width is, for example, 0.025 nm or more. The acquired image data for a plurality of frames is taken into a computer.

データ取得後、取得された複数フレーム分の画像データと、波長変調の変調パターンとに基づき演算を行い、特定の2つの光が成した干渉縞のデータのみを抽出する。なお、その演算を簡略化するために、波長変調は注入電流に対して線形で、変調波形を鋸歯状としておくことが好ましい。
ここで、干渉測定時に波長が変調されると、干渉縞の位相が変調される。但し、光路長(幾何学的光路長)の略等しい2つの光の干渉縞では、たとえ波長が変化しても位相が殆ど変化しない。一方、光路長の異なる2つの光の干渉縞では、波長が変化すると位相が一様に変化するので、その2つの光による干渉縞は流れ、波長変調速度が速いときには縞として認識できない。そこで、以下の調節が、干渉測定前に行われる。
After data acquisition, calculation is performed based on the acquired image data for a plurality of frames and the modulation pattern of wavelength modulation, and only interference fringe data formed by two specific lights is extracted. In order to simplify the calculation, it is preferable that the wavelength modulation is linear with respect to the injection current and the modulation waveform is sawtooth.
Here, when the wavelength is modulated during interference measurement, the phase of the interference fringes is modulated. However, in the two light interference fringes having substantially the same optical path length (geometric optical path length), the phase hardly changes even if the wavelength changes. On the other hand, in the interference fringes of two lights having different optical path lengths, the phase changes uniformly when the wavelength changes. Therefore, the interference fringes due to the two lights flow and cannot be recognized as the fringes when the wavelength modulation speed is high. Therefore, the following adjustment is performed before the interference measurement.

すなわち、分離すべき干渉縞が、ヌル光学素子13の傾きを示す干渉縞(参照面24a及び基準平面15aの反射光が成す干渉縞である。図6参照。)である場合は、ビームスプリッタ23から参照面24aまでの光路長と、ビームスプリッタ23から基準平面15aまでの光路長とが一致するように、参照板24の光軸方向の位置を調節する。但し、その調節の際には、参照板24の傾きが変化しないように注意する。   That is, when the interference fringes to be separated are interference fringes indicating the inclination of the null optical element 13 (interference fringes formed by the reflected light of the reference surface 24a and the reference plane 15a. See FIG. 6), the beam splitter 23. The position of the reference plate 24 in the optical axis direction is adjusted so that the optical path length from the beam splitter 23 to the reference plane 15a coincides with the optical path length from the beam splitter 23 to the reference plane 15a. However, care should be taken not to change the inclination of the reference plate 24 during the adjustment.

また、分離すべき干渉縞が、主鏡11の裏面11bの傾きを示す干渉縞(参照面24a及び基準平面14aの反射光が成す干渉縞)である場合は、ビームスプリッタ23から参照面24aまでの光路長と、ビームスプリッタ23から基準平面14aまでの光路長とが一致するように、参照板24の光軸方向の位置を調節する。但し、その調節の際には、参照板24の傾きが変化しないように注意する。   When the interference fringes to be separated are interference fringes indicating the inclination of the back surface 11b of the main mirror 11 (interference fringes formed by the reflected light of the reference surface 24a and the reference plane 14a), from the beam splitter 23 to the reference surface 24a. The position of the reference plate 24 in the optical axis direction is adjusted so that the optical path length of the reference plate 24 matches the optical path length from the beam splitter 23 to the reference plane 14a. However, care should be taken not to change the inclination of the reference plate 24 during the adjustment.

(偏芯の算出)
以上のとおり、円形領域E1,輪帯状領域E2の干渉縞(図5(A),(B))のデータからは、ヌル光学素子13の傾きデータ、反射面11aの形状データ、主鏡11の裏面11bの傾きデータが得られる。これらのデータは、何れも共通の参照面24aを基準としたデータである。
(Calculation of eccentricity)
As described above, from the data of the interference fringes (FIGS. 5A and 5B) of the circular region E1 and the annular region E2, the inclination data of the null optical element 13, the shape data of the reflecting surface 11a, the primary mirror 11 Tilt data of the back surface 11b is obtained. These data are data based on the common reference plane 24a.

