WO2016084418A1 - Aspherical mirror, optical axis aligning device for aspherical mirror, aspherical lens, optical axis aligning device for aspherical lens, and cassegrain telescope - Google Patents

Aspherical mirror, optical axis aligning device for aspherical mirror, aspherical lens, optical axis aligning device for aspherical lens, and cassegrain telescope Download PDF

Info

Publication number
WO2016084418A1
WO2016084418A1 PCT/JP2015/069812 JP2015069812W WO2016084418A1 WO 2016084418 A1 WO2016084418 A1 WO 2016084418A1 JP 2015069812 W JP2015069812 W JP 2015069812W WO 2016084418 A1 WO2016084418 A1 WO 2016084418A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
aspherical
optical axis
plane
lens
Prior art date
Application number
PCT/JP2015/069812
Other languages
French (fr)
Japanese (ja)
Inventor
清原 元輔
耕輔 清原
野口 正人
Original Assignee
株式会社清原光学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社清原光学 filed Critical 株式会社清原光学
Publication of WO2016084418A1 publication Critical patent/WO2016084418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to an aspherical mirror, an optical axis alignment device for an aspherical mirror, an aspherical lens, an optical axis alignment device for an aspherical lens, and a Cassegrain telescope.
  • a planar reference mirror is provided between the interferometer and the spherical lens that is the lens to be inspected, and a spherical mirror that reflects light that has passed through the lens to be inspected is provided. Since the optical axis of the spherical mirror is the same in any direction, it is not necessary to align the optical axis of the spherical mirror at the time of inspection.
  • an aspherical lens is inspected by an interferometer
  • a planar reference mirror is provided between the interferometer and the aspherical lens that is the lens to be inspected, and an aspherical mirror that reflects light that has passed through the lens to be inspected is provided.
  • the aspherical mirror has directionality and its optical axis varies depending on the direction of the aspherical mirror, it is necessary to match the optical axis of the aspherical mirror when inspecting the aspherical lens.
  • the optical axis of the aspheric lens that is the lens to be inspected must also be matched.
  • the conventional classical Cassegrain telescope is a telescope that makes a secondary mirror, which is a hyperboloidal convex mirror, face the front of the optical axis of the primary mirror, and extracts the light beam from the central opening of the primary mirror to the back side of the mirror surface and leads it to the eyepiece.
  • the primary mirror is a parabolic mirror and the secondary mirror is a hyperboloidal mirror.
  • the plane reference mirror among the reference light in which a part of the parallel light from the interferometer is reflected by the plane reference mirror and the parallel light from the interferometer
  • the aspherical surface Inspect the lens.
  • the optical axis of the aspherical mirror is not accurately aligned, so the inspection is performed without aligning the optical axis of the aspherical mirror, and the aspherical lens may not be correctly inspected. There is.
  • the optical axis of the aspherical lens that is the lens to be inspected has not been accurately aligned in the past.
  • the aspherical lens may not be correctly inspected.
  • the inclination of the optical axis of the primary mirror is detected and adjusted using an interferometer or an autocollimator.
  • this conventional example has a problem that it is difficult to accurately adjust the optical axis of the primary mirror in a predetermined direction.
  • an object of the present invention is to provide an aspherical mirror and an optical axis alignment apparatus for an aspherical mirror, which can easily align the optical axis of the aspherical mirror when an aspherical lens is inspected with an interferometer.
  • the present invention also provides an aspheric lens and an optical axis alignment device for an aspheric lens that can easily align the optical axis of an aspheric lens as a lens to be inspected when an aspheric lens is inspected with an interferometer. The purpose is to provide. It is another object of the present invention to provide a Cassegrain telescope main mirror that facilitates the work of aligning the optical axis of the Cassegrain telescope primary mirror in a predetermined direction.
  • the optical axis of the secondary mirror overlaps the optical axis of the primary mirror.
  • the normal of the plane mirror is parallel to the optical axis of the secondary mirror.
  • An object of the present invention is to provide an aspherical mirror, an aspherical mirror optical axis aligning device, an aspherical lens, and an aspherical lens optical axis aligning device that can be easily aligned. It is another object of the present invention to provide a Cassegrain telescope that facilitates the operation for aligning the optical axis of the secondary mirror of the Cassegrain telescope with the optical axis of the primary mirror.
  • the aspherical mirror of the present invention is characterized in that a plane mirror is provided at the periphery or center of the aspherical mirror, and the normal line of the plane mirror is parallel to the optical axis of the aspherical mirror.
  • the optical axis aligning device for an aspherical mirror of the present invention is an aspherical mirror in which an interferometer, a planar reference mirror, and a planar mirror are provided at the periphery, and the normal of the planar mirror is the light of the aspherical mirror.
  • An aspherical mirror that is parallel to the axis, and a part of the parallel light from the interferometer is reflected by the planar reference mirror, and the parallel reference light from the interferometer is transmitted through the planar reference mirror.
  • the aspherical mirror is axially aligned according to interference fringes in which light is reflected by the plane mirror of the aspherical mirror and interferes with the test light transmitted through the planar reference mirror.
  • the aspherical lens of the present invention is characterized in that a plane mirror is provided at the periphery or center of the aspherical lens, and the normal of the plane mirror is parallel to the optical axis of the aspherical lens.
  • An axis alignment device for an aspheric lens according to the present invention is an aspheric lens provided with an interferometer, a plane reference mirror, and a plane mirror at the periphery, and the normal of the plane mirror is the optical axis of the aspheric lens.
  • the Cassegrain telescope of the present invention is a primary mirror of the Cassegrain telescope and a first plane mirror provided at the periphery of the primary mirror, wherein the normal line of the first plane mirror is parallel to the optical axis of the primary mirror.
  • the aspherical mirror, the aspherical mirror optical axis aligning device, the aspherical lens, and the aspherical lens optical axis aligning device according to the present invention have an effect that the optical axis alignment of the aspherical mirror or the aspherical lens is easy.
  • the Cassegrain telescope of the present invention has an effect that the work for aligning the optical axis of the secondary mirror of the Cassegrain telescope with the direction of the optical axis of the primary mirror is easy.
  • FIG. 1 is a perspective view showing an aspherical mirror 10 that is Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing an aspheric lens 20 that is Embodiment 2 of the present invention.
  • FIG. 3 is a cross-sectional view of an aspherical mirror optical axis aligning device 100 according to the third embodiment.
  • FIG. 4 is a cross-sectional view of an aspherical lens optical axis aligning device 200 according to the fourth embodiment.
  • FIG. 5 is a diagram showing an aspherical lens inspection apparatus that is Embodiment 5 of the present invention.
  • FIG. 6 shows a Cassegrain telescope 400 that is Embodiment 6 of the present invention.
  • FIG. 7 is a front view showing the primary mirror 60 used in the Cassegrain telescope 400.
  • FIG. 8 is a front view showing the secondary mirror 70 used in the Cassegrain telescope 400.
  • FIG. 9 is an enlarged side view of the secondary mirror 70 used in the Cassegrain telescope 400.
  • FIG. 10 is a front view showing a primary mirror 60 a that is a modification of the primary mirror 10.
  • FIG. 11 is a diagram showing an aspherical mirror optical axis aligning device 100a that is Embodiment 7 of the present invention.
  • FIG. 12 is a diagram showing a parallel light generating device and a wavefront measuring device 50 in the optical axis aligning device 100a of the aspherical mirror.
  • FIG. 1 is a perspective view showing an aspherical mirror 10 that is Embodiment 1 of the present invention.
  • the aspherical mirror 10 has an aspherical mirror part 11 and a plane mirror 12.
  • the plane mirror 12 is provided on the periphery of the aspherical mirror unit 11 and has a ring shape.
  • the normal line of the plane mirror 12 is parallel to the optical axis of the aspherical mirror unit 11.
  • the plane mirror 12 is integrally formed with the aspherical mirror unit 11, the plane mirror 12 may be provided on the periphery of the aspherical mirror unit 11 by a method other than integral molding.
  • the plane mirror 12 has a ring shape, it may have a shape of a part of the ring, such as a half of the ring or a quarter, instead of the ring shape. Further, the plane mirror 12 may be a plane mirror having various shapes such as a circle, a quadrangle, and a triangle provided on the periphery of the aspherical mirror unit 11.
  • FIG. 2 is a perspective view showing an aspheric lens 20 that is Embodiment 2 of the present invention.
  • the aspheric lens 20 has an aspheric lens portion 21 and a plane mirror 22.
  • the plane mirror 22 is provided on the periphery of the aspheric lens unit 21 and has a ring shape.
  • the normal line of the plane mirror 22 is parallel to the optical axis of the aspheric lens unit 21.
  • the plane mirror 22 is integrally molded with the aspheric lens portion 21, the plane mirror 22 may be provided on the periphery of the aspheric lens portion 21 by a method other than integral molding.
  • the plane mirror 22 has a ring shape, it may have a shape of a part of the ring, such as a half of the ring or a quarter, instead of the ring shape. Further, the plane mirror 22 may be a plane mirror having various shapes such as a circle, a quadrangle, and a triangle provided on the periphery of the aspheric lens unit 21.
  • FIG. 3 is a cross-sectional view showing an aspherical mirror optical axis aligning device 100 that is Embodiment 3 of the present invention.
  • the aspherical mirror optical axis alignment apparatus 100 includes an aspherical mirror 10, an interferometer 30, and a planar reference mirror 40.
  • the aspherical mirror optical axis aligning apparatus 100 transmits the reference light, which is a part of the parallel light from the interferometer 30, reflected by the flat reference mirror 40 and the parallel light from the interferometer 30 that has passed through the flat reference mirror 40.
  • the aspherical mirror 10 is axially aligned according to interference fringes in which the light is reflected by the flat mirror 12 of the aspherical mirror 10 and interferes with the test light transmitted through the flat reference mirror 40.
  • the optical axis aligning device 100 of the aspherical mirror a part of the parallel light from the interferometer 30 is transmitted through the flat reference mirror 40 among the reference light reflected by the flat reference mirror 40 and the parallel light from the interferometer 30.
  • the light is reflected by the plane mirror 12 of the aspherical lens and interferes with the test light transmitted through the plane reference mirror 40.
  • the aspherical mirror 10 is axially aligned according to the interference fringes due to this interference. That is, if the interference fringes are aligned, the parallel light and the normal line of the plane mirror 12 are parallel, and the optical axis of the aspherical mirror 10 is parallel to the parallel light.
  • the direction of the aspherical mirror 10 is adjusted until the interference fringes are aligned. Therefore, in the aspherical mirror optical axis aligning device 100, the normal of the plane mirror 12 is parallel to the optical axis of the aspherical mirror 10, so that the light of the aspherical mirror 10 is directed in the direction of the parallel light emitted from the interferometer 30.
  • the axes can be easily aligned, and the optical axis of the aspherical mirror 10 can be accurately aligned.
  • FIG. 4 is a cross-sectional view showing an aspherical lens optical axis aligning device 200 that is Embodiment 4 of the present invention.
  • the aspherical lens optical axis alignment apparatus 200 includes an aspherical lens 20, an interferometer 30, and a planar reference mirror 40.
  • a part of the parallel light from the interferometer 30 is transmitted through the flat reference mirror 40 among the reference light reflected by the flat reference mirror 40 and the parallel light from the interferometer 30.
  • the light is reflected by the plane mirror 12 of the aspherical lens and interferes with the test light transmitted through the plane reference mirror 40.
  • the aspherical lens 20 is aligned according to the interference fringes due to this interference.
  • the interference fringes are aligned, the parallel light and the normal line of the plane mirror 22 are parallel, and the optical axis of the aspherical lens 20 is parallel to the parallel light. If the interference fringes are not aligned, the direction of the aspheric lens 20 is adjusted until the interference fringes are aligned. Accordingly, in the optical axis aligning device 200 for the aspheric lens, the normal line of the plane mirror 22 is parallel to the optical axis of the aspheric lens 20, so that the light of the aspheric lens 20 is directed in the direction of the parallel light emitted from the interferometer 30. It is easy to align the axes, and the optical axis of the aspheric lens 20 can be accurately aligned.
  • FIG. 5 is a diagram showing an aspherical lens inspection apparatus 300 that is Embodiment 5 of the present invention.
  • the aspherical lens inspection device 300 is arranged in the order of the planar reference mirror 40, the aspherical lens 20 to be inspected, and the aspherical mirror 10.
  • the optical axis of the aspheric mirror 10 is aligned as described with reference to FIG.
  • the aspherical lens 20 is installed between the planar reference mirror 40 and the aspherical mirror 10, and the optical axis of the aspherical lens 20 is aligned as described with reference to FIG. .
  • a part of the parallel light from the interferometer 30 is reference light reflected by the planar reference mirror 40 and corresponds to the position of the aspherical lens portion 21 of the aspherical lens 20.
  • the reference light to be transmitted and the parallel light from the interferometer 30 that has passed through the planar reference mirror 40 are transmitted through the aspherical lens 20 and reflected by the aspherical mirror unit 11 of the aspherical mirror 10. Interfere with the transmitted test light. And the quality of the aspherical lens 20 is judged according to the interference fringe by this interference.
  • the interference fringes are aligned, it is determined that the aspheric lens 20 is normal, and if the interference fringes are not aligned, it is determined that the aspheric lens 20 is abnormal.
  • the optical axis of the aspherical mirror 10 and the optical axis of the aspherical lens 20 are both parallel to the parallel light from the interferometer 30, the reliability of the inspection result of the aspherical lens 20 is high.
  • FIG. 6 shows a Cassegrain telescope 400 that is Embodiment 6 of the present invention.
  • the Cassegrain telescope 400 includes a primary mirror 60, a secondary mirror 70, a lens group 81, and an imaging plane 82.
  • FIG. 7 is a front view showing the primary mirror 60 used in the Cassegrain telescope 400.