そこで、コンピュータは、参照面24aに対するヌル光学素子13の傾きデータと、参照面24aに対する主鏡11の裏面11bの傾きデータとに基づき、裏面11bを基準とした主鏡11の偏芯を算出する。ヌル光学素子13の傾きは参照面24aに対して調整されているので小さいが、より正確に裏面11bに対する主鏡11の偏芯が求められる。
<副鏡12の偏芯測定>
以下、副鏡12の偏芯測定を詳細に説明する。副鏡12の偏芯測定も、主鏡11の偏芯測定と同様にトワイマン・グリーン型の干渉計を用いた同様の手順で高精度に行われる。ここでは、主鏡11の偏芯測定との相違点のみ説明する。相違点は、干渉計に配置された副鏡12の周辺の光学系にある。
Therefore, the computer calculates the eccentricity of the primary mirror 11 with respect to the back surface 11b based on the tilt data of the null optical element 13 with respect to the reference surface 24a and the tilt data of the back surface 11b of the primary mirror 11 with respect to the reference surface 24a. . Although the inclination of the null optical element 13 is small because it is adjusted with respect to the reference surface 24a, the eccentricity of the primary mirror 11 with respect to the back surface 11b is required more accurately.
<Eccentricity measurement of secondary mirror 12>
Hereinafter, the eccentricity measurement of the secondary mirror 12 will be described in detail. Similarly to the eccentricity measurement of the primary mirror 11, the eccentricity measurement of the secondary mirror 12 is performed with high accuracy by the same procedure using a Twiman-Green type interferometer. Here, only differences from the eccentricity measurement of the primary mirror 11 will be described. The difference is in the optical system around the secondary mirror 12 arranged in the interferometer.

図7は、干渉計に配置された副鏡12の周辺の光学系を示す図である。図7において、図3に示す要素と同じ機能を持つものには同じ符号を付した。この光学系のうち、ヌル光学素子13は、干渉計からの測定光束の波面を、副鏡12の反射面12aに対し略垂直に入射する波面に変換する。副鏡12の反射面12aは凸面なので、副鏡12とヌル光学素子13との位置関係は、ヌル光学素子13の焦点よりも前側に反射面12aが位置するような位置関係となる。このとき、反射面12aへ入射する測定光束は、発散光束ではなく集光光束である。そのような測定光束を反射面12aの全体へ入射させるために、ヌル光学素子13の径は、反射面12aのサイズに応じて予め大きく設定される。   FIG. 7 is a diagram showing an optical system around the secondary mirror 12 arranged in the interferometer. In FIG. 7, components having the same functions as those shown in FIG. In this optical system, the null optical element 13 converts the wavefront of the measurement light beam from the interferometer into a wavefront that is incident substantially perpendicular to the reflecting surface 12 a of the sub-mirror 12. Since the reflecting surface 12 a of the secondary mirror 12 is a convex surface, the positional relationship between the secondary mirror 12 and the null optical element 13 is such that the reflecting surface 12 a is positioned in front of the focal point of the null optical element 13. At this time, the measurement light beam incident on the reflecting surface 12a is not a divergent light beam but a condensed light beam. In order to make such a measurement light beam enter the entire reflecting surface 12a, the diameter of the null optical element 13 is set to be large in advance according to the size of the reflecting surface 12a.

また、副鏡12は非穴開きミラーなので、基準ミラー14の基準平面14aは、副鏡12の周囲に向かう測定光束を反射できるように、副鏡12の周囲へ張り出している。
ここで、副鏡12の径が大きい場合、例えば、図8に示すような光学系を用いてもよい。図8において、図7に示す要素と同じものには同じ符号を付した。
図8に示す光学系では、ヌル光学素子13の焦点よりも後側に副鏡12の反射面12aを配置して、副鏡12が無収差の2つの共役点を有することを利用して検査を行う。そこで、この光学系では、穴開きの折り返し反射ミラー16を追加し、その折り返し反射ミラー16によって反射光束の光路を折り返している。
Further, since the secondary mirror 12 is a non-perforated mirror, the reference plane 14a of the reference mirror 14 protrudes to the periphery of the secondary mirror 12 so that the measurement light beam directed to the periphery of the secondary mirror 12 can be reflected.
Here, when the diameter of the secondary mirror 12 is large, for example, an optical system as shown in FIG. 8 may be used. In FIG. 8, the same elements as those shown in FIG.
In the optical system shown in FIG. 8, the reflecting surface 12a of the secondary mirror 12 is arranged behind the focal point of the null optical element 13, and the secondary mirror 12 has two conjugate points having no aberration for inspection. I do. Therefore, in this optical system, a folding reflection mirror 16 with a hole is added, and the optical path of the reflected light beam is folded by the folding reflection mirror 16.

この光学系を用いた偏芯測定では、折り返し反射ミラー16を追加した分だけ測定誤差が増えると考えられるが、その折り返し反射ミラー16の固有情報(反射面の形状や配置誤差など)を別途測定しておけば、前述した偏芯測定と同等の精度で偏芯測定を行うことが可能である。
<イタレーション>
図2に示した測定工程S2の実行後に、その工程で取得した偏芯の情報を用いて主鏡11及び/又は副鏡12を評価し、もしも必要と判断された場合には、加工工程S1に戻り、主鏡11及び/又は副鏡12を再加工してもよい。これを繰り返せば、主鏡11及び/又は副鏡12の偏芯を小さく抑え込み、それら主鏡11及び/又は副鏡12を高精度化することができる(図2の点線部参照)。このイタレーションによって偏芯が十分に小さく抑えられた場合は、組み立て工程S3においてその偏芯をゼロとみなしてもよい。
In the eccentricity measurement using this optical system, it is considered that the measurement error increases by the addition of the folding reflection mirror 16, but the unique information (shape of the reflecting surface, arrangement error, etc.) of the folding reflection mirror 16 is separately measured. In this case, the eccentricity measurement can be performed with the same accuracy as the eccentricity measurement described above.
<Iteration>
After execution of the measurement step S2 shown in FIG. 2, the primary mirror 11 and / or the secondary mirror 12 are evaluated using the eccentricity information acquired in that step, and if it is determined that it is necessary, the processing step S1. The primary mirror 11 and / or the secondary mirror 12 may be reworked. If this is repeated, the eccentricity of the primary mirror 11 and / or the secondary mirror 12 can be kept small, and the precision of the primary mirror 11 and / or the secondary mirror 12 can be improved (see the dotted line portion in FIG. 2). When the eccentricity is sufficiently reduced by this iteration, the eccentricity may be regarded as zero in the assembly step S3.

また、測定工程S2の実行後、その工程で取得した反射面の形状データを用いて、主鏡11及び/又は副鏡12の反射面を評価し、もしも必要と判断された場合には、加工工程S1に戻り、主鏡11及び/又は副鏡12の反射面を再研磨してもよい。これを繰り返せば、主鏡11及び/又は副鏡12の反射面の面精度を高めることができる(図2の点線部参照)。   In addition, after the execution of the measurement step S2, the reflection surface of the primary mirror 11 and / or the secondary mirror 12 is evaluated using the shape data of the reflection surface acquired in that step. Returning to step S1, the reflecting surfaces of the primary mirror 11 and / or the secondary mirror 12 may be re-polished. By repeating this, the surface accuracy of the reflecting surface of the primary mirror 11 and / or the secondary mirror 12 can be improved (see the dotted line portion in FIG. 2).

<実施形態の効果>
以上、本実施形態では、測定工程S2において、干渉計、輪帯ミラー15、ヌル光学素子13、及び基準ミラー14を適切に用いることで、非球面ミラーの1種である主鏡11、副鏡12の偏芯をそれぞれ高精度に測定する。また、組み立て工程S3では、高精度に測定された偏芯の情報を用いるので、主鏡11と副鏡12とを高精度に位置合わせすることができる。したがって、完成した反射光学系(図1参照)は、高性能である。
<Effect of embodiment>
As described above, in the present embodiment, by appropriately using the interferometer, the annular mirror 15, the null optical element 13, and the reference mirror 14 in the measurement step S2, the primary mirror 11 and the secondary mirror, which are one type of aspherical mirror, are used. Each of the 12 eccentricities is measured with high accuracy. Further, in the assembly step S3, since the eccentricity information measured with high accuracy is used, the primary mirror 11 and the secondary mirror 12 can be aligned with high accuracy. Therefore, the completed reflection optical system (see FIG. 1) has high performance.