  • the main mirror 60 includes a concave mirror 61, a through hole 62, and a plane mirror 63.
  • the reflecting surface forms a paraboloid.
  • the through hole 62 is an area through which light reflected by the sub mirror 70 passes.
  • the plane mirror 63 is a plane mirror integrally formed with the concave mirror 61 around the concave mirror 61, and forms a ring shape.
  • FIG. 8 is a front view showing the secondary mirror 70 used in the Cassegrain telescope 400.
  • FIG. 9 is an enlarged side view of the secondary mirror 70 used in the Cassegrain telescope 400.
  • the secondary mirror 70 has a concave mirror 71 and a plane mirror 73.
  • the concave mirror 71 has a hyperboloid reflecting surface.
  • the normal line of the plane mirror 73 is parallel to the optical axis of the secondary mirror 71.
  • the plane mirror 73 is provided at the center of the secondary mirror 71 and is integrally formed with the secondary mirror 71 when the secondary mirror 71 is formed.
  • the lens group 81 is a correction optical system that corrects aberration.
  • the imaging surface 82 is a surface that forms an image of light reflected by the secondary mirror 70 and passed through the lens group 81.
  • the optical axis of the primary mirror 60 is set in a predetermined direction. In this case, a light source such as a laser is installed at a position separated from the optical axis to be aligned by the radius of the concave mirror 61.
  • the direction of the main mirror 60 is adjusted until it returns to the laser. If it can be confirmed that the laser beam from the laser beam returns to the laser beam after being reflected by the plane mirror 63, the optical axis of the main mirror 60 is set in the predetermined direction. Further, when adjusting the optical axis of the primary mirror 60 in a predetermined direction, an interferometer may be used. Next, an operation of aligning the optical axis of the secondary mirror 70 with the optical axis of the primary mirror 60 is executed. First, the center of the concave mirror 71 of the secondary mirror 70 is aligned with the optical axis of the primary mirror 60.
  • the second laser is installed so that the laser beam travels on the optical axis of the primary mirror 60, and the concave mirror 71 is arranged so that this laser beam irradiates the center of the concave mirror 71 of the secondary mirror 70. Then, the direction of the secondary mirror 70 is adjusted until the laser light reflected by the plane mirror 73 of the secondary mirror 70 returns to the second laser.
  • the optical axis of the secondary mirror 70 is aligned with the optical axis of the primary mirror 60.
  • the plane mirror 63 can also be integrally molded at the same time, whereby the plane mirror 63 can be easily manufactured.
  • FIG. 10 is a front view showing a primary mirror 60 a that is a modification of the primary mirror 60.
  • the primary mirror 60a is an embodiment in which a primary mirror 63a, which is a part of the primary mirror 60, is provided instead of the ring-shaped flat mirror 63.
  • a plane mirror 63a may be provided on a part of the periphery of the main mirror 60.
  • the plane mirror 63a is integrally formed with the main mirror 60.
  • the laser provided for aligning the optical axis is provided at a position corresponding to the plane mirror 63a from the optical axis of the main mirror 60a. That is, the laser is provided at a position separated from the optical axis by the radius of the concave mirror 61 in the same direction as the direction in which the plane mirror 63a is provided.
  • the primary mirror 60a only one plane mirror is provided on the periphery of the primary mirror.
  • a plurality of plane mirrors may be provided, and the plane mirror 12 is not a quadrangle but has another shape such as an arc. Also good.
  • FIG. 11 is a diagram showing an aspherical mirror optical axis aligning device 100a that is Embodiment 7 of the present invention.
  • the aspherical mirror optical axis aligning device 100a is provided with a parallel light generating device and a wavefront measuring device 50 instead of the interferometer 30 and the planar reference mirror 40 in the aspherical mirror optical axis aligning device 100 shown in FIG. Device.
  • FIG. 12 is a diagram showing a parallel light generating device and a wavefront measuring device 50 in the optical axis aligning device 100a of the aspherical mirror.
  • the parallel light generator and wavefront measuring device 50 includes a parallel light generating device 51, a Siroc Hartmann wavefront measuring device 52, and a beam reducer 53.
  • the parallel light generator 51 includes a laser 511, lenses 512 and 513, and a half mirror 514.
  • the Siroc Hartmann wavefront measuring apparatus 52 includes a lens array 521 and a CCD / CMOS 522.
  • the beam reducer 53 has a convex lens and a concave lens.
  • a parallel light generator and a wavefront measuring device 50 may be provided instead of the interferometer 30 and the planar reference mirror 40.
  • a part of the parallel light generated by the parallel light generating device 51 is reflected by the plane mirror 22 of the aspherical lens 20, and the reflected light is aspherical lens 20 according to the inclination of the wavefront measured by the wavefront measuring device 52. Align the axis.
  • the above embodiments can also be applied to camera lenses and telephoto lenses.
  • the optical axis aligning device for the aspherical lens and the aspherical lens in each of the above embodiments May be applied.
  • the aspherical mirror, the aspherical mirror optical axis aligning device, the aspherical lens, and the aspherical lens optical axis aligning device of the present invention can easily align the optical axis of the aspherical mirror or the aspherical lens, This is useful in an optical axis aligning apparatus, an aspherical lens optical axis aligning apparatus, and the like.
  • the Cassegrain telescope of the present invention is useful in the field of Cassegrain telescopes because it is easy to work to align the optical axis of the secondary mirror of the Cassegrain telescope with the direction of the optical axis of the primary mirror.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Telescopes (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Abstract

The purpose of the present invention is to provide an aspherical mirror and an aspherical lens that allow for easy and reliable optical axis alignment. An aspherical mirror according to the present invention is characterized by having a plane mirror provided at the periphery or the central part of the aspherical mirror and the normal line to the plane mirror being parallel to the optical axis of the aspherical mirror. An aspherical lens according to the present invention is characterized by having a plane mirror provided at the periphery of the aspherical lens and the normal line to the plane mirror being parallel to the optical axis of the aspherical lens.

Description

非球面ミラー、非球面ミラーの光軸合わせ装置、非球面レンズ、非球面レンズの光軸合わせ装置及びカセグレン望遠鏡Aspherical mirror, aspherical mirror optical axis aligning device, aspherical lens, aspherical lens optical axis aligning device, and Cassegrain telescope
 本発明は、非球面ミラー、非球面ミラーの光軸合わせ装置、非球面レンズ、非球面レンズの光軸合わせ装置及びカセグレン望遠鏡に関する。 The present invention relates to an aspherical mirror, an optical axis alignment device for an aspherical mirror, an aspherical lens, an optical axis alignment device for an aspherical lens, and a Cassegrain telescope.
 従来の球面レンズを、干渉計で検査する場合、干渉計と被検査レンズである球面レンズとの間に、平面リファレンスミラーを設け、被検査レンズを透過した光を反射する球面ミラーを設ける。球面ミラーは、どの方向に向けても、その光軸は同じであるので、検査時に、球面ミラーの光軸を合わせる必要がない。
 一方、非球面レンズを干渉計で検査する場合、干渉計と被検査レンズである非球面レンズとの間に、平面リファレンスミラーを設け、被検査レンズを透過した光を反射する非球面ミラーを設ける。非球面ミラーは、方向性があり、向けた方向によって、その光軸が異なるので、非球面レンズを検査する場合に、非球面ミラーの光軸を合わせる必要がある。
 また、非球面レンズを干渉計で検査する場合、被検査レンズである非球面レンズの光軸も合わせる必要がある。
 さらに、従来のクラシカル・カセグレン望遠鏡は、主鏡の光軸上前方に、双曲面の凸面鏡である副鏡を対向させ、主鏡の中央開口から鏡面裏側に光束を取り出して接眼レンズに導く望遠鏡である(たとえば、特許文献1参照)。
 つまり、従来のクラシカル・カセグレン望遠鏡において、主鏡は放物面鏡であり、副鏡は双曲面鏡である。主鏡がその焦点面に作る像の位置を、双曲面の1つの焦点と一致させると、双曲面はもう一つの焦点に像を結ぶ。
When inspecting a conventional spherical lens with an interferometer, a planar reference mirror is provided between the interferometer and the spherical lens that is the lens to be inspected, and a spherical mirror that reflects light that has passed through the lens to be inspected is provided. Since the optical axis of the spherical mirror is the same in any direction, it is not necessary to align the optical axis of the spherical mirror at the time of inspection.
On the other hand, when an aspherical lens is inspected by an interferometer, a planar reference mirror is provided between the interferometer and the aspherical lens that is the lens to be inspected, and an aspherical mirror that reflects light that has passed through the lens to be inspected is provided. . Since the aspherical mirror has directionality and its optical axis varies depending on the direction of the aspherical mirror, it is necessary to match the optical axis of the aspherical mirror when inspecting the aspherical lens.
When inspecting an aspheric lens with an interferometer, the optical axis of the aspheric lens that is the lens to be inspected must also be matched.
Furthermore, the conventional classical Cassegrain telescope is a telescope that makes a secondary mirror, which is a hyperboloidal convex mirror, face the front of the optical axis of the primary mirror, and extracts the light beam from the central opening of the primary mirror to the back side of the mirror surface and leads it to the eyepiece. (For example, refer to Patent Document 1).
That is, in the conventional classical Cassegrain telescope, the primary mirror is a parabolic mirror and the secondary mirror is a hyperboloidal mirror. When the position of the image created by the primary mirror on its focal plane coincides with one focal point of the hyperboloid, the hyperboloid forms an image at another focal point.
特開2003−130955JP 2003-130955 A
 しかし、従来は、非球面レンズを干渉計で検査する場合、干渉計からの平行光の一部が平面リファレンスミラーで反射した参照光と、上記干渉計からの平行光のうちで上記平面リファレンスミラーを透過した光が被検査レンズである非球面レンズを透過し、非球面ミラーで反射し上記被検査レンズ、平面リファレンスミラーを透過したテスト光とを干渉させた干渉縞に応じて、上記非球面レンズを検査する。しかし、従来は、非球面ミラーの光軸を正確には合わせていないので、非球面ミラーの光軸を合わせずに検査が行われ、非球面レンズを正しく検査していない可能性があるという問題がある。
 また、非球面レンズを干渉計で検査する場合、従来は、被検査レンズである非球面レンズの光軸を正確には合わせてはいないので、被検査レンズである非球面レンズの光軸を合わせずに検査が行われ、非球面レンズを正しく検査していない可能性があるという問題がある。
 ところで、カセグレン望遠鏡を組み立てる場合、まず、主鏡の光軸を所定の方向に調整する必要がある。このためには、従来、干渉計やオートコリメータを使用して、主鏡の光軸の傾斜を検出し、調整している。しかし、この従来例では、主鏡の光軸を所定の方向に正確に調整することが困難であるという問題がある。
 そこで、本発明は、非球面レンズを干渉計で検査する場合、非球面ミラーの光軸を正確に合わせることが容易である非球面ミラー及び非球面ミラーの光軸合わせ装置を提供することを目的とする。
 また、本発明は、非球面レンズを干渉計で検査する場合、被検査レンズである非球面レンズの光軸を正確に合わせることが容易である非球面レンズ及び非球面レンズの光軸合わせ装置を提供することを目的とする。
 さらに、本発明は、カセグレン望遠鏡の主鏡の光軸を所定方向に合わせる作業が容易であるカセグレン望遠鏡の主鏡を提供することを目的とする。
 また、カセグレン望遠鏡を組み立てる場合、主鏡の光軸に副鏡の光軸を一致させる必要がある。このためには、副鏡の光軸が副鏡と交わる部位(副鏡の中央部)に平面鏡を貼り付けることが考えられる。この場合、上記平面鏡の法線と副鏡の光軸とが平行である必要がある。そして、主鏡を筐体に固定した後に、主鏡の光軸上の所定位置に、レーザーを設け、レーザー光を副鏡の中央部に照射する。このときに、上記レーザーが発したレーザー光が、上記副鏡に貼り付けた平面鏡で反射し、上記レーザーに戻れば、副鏡の光軸が主鏡の光軸に重なっていることを確認できる。
 しかし、上記のように考えた例では、副鏡の光軸が副鏡と交わる部位(副鏡の中央部)に平面鏡を貼り付ける場合、上記平面鏡の法線を副鏡の光軸に平行に設定する作業が煩雑であるという問題がある。
 そこで、本発明は、光軸合わせが容易である非球面ミラー、非球面ミラーの光軸合わせ装置、非球面レンズ、非球面レンズの光軸合わせ装置を提供することを目的とする。
 また、本発明は、カセグレン望遠鏡の副鏡の光軸を主鏡の光軸の方向に合わせるための作業が容易であるカセグレン望遠鏡を提供することを目的とする。
However, conventionally, when an aspherical lens is inspected with an interferometer, the plane reference mirror among the reference light in which a part of the parallel light from the interferometer is reflected by the plane reference mirror and the parallel light from the interferometer In response to the interference fringes transmitted through the aspherical lens, which is the lens to be inspected, reflected by the aspherical mirror, and interfered with the test lens and the test light transmitted through the flat reference mirror, the aspherical surface Inspect the lens. However, conventionally, the optical axis of the aspherical mirror is not accurately aligned, so the inspection is performed without aligning the optical axis of the aspherical mirror, and the aspherical lens may not be correctly inspected. There is.
Also, when inspecting an aspherical lens with an interferometer, the optical axis of the aspherical lens that is the lens to be inspected has not been accurately aligned in the past. However, there is a problem that the aspherical lens may not be correctly inspected.
By the way, when assembling the Cassegrain telescope, first, it is necessary to adjust the optical axis of the primary mirror in a predetermined direction. For this purpose, conventionally, the inclination of the optical axis of the primary mirror is detected and adjusted using an interferometer or an autocollimator. However, this conventional example has a problem that it is difficult to accurately adjust the optical axis of the primary mirror in a predetermined direction.
Therefore, an object of the present invention is to provide an aspherical mirror and an optical axis alignment apparatus for an aspherical mirror, which can easily align the optical axis of the aspherical mirror when an aspherical lens is inspected with an interferometer. And
The present invention also provides an aspheric lens and an optical axis alignment device for an aspheric lens that can easily align the optical axis of an aspheric lens as a lens to be inspected when an aspheric lens is inspected with an interferometer. The purpose is to provide.
It is another object of the present invention to provide a Cassegrain telescope main mirror that facilitates the work of aligning the optical axis of the Cassegrain telescope primary mirror in a predetermined direction.
When assembling the Cassegrain telescope, it is necessary to make the optical axis of the secondary mirror coincide with the optical axis of the primary mirror. For this purpose, it is conceivable to attach a plane mirror to a portion where the optical axis of the secondary mirror intersects with the secondary mirror (the central portion of the secondary mirror). In this case, the normal line of the plane mirror and the optical axis of the secondary mirror need to be parallel. And after fixing a primary mirror to a housing | casing, a laser is provided in the predetermined position on the optical axis of a primary mirror, and a laser beam is irradiated to the center part of a secondary mirror. At this time, if the laser beam emitted from the laser beam is reflected by the plane mirror attached to the secondary mirror and returns to the laser beam, it can be confirmed that the optical axis of the secondary mirror overlaps the optical axis of the primary mirror. .
However, in the example considered above, when a plane mirror is attached to a portion where the optical axis of the secondary mirror intersects with the secondary mirror (the center of the secondary mirror), the normal of the plane mirror is parallel to the optical axis of the secondary mirror. There is a problem that the setting work is complicated.
SUMMARY OF THE INVENTION An object of the present invention is to provide an aspherical mirror, an aspherical mirror optical axis aligning device, an aspherical lens, and an aspherical lens optical axis aligning device that can be easily aligned.
It is another object of the present invention to provide a Cassegrain telescope that facilitates the operation for aligning the optical axis of the secondary mirror of the Cassegrain telescope with the optical axis of the primary mirror.
 本発明の非球面ミラーは、非球面ミラーの周縁または中心部に平面鏡が設けられ、上記平面鏡の法線が、非球面ミラーの光軸と平行であることを特徴とする。
 本発明の非球面ミラーの光軸合わせ装置は、干渉計と、平面リファレンスミラーと、周縁に平面鏡が設けられている非球面ミラーであって、上記平面鏡の法線が、上記非球面ミラーの光軸と平行である非球面ミラーとを有し、干渉計からの平行光の一部が上記平面リファレンスミラーで反射した参照光と、干渉計からの平行光のうちで上記平面リファレンスミラーを透過した光が上記非球面ミラーの上記平面鏡で反射し上記平面リファレンスミラーを透過したテスト光とを干渉させた干渉縞に応じて、上記非球面ミラーの軸合わせをすることを特徴とする。
 本発明の非球面レンズは、非球面レンズの周縁または中心部に平面鏡が設けられ、上記平面鏡の法線が、上記非球面レンズの光軸と平行であることを特徴とする。
 本発明の非球面レンズの軸合わせ装置は、干渉計と、平面リファレンスミラーと、周縁に平面鏡が設けられている非球面レンズであって、上記平面鏡の法線が、上記非球面レンズの光軸と平行である非球面レンズとを有し、干渉計からの平行光の一部が上記平面リファレンスミラーで反射した参照光と、干渉計からの平行光のうちで上記平面リファレンスミラーを透過した光が上記非球面レンズの上記平面鏡で反射し上記平面リファレンスミラーを透過したテスト光とを干渉させた干渉縞に応じて、上記非球面レンズの軸合わせをすることを特徴とする。
 本発明のカセグレン望遠鏡は、カセグレン望遠鏡の主鏡と、上記主鏡の周縁に設けられている第1の平面鏡であって、上記第1の平面鏡の法線が上記主鏡の光軸と平行である第1の平面鏡と、カセグレン望遠鏡の副鏡と、上記副鏡の中央部または周縁に設けられている第2の平面鏡であって、上記第2の平面鏡の法線が上記副鏡の光軸と平行である第2の平面鏡とを有することを特徴とする。
The aspherical mirror of the present invention is characterized in that a plane mirror is provided at the periphery or center of the aspherical mirror, and the normal line of the plane mirror is parallel to the optical axis of the aspherical mirror.
The optical axis aligning device for an aspherical mirror of the present invention is an aspherical mirror in which an interferometer, a planar reference mirror, and a planar mirror are provided at the periphery, and the normal of the planar mirror is the light of the aspherical mirror. An aspherical mirror that is parallel to the axis, and a part of the parallel light from the interferometer is reflected by the planar reference mirror, and the parallel reference light from the interferometer is transmitted through the planar reference mirror. The aspherical mirror is axially aligned according to interference fringes in which light is reflected by the plane mirror of the aspherical mirror and interferes with the test light transmitted through the planar reference mirror.
The aspherical lens of the present invention is characterized in that a plane mirror is provided at the periphery or center of the aspherical lens, and the normal of the plane mirror is parallel to the optical axis of the aspherical lens.
An axis alignment device for an aspheric lens according to the present invention is an aspheric lens provided with an interferometer, a plane reference mirror, and a plane mirror at the periphery, and the normal of the plane mirror is the optical axis of the aspheric lens. A reference lens reflected by the plane reference mirror and part of the parallel light from the interferometer that has passed through the plane reference mirror. Is characterized in that the aspherical lens is axially aligned in accordance with interference fringes obtained by interfering with the test light reflected by the planar mirror of the aspherical lens and transmitted through the planar reference mirror.
The Cassegrain telescope of the present invention is a primary mirror of the Cassegrain telescope and a first plane mirror provided at the periphery of the primary mirror, wherein the normal line of the first plane mirror is parallel to the optical axis of the primary mirror. A first plane mirror, a secondary mirror of the Cassegrain telescope, and a second plane mirror provided at the center or the periphery of the secondary mirror, wherein the normal line of the second plane mirror is the optical axis of the secondary mirror And a second plane mirror that is parallel to the first plane mirror.
 本発明の非球面ミラー、非球面ミラーの光軸合わせ装置、非球面レンズ、非球面レンズの光軸合わせ装置は、非球面ミラーまたは非球面レンズの光軸合わせが容易であるという効果を奏する。
 また、本発明のカセグレン望遠鏡は、カセグレン望遠鏡の副鏡の光軸を主鏡の光軸の方向に合わせるための作業が容易であるという効果を奏する。
The aspherical mirror, the aspherical mirror optical axis aligning device, the aspherical lens, and the aspherical lens optical axis aligning device according to the present invention have an effect that the optical axis alignment of the aspherical mirror or the aspherical lens is easy.
In addition, the Cassegrain telescope of the present invention has an effect that the work for aligning the optical axis of the secondary mirror of the Cassegrain telescope with the direction of the optical axis of the primary mirror is easy.
 図1は、本発明の実施例1である非球面ミラー10を示す斜視図である。
 図2は、本発明の実施例2である非球面レンズ20を示す斜視図である。
 図3は、実施例3である非球面ミラーの光軸合わせ装置100の断面図である。
 図4は、実施例4である非球面レンズの光軸合わせ装置200の断面図である。
 図5は、本発明の実施例5である非球面レンズの検査装置を示す図である。
 図6は、本発明の実施例6であるカセグレン望遠鏡400を示す図である。
 図7は、カセグレン望遠鏡400に使用されている主鏡60を示す正面図である。
 図8は、カセグレン望遠鏡400に使用されている副鏡70を示す正面図である。
 図9は、カセグレン望遠鏡400に使用されている副鏡70の拡大側面図である。
 図10は、主鏡10の変形例である主鏡60aを示す正面図である。
 図11は、本発明の実施例7である非球面ミラーの光軸合わせ装置100aを示す図である。
 図12は、非球面ミラーの光軸合わせ装置100aにおける平行光発生装置及び波面測定装置50を示す図である。
FIG. 1 is a perspective view showing an aspherical mirror 10 that is Embodiment 1 of the present invention.
FIG. 2 is a perspective view showing an aspheric lens 20 that is Embodiment 2 of the present invention.
FIG. 3 is a cross-sectional view of an aspherical mirror optical axis aligning device 100 according to the third embodiment.
FIG. 4 is a cross-sectional view of an aspherical lens optical axis aligning device 200 according to the fourth embodiment.
FIG. 5 is a diagram showing an aspherical lens inspection apparatus that is Embodiment 5 of the present invention.
FIG. 6 shows a Cassegrain telescope 400 that is Embodiment 6 of the present invention.
FIG. 7 is a front view showing the primary mirror 60 used in the Cassegrain telescope 400.
FIG. 8 is a front view showing the secondary mirror 70 used in the Cassegrain telescope 400.
FIG. 9 is an enlarged side view of the secondary mirror 70 used in the Cassegrain telescope 400.
FIG. 10 is a front view showing a primary mirror 60 a that is a modification of the primary mirror 10.
FIG. 11 is a diagram showing an aspherical mirror optical axis aligning device 100a that is Embodiment 7 of the present invention.
FIG. 12 is a diagram showing a parallel light generating device and a wavefront measuring device 50 in the optical axis aligning device 100a of the aspherical mirror.
 発明を実施するための最良の形態は、以下の実施例である。 The best mode for carrying out the invention is the following embodiment.
 図1は、本発明の実施例1である非球面ミラー10を示す斜視図である。
 非球面ミラー10は、非球面ミラー部11と平面鏡12とを有する。
 平面鏡12は、非球面ミラー部11の周縁に設けられ、リング状を有する。また、平面鏡12の法線は、非球面ミラー部11の光軸と平行である。なお、平面鏡12は、非球面ミラー部11と一体成型されているが、一体成型以外の方法で、非球面ミラー部11の周縁に平面鏡12を設けるようにしてもよい。
 なお、平面鏡12は、リング状であるが、リング状にする代わりに、リングの半分、1/4等、リングの一部の形状でもよい。また、平面鏡12は、非球面ミラー部11の周縁に設けられている円形、四角形、三角形等、種々の形状の平面鏡であってもよい。
FIG. 1 is a perspective view showing an aspherical mirror 10 that is Embodiment 1 of the present invention.
The aspherical mirror 10 has an aspherical mirror part 11 and a plane mirror 12.
The plane mirror 12 is provided on the periphery of the aspherical mirror unit 11 and has a ring shape. The normal line of the plane mirror 12 is parallel to the optical axis of the aspherical mirror unit 11. Although the plane mirror 12 is integrally formed with the aspherical mirror unit 11, the plane mirror 12 may be provided on the periphery of the aspherical mirror unit 11 by a method other than integral molding.
Although the plane mirror 12 has a ring shape, it may have a shape of a part of the ring, such as a half of the ring or a quarter, instead of the ring shape. Further, the plane mirror 12 may be a plane mirror having various shapes such as a circle, a quadrangle, and a triangle provided on the periphery of the aspherical mirror unit 11.
 図2は、本発明の実施例2である非球面レンズ20を示す斜視図である。
 非球面レンズ20は、非球面レンズ部21と平面鏡22とを有する。
 平面鏡22は、非球面レンズ部21の周縁に設けられ、リング状を有する。また、平面鏡22の法線は、非球面レンズ部21の光軸と平行である。なお、平面鏡22は、非球面レンズ部21と一体成型されているが、一体成型以外の方法で、非球面レンズ部21の周縁に平面鏡22を設けるようにしてもよい。
 なお、平面鏡22は、リング状であるが、リング状にする代わりに、リングの半分、1/4等、リングの一部の形状でもよい。また、平面鏡22は、非球面レンズ部21の周縁に設けられている円形、四角形、三角形等、種々の形状の平面鏡であってもよい。
FIG. 2 is a perspective view showing an aspheric lens 20 that is Embodiment 2 of the present invention.
The aspheric lens 20 has an aspheric lens portion 21 and a plane mirror 22.
The plane mirror 22 is provided on the periphery of the aspheric lens unit 21 and has a ring shape. The normal line of the plane mirror 22 is parallel to the optical axis of the aspheric lens unit 21. Although the plane mirror 22 is integrally molded with the aspheric lens portion 21, the plane mirror 22 may be provided on the periphery of the aspheric lens portion 21 by a method other than integral molding.
Although the plane mirror 22 has a ring shape, it may have a shape of a part of the ring, such as a half of the ring or a quarter, instead of the ring shape. Further, the plane mirror 22 may be a plane mirror having various shapes such as a circle, a quadrangle, and a triangle provided on the periphery of the aspheric lens unit 21.
 図3は、本発明の実施例3である非球面ミラーの光軸合わせ装置100を示す断面図である。
 非球面ミラーの光軸合わせ装置100は、非球面ミラー10と、干渉計30と、平面リファレンスミラー40とを有する。
 非球面ミラーの光軸合わせ装置100は、干渉計30からの平行光の一部が平面リファレンスミラー40で反射した参照光と、干渉計30からの平行光のうちで平面リファレンスミラー40を透過した光が非球面ミラー10の平面鏡12で反射し平面リファレンスミラー40を透過したテスト光とを干渉させた干渉縞に応じて、非球面ミラー10の軸合わせをする。
 非球面ミラーの光軸合わせ装置100では、干渉計30からの平行光の一部が平面リファレンスミラー40で反射した参照光と、干渉計30からの平行光のうちで平面リファレンスミラー40を透過した光が非球面レンズの平面鏡12で反射し平面リファレンスミラー40を透過したテスト光とを干渉させる。そして、この干渉による干渉縞に応じて、非球面ミラー10の軸合わせをする。
 つまり、干渉縞が揃っていれば、平行光と平面鏡12の法線とが平行であり、非球面ミラー10の光軸は平行光と平行である。干渉縞が揃っていなければ、干渉縞が揃うまで、非球面ミラー10の方向を調整する。
 したがって、非球面ミラーの光軸合わせ装置100では、平面鏡12の法線が非球面ミラー10の光軸と平行であるので、干渉計30から出た平行光の方向に、非球面ミラー10の光軸を合わせることが容易であり、しかも、非球面ミラー10の光軸を正確に軸合わせすることができる。
FIG. 3 is a cross-sectional view showing an aspherical mirror optical axis aligning device 100 that is Embodiment 3 of the present invention.
The aspherical mirror optical axis alignment apparatus 100 includes an aspherical mirror 10, an interferometer 30, and a planar reference mirror 40.
The aspherical mirror optical axis aligning apparatus 100 transmits the reference light, which is a part of the parallel light from the interferometer 30, reflected by the flat reference mirror 40 and the parallel light from the interferometer 30 that has passed through the flat reference mirror 40. The aspherical mirror 10 is axially aligned according to interference fringes in which the light is reflected by the flat mirror 12 of the aspherical mirror 10 and interferes with the test light transmitted through the flat reference mirror 40.
In the optical axis aligning device 100 of the aspherical mirror, a part of the parallel light from the interferometer 30 is transmitted through the flat reference mirror 40 among the reference light reflected by the flat reference mirror 40 and the parallel light from the interferometer 30. The light is reflected by the plane mirror 12 of the aspherical lens and interferes with the test light transmitted through the plane reference mirror 40. Then, the aspherical mirror 10 is axially aligned according to the interference fringes due to this interference.
That is, if the interference fringes are aligned, the parallel light and the normal line of the plane mirror 12 are parallel, and the optical axis of the aspherical mirror 10 is parallel to the parallel light. If the interference fringes are not aligned, the direction of the aspherical mirror 10 is adjusted until the interference fringes are aligned.
Therefore, in the aspherical mirror optical axis aligning device 100, the normal of the plane mirror 12 is parallel to the optical axis of the aspherical mirror 10, so that the light of the aspherical mirror 10 is directed in the direction of the parallel light emitted from the interferometer 30. The axes can be easily aligned, and the optical axis of the aspherical mirror 10 can be accurately aligned.
 図4は、本発明の実施例4である非球面レンズの光軸合わせ装置200を示す断面図である。
 非球面レンズの光軸合わせ装置200は、非球面レンズ20と、干渉計30と、平面リファレンスミラー40とを有する。
 非球面レンズの光軸合わせ装置200では、干渉計30からの平行光の一部が平面リファレンスミラー40で反射した参照光と、干渉計30からの平行光のうちで平面リファレンスミラー40を透過した光が非球面レンズの平面鏡12で反射し平面リファレンスミラー40を透過したテスト光とを干渉させる。そして、この干渉による干渉縞に応じて、非球面レンズ20の軸合わせをする。
 つまり、この場合、干渉縞が揃っていれば、平行光と平面鏡22の法線とが平行であり、非球面レンズ20の光軸は平行光と平行である。干渉縞が揃っていなければ、干渉縞が揃うまで、非球面レンズ20の方向を調整する。
 したがって、非球面レンズの光軸合わせ装置200では、平面鏡22の法線が非球面レンズ20の光軸と平行であるので、干渉計30から出た平行光の方向に、非球面レンズ20の光軸を合わせることが容易であり、しかも、非球面レンズ20の光軸を正確に軸合わせすることができる。
FIG. 4 is a cross-sectional view showing an aspherical lens optical axis aligning device 200 that is Embodiment 4 of the present invention.
The aspherical lens optical axis alignment apparatus 200 includes an aspherical lens 20, an interferometer 30, and a planar reference mirror 40.
In the optical axis aligning device 200 of the aspherical lens, a part of the parallel light from the interferometer 30 is transmitted through the flat reference mirror 40 among the reference light reflected by the flat reference mirror 40 and the parallel light from the interferometer 30. The light is reflected by the plane mirror 12 of the aspherical lens and interferes with the test light transmitted through the plane reference mirror 40. Then, the aspherical lens 20 is aligned according to the interference fringes due to this interference.
That is, in this case, if the interference fringes are aligned, the parallel light and the normal line of the plane mirror 22 are parallel, and the optical axis of the aspherical lens 20 is parallel to the parallel light. If the interference fringes are not aligned, the direction of the aspheric lens 20 is adjusted until the interference fringes are aligned.
Accordingly, in the optical axis aligning device 200 for the aspheric lens, the normal line of the plane mirror 22 is parallel to the optical axis of the aspheric lens 20, so that the light of the aspheric lens 20 is directed in the direction of the parallel light emitted from the interferometer 30. It is easy to align the axes, and the optical axis of the aspheric lens 20 can be accurately aligned.
 図5は、本発明の実施例5である非球面レンズの検査装置300を示す図である。
 非球面レンズの検査装置300は、干渉計30の隣に、平面リファレンスミラー40、被検査対象である非球面レンズ20、非球面ミラー10の順で配置する。
 非球面レンズ20を検査する準備段階として、まず、図3で説明したように、非球面ミラー10の光軸を合わせる。非球面ミラー10の光軸合わせが終了すると、平面リファレンスミラー40と非球面ミラー10と間に、非球面レンズ20を設置し、図4で説明したように、非球面レンズ20の光軸を合わせる。非球面レンズ20の光軸合わせが終了すると、干渉計30からの平行光の一部が平面リファレンスミラー40で反射した参照光であって、非球面レンズ20の非球面レンズ部21の位置に対応する参照光と、干渉計30からの平行光のうちで平面リファレンスミラー40を透過した光が非球面レンズ20を透過し、非球面ミラー10の非球面ミラー部11で反射し平面リファレンスミラー40を透過したテスト光とを干渉させる。そして、この干渉による干渉縞に応じて、非球面レンズ20の良否を判断する。つまり、上記干渉縞が揃っていれば、非球面レンズ20は正常であり、上記干渉縞が揃っていなければ、非球面レンズ20が異常であると判断する。
 この場合、非球面ミラー10の光軸、非球面レンズ20の光軸がともに、干渉計30からの平行光と平行であるので、非球面レンズ20の検査結果の信頼性が高い。
FIG. 5 is a diagram showing an aspherical lens inspection apparatus 300 that is Embodiment 5 of the present invention.
Next to the interferometer 30, the aspherical lens inspection device 300 is arranged in the order of the planar reference mirror 40, the aspherical lens 20 to be inspected, and the aspherical mirror 10.