<その他>
本実施形態では、図3に示したとおり、輪帯ミラー15が透過部材からなり、かつ、その輪帯ミラー15を透過した測定光束が、基準ミラー14の基準平面14aへ入射する場合(図3参照)を説明したが、それに限定されることはない。
例えば、輪帯ミラー15の径方向の幅を細くし、輪帯ミラー15の更に外側を通過した測定光束を、基準ミラー14の基準平面14aへ直接入射させ、輪帯ミラー15を非透過部材としてもよい。因みに、その場合は、ヌル光学素子13の傾きを示す干渉縞(参照面24a及び基準平面15aの反射光が成す干渉縞)と、主鏡11の裏面11bの傾きを示す干渉縞(参照面24a及び基準平面14aの反射光が成す干渉縞)とが観察面26a上で分離されるので、上述した3種類の干渉縞の認識が容易となる。
<Others>
In the present embodiment, as shown in FIG. 3, the annular mirror 15 is made of a transmission member, and the measurement light beam transmitted through the annular mirror 15 is incident on the reference plane 14a of the reference mirror 14 (FIG. 3). Reference) is described, but the present invention is not limited to this.
For example, the radial width of the annular mirror 15 is narrowed, and the measurement light beam that has passed further outside the annular mirror 15 is directly incident on the reference plane 14a of the reference mirror 14, and the annular mirror 15 is used as a non-transmissive member. Also good. In this case, in that case, interference fringes indicating the inclination of the null optical element 13 (interference fringes formed by the reflected light of the reference surface 24a and the standard plane 15a) and interference fringes indicating the inclination of the back surface 11b of the main mirror 11 (reference surface 24a). And the interference fringes formed by the reflected light of the reference plane 14a are separated on the observation surface 26a, so that the above-described three types of interference fringes can be easily recognized.

また、輪帯ミラー15の形状については、ヌル光学素子13の周囲へ入射する測定光束を反射可能な適当な形状に整えられる(輪帯状で無くとも構わない。)。但し、その形状は、ヌル光学素子13へ入射する測定光束や、基準ミラー14へ入射する測定光束をなるべく妨げることなく、かつ、ヌル光学素子13の傾きデータをなるべく高精度に生成できるように選定されることが望ましい。その点では、輪帯状であることが望ましい。   Further, the shape of the annular mirror 15 is adjusted to an appropriate shape capable of reflecting the measurement light beam incident on the periphery of the null optical element 13 (it does not need to be an annular shape). However, the shape is selected so that the measurement light beam incident on the null optical element 13 and the measurement light beam incident on the reference mirror 14 are prevented as much as possible, and the tilt data of the null optical element 13 can be generated as accurately as possible. It is desirable that In that respect, it is desirable to have a ring shape.

また、干渉縞を分離する方法としては、波長変調による方法以外に、公知の各種の方法を適用することが可能である。また、干渉縞の検出方法には、検出精度を向上するための公知の各種の方法を適用することが可能である。
また、干渉計の形態としては、トワイマン・グリーン型を示したが、本発明が適用できるものならば、他のタイプの干渉計を用いても構わない。
As a method for separating the interference fringes, various known methods can be applied in addition to the method using wavelength modulation. Various known methods for improving detection accuracy can be applied to the interference fringe detection method.
Further, although the Twiman Green type is shown as the form of the interferometer, other types of interferometers may be used as long as the present invention can be applied.

上述した実施形態では、リッチー・クレチアン式の反射光学系を製造したが、カセグレン式の反射光学系の製造にも、本発明は適用可能である。また、反射非球面光学素子を少なくとも1つ備えているのであれば、他の光学系の製造にも本発明は適用可能である。
因みに、凹の反射非球面の偏芯測定には、図3に示した光学系が適用可能であり、凸の反射非球面の偏芯測定には、図7や図8に示した光学系が適用可能である。
In the above-described embodiment, the Ritchie-Cretian type reflection optical system is manufactured. However, the present invention can also be applied to the manufacture of the Cassegrain type reflection optical system. The present invention can also be applied to the production of other optical systems as long as at least one reflective aspherical optical element is provided.
Incidentally, the optical system shown in FIG. 3 can be applied to the decentration measurement of the concave reflective aspheric surface, and the optical system shown in FIGS. Applicable.

実施形態で製造する反射光学系を示す図である。It is a figure which shows the reflective optical system manufactured in embodiment. 製造方法の全体の流れを示すフローチャートである。It is a flowchart which shows the flow of the whole manufacturing method. 主鏡11の偏芯測定を説明する図である。It is a figure explaining the eccentric measurement of the main mirror. ヌル光学素子13と輪帯ミラー15の取り付けを説明する図である。It is a figure explaining attachment of null optical element 13 and annular zone mirror 15. FIG. 干渉計内で生じる干渉縞を説明する図である。It is a figure explaining the interference fringe which arises in an interferometer. ヌル光学素子13の傾き調整時に干渉計内で生じる干渉縞を説明する図である。It is a figure explaining the interference fringe which arises in an interferometer at the time of inclination adjustment of the null optical element. 干渉計に配置された副鏡12の周辺の光学系を示す図である。It is a figure which shows the optical system of the periphery of the submirror 12 arrange | positioned at an interferometer. 副鏡12の周辺の光学系の変形例を示す図である。It is a figure which shows the modification of the optical system of the periphery of the submirror 12.

符号の説明Explanation of symbols

11・・・主鏡,12・・・副鏡,11a,12a・・・反射面,14・・・基準ミラー,15・・・輪帯ミラー,14a,15a・・・基準平面   DESCRIPTION OF SYMBOLS 11 ... Primary mirror, 12 ... Secondary mirror, 11a, 12a ... Reflecting surface, 14 ... Reference mirror, 15 ... Ring zone mirror, 14a, 15a ... Reference plane

Claims (8)

第1基準面を持った反射非球面光学素子と、第2基準面を持ったヌル光学素子とを、干渉計の測定光束中に配置する手順と、
前記反射非球面光学素子と前記ヌル素子との配置関係を保った状態で、前記反射非球面光学素子の反射非球面、前記第1基準面、及び前記第2基準面の各々を、前記干渉計の共通の参照面で検出する手順と、
前記各検出の結果に基づき、前記第1基準面を基準とした前記反射非球面光学素子の偏芯を求める手順と
を含むことを特徴とする反射非球面光学素子の偏芯測定方法。
Placing a reflective aspheric optical element having a first reference surface and a null optical element having a second reference surface in a measurement beam of the interferometer;
Each of the reflective aspheric surface, the first reference surface, and the second reference surface of the reflective aspheric optical element is placed in the interferometer while maintaining the positional relationship between the reflective aspheric optical element and the null element. Detecting on a common reference plane,
A method of measuring the eccentricity of the reflective aspherical optical element based on the result of each detection, and determining the eccentricity of the reflective aspherical optical element based on the first reference surface .
請求項1に記載の反射非球面光学素子の偏芯測定方法において、
前記第1基準面は、前記反射非球面光学素子の裏面と平行に固定された平面であり、
前記第2基準面は、前記ヌル素子の光軸と垂直に固定された平面である
ことを特徴とする反射非球面光学素子の偏芯測定方法。
In the decentration measuring method of the reflective aspherical optical element according to claim 1,
The first reference surface is a plane fixed in parallel with the back surface of the reflective aspheric optical element,
The second reference plane is a plane fixed perpendicular to the optical axis of the null element. A method for measuring the eccentricity of a reflective aspheric optical element.
請求項1又は請求項2に記載の反射非球面光学素子の偏芯測定方法において、
前記干渉計の光源は、出射光の波長を変調可能な光源である
ことを特徴とする反射非球面光学素子の偏芯測定方法。
In the decentration measuring method of the reflective aspherical optical element according to claim 1 or 2,
The method for measuring the eccentricity of a reflective aspherical optical element, wherein the light source of the interferometer is a light source capable of modulating the wavelength of outgoing light.
反射非球面光学素子を少なくとも1つ備えた光学系の製造方法であって、
前記光学系を構成する少なくとも1つの反射非球面光学素子の偏芯を、請求項1〜請求項3の何れか一項に記載の反射非球面光学素子の偏芯測定方法で測定する手順と、
前記測定の結果に応じて前記光学系を組み立てる手順と、
を含むことを特徴とする光学系の製造方法。
A method of manufacturing an optical system comprising at least one reflective aspheric optical element,
A procedure for measuring the eccentricity of at least one reflective aspherical optical element constituting the optical system by the eccentricity measuring method for a reflective aspherical optical element according to any one of claims 1 to 3,
Assembling the optical system according to the measurement results;
The manufacturing method of the optical system characterized by the above-mentioned.
請求項4に記載の光学系の製造方法において、
前記測定の結果に応じて前記反射非球面光学素子を再加工する手順をさらに含む
ことを特徴とする光学系の製造方法。
In the manufacturing method of the optical system according to claim 4,
A method of manufacturing an optical system, further comprising a step of reworking the reflective aspherical optical element according to the measurement result.
請求項1〜請求項3の何れか一項に記載の反射非球面光学素子の偏芯測定方法で測定されたことを特徴とする反射非球面光学素子。   A reflective aspheric optical element, which is measured by the eccentricity measuring method for a reflective aspheric optical element according to any one of claims 1 to 3. 請求項1〜請求項3の何れか一項に記載の反射非球面光学素子の偏芯測定方法で測定され、かつその測定の結果に応じて再加工されたことを特徴とする反射非球面光学素子。   Reflective aspherical optics, characterized by being measured by the eccentricity measuring method for a reflective aspherical optical element according to any one of claims 1 to 3 and reworked according to the measurement results. element. 請求項4又は請求項5に記載の光学系の製造方法により製造されたことを特徴とする光学系。   An optical system manufactured by the optical system manufacturing method according to claim 4 or 5.
JP2005183727A 2005-06-23 2005-06-23 Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system Expired - Fee Related JP4857619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183727A JP4857619B2 (en) 2005-06-23 2005-06-23 Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183727A JP4857619B2 (en) 2005-06-23 2005-06-23 Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system