As a preparation stage for inspecting the aspheric lens 20, first, the optical axis of the aspheric mirror 10 is aligned as described with reference to FIG. When the optical axis alignment of the aspherical mirror 10 is completed, the aspherical lens 20 is installed between the planar reference mirror 40 and the aspherical mirror 10, and the optical axis of the aspherical lens 20 is aligned as described with reference to FIG. . When the optical axis alignment of the aspherical lens 20 is completed, a part of the parallel light from the interferometer 30 is reference light reflected by the planar reference mirror 40 and corresponds to the position of the aspherical lens portion 21 of the aspherical lens 20. Of the reference light to be transmitted and the parallel light from the interferometer 30 that has passed through the planar reference mirror 40 are transmitted through the aspherical lens 20 and reflected by the aspherical mirror unit 11 of the aspherical mirror 10. Interfere with the transmitted test light. And the quality of the aspherical lens 20 is judged according to the interference fringe by this interference. That is, if the interference fringes are aligned, it is determined that the aspheric lens 20 is normal, and if the interference fringes are not aligned, it is determined that the aspheric lens 20 is abnormal.
In this case, since the optical axis of the aspherical mirror 10 and the optical axis of the aspherical lens 20 are both parallel to the parallel light from the interferometer 30, the reliability of the inspection result of the aspherical lens 20 is high.
 図6は、本発明の実施例6であるカセグレン望遠鏡400を示す図である。
 カセグレン望遠鏡400は、主鏡60と、副鏡70と、レンズ群81と、結像面82とを有する。
 図7は、カセグレン望遠鏡400に使用されている主鏡60を示す正面図である。
 主鏡60は、凹面鏡61と、透孔62と、平面鏡63とを有する。凹面鏡61は、反射面が放物面を形成している。透孔62は、副鏡70で反射した光が通過する領域である。
 平面鏡63は、凹面鏡61の周縁に、凹面鏡61と一体成型された平面鏡であり、リング状を形成している。また、平面鏡63の法線が、主鏡60の光軸と平行である。
 図8は、カセグレン望遠鏡400に使用されている副鏡70を示す正面図である。
 図9は、カセグレン望遠鏡400に使用されている副鏡70の拡大側面図である。
 副鏡70は、凹面鏡71と平面鏡73とを有する。凹面鏡71は、反射面が双曲面を形成している。平面鏡73は、その法線が、副鏡71の光軸と平行である。また、平面鏡73は、副鏡71の中心部に設けられ、副鏡71を形成するときに、副鏡71と一体成型される。なお、副鏡71を形成するときに、平面鏡73と一体成型されなくてもよい。
 レンズ群81は、収差を補正する補正光学系である。
 結像面82は、副鏡70で反射し、レンズ群81を通過した光を結像する面である。
 次に、カセグレン望遠鏡40において、主鏡60の光軸と副鏡70の光軸とを互いに合わせる動作について説明する。
 まず、主鏡60の光軸を、所定の方向に設定する。この場合、合わせるべき光軸から、凹面鏡61の半径だけ離れた位置に、レーザー等の光源を設置する。そして、このレーザーからのレーザー光が平面鏡63で反射した後に、上記レーザーに戻るようになるまで、主鏡60の方向を調整する。上記レーザーからのレーザー光が平面鏡63で反射した後に、上記レーザーに戻ったことを確認できれば、主鏡60の光軸が上記所定の方向に設定されたことになる。
 また、主鏡60の光軸を所定の方向に調整する場合、干渉計を使ってもよい。
 次に、副鏡70の光軸を、主鏡60の光軸に合わせる作業を実行する。まず、主鏡60の光軸上に、副鏡70の凹面鏡71の中心を合わせる。つまり、主鏡60の光軸上をレーザー光が進むように、第2のレーザーを設置し、このレーザー光が、副鏡70の凹面鏡71の中心を照射するように凹面鏡71を配置する。そして、第2のレーザーからのレーザー光が副鏡70の平面鏡73で反射したレーザー光が、上記第2のレーザーに戻るまで、副鏡70の方向を調整する。上記第2のレーザーからのレーザー光が平面鏡73で反射したレーザー光が、上記第2のレーザーに戻れば、副鏡70の光軸が主鏡60の光軸と合ったことになる。
 上記実施例において、主鏡60を成型するときに、平面鏡63も同時に一体成型することができ、このようにすることによって、平面鏡63の製造が容易である。また、副鏡70を成型するときに、平面鏡73も同時に一体成型することができ、このようにすることによって、平面鏡73の製造が容易である。
 なお、平面鏡73の代わりに、上記レーザー光の反射を確認できる程度の面、つまりほぼ平面を有する鏡を使用するようにしてもよい。
 図10は、主鏡60の変形例である主鏡60aを示す正面図である。
 主鏡60aは、主鏡60において、リング状の平面鏡63の代わりに、その一部分である平面鏡63aを設けた実施例である。
 主鏡60aのように、主鏡60の周縁の一部に平面鏡63aを設けるようにしてもよい。この場合、平面鏡63aを主鏡60と一体成型する。また、光軸を合わせるために設けるレーザーは、主鏡60aの光軸から、平面鏡63aに対応する位置に設けられる。つまり、光軸から平面鏡63aが設けられている方向と同じ方向に、凹面鏡61の半径だけ離れた位置に、レーザーを設ける。
 また、主鏡60aにおいて、主鏡の周縁に1つだけ平面鏡を設けているが、複数個設けるようにしてもよく、また、平面鏡12は四角形ではなく、円弧状等、他の形状であってもよい。
FIG. 6 shows a Cassegrain telescope 400 that is Embodiment 6 of the present invention.
The Cassegrain telescope 400 includes a primary mirror 60, a secondary mirror 70, a lens group 81, and an imaging plane 82.
FIG. 7 is a front view showing the primary mirror 60 used in the Cassegrain telescope 400.
The main mirror 60 includes a concave mirror 61, a through hole 62, and a plane mirror 63. In the concave mirror 61, the reflecting surface forms a paraboloid. The through hole 62 is an area through which light reflected by the sub mirror 70 passes.
The plane mirror 63 is a plane mirror integrally formed with the concave mirror 61 around the concave mirror 61, and forms a ring shape. The normal line of the plane mirror 63 is parallel to the optical axis of the main mirror 60.
FIG. 8 is a front view showing the secondary mirror 70 used in the Cassegrain telescope 400.
FIG. 9 is an enlarged side view of the secondary mirror 70 used in the Cassegrain telescope 400.
The secondary mirror 70 has a concave mirror 71 and a plane mirror 73. The concave mirror 71 has a hyperboloid reflecting surface. The normal line of the plane mirror 73 is parallel to the optical axis of the secondary mirror 71. The plane mirror 73 is provided at the center of the secondary mirror 71 and is integrally formed with the secondary mirror 71 when the secondary mirror 71 is formed. In addition, when forming the sub mirror 71, it does not need to be integrally molded with the plane mirror 73.
The lens group 81 is a correction optical system that corrects aberration.
The imaging surface 82 is a surface that forms an image of light reflected by the secondary mirror 70 and passed through the lens group 81.
Next, the operation of aligning the optical axis of the primary mirror 60 and the optical axis of the secondary mirror 70 in the Cassegrain telescope 40 will be described.
First, the optical axis of the primary mirror 60 is set in a predetermined direction. In this case, a light source such as a laser is installed at a position separated from the optical axis to be aligned by the radius of the concave mirror 61. Then, after the laser light from this laser is reflected by the plane mirror 63, the direction of the main mirror