Publications (2)

Publication Number Publication Date
JP2007003344A JP2007003344A (en) 2007-01-11
JP4857619B2 true JP4857619B2 (en) 2012-01-18

Family

ID=37689127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183727A Expired - Fee Related JP4857619B2 (en) 2005-06-23 2005-06-23 Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system

Country Status (1)

Country Link
JP (1) JP4857619B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025501B2 (en) * 2008-01-17 2012-09-12 オリンパス株式会社 Optical element holding mechanism and optical element measuring apparatus
CN109238657B (en) * 2018-08-28 2020-04-10 南京理工大学 Aspheric rise reconstruction method based on annular phase and pose information

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3304994B2 (en) * 1991-08-30 2002-07-22 キヤノン株式会社 Polishing method and polishing apparatus
JPH1089935A (en) * 1996-09-10 1998-04-10 Nikon Corp Device for measuring aspherical interference
JP2004279345A (en) * 2003-03-18 2004-10-07 Canon Inc Curved mirror and measuring method for surface profile
JP2004340693A (en) * 2003-05-14 2004-12-02 Pentax Corp Apparatus and method for measuring wavefront aberration
JP2004361161A (en) * 2003-06-03 2004-12-24 Canon Inc Quadratic surface shape measuring apparatus

Also Published As

Publication number Publication date
JP2007003344A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US6312373B1 (en) Method of manufacturing an optical system
JP5087186B1 (en) Iso-optical path interferometer
US10359703B2 (en) Method for aligning a mirror of a microlithographic projection exposure apparatus
JP2010133860A (en) Shape calculation method
JP7489403B2 (en) Deflectometry Measurement System
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
JP2009162539A (en) Light wave interferometer apparatus
JP2008089356A (en) Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method
US6930783B2 (en) Method of aligning optical system using a hologram and apparatus therefor
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JPH1163946A (en) Methods for measuring shape and manufacturing high-precision lens
JP4857619B2 (en) Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system
JP2002296005A (en) Aligning method, point diffraction interference measuring instrument, and high-accuracy projection lens manufacturing method using the same instrument
JP2016102875A (en) Aspherical lens, device for aligning optical axis thereof, aspherical mirror, and cassegrain telescope
JP2007010609A (en) Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method
JP2002206915A (en) Abscissa calibration method for facial shape measuring device and facial shape measuring device
JP2000097622A (en) Interferometer
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP2001091227A (en) Measuring device for lens and measuring method for lens
JP2003021577A (en) Method and apparatus for measuring refractive-index distribution
JP3740427B2 (en) Shape measuring method and apparatus using interferometer
JP3320877B2 (en) Method and apparatus for measuring surface shape of object to be measured
JP3373552B2 (en) Method for analyzing alignment of reflection objective lens and method for adjusting reflection objective lens
JP2005147966A (en) Interferometer and pinhole plate
JP2003014415A (en) Point diffraction interferometer and aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4857619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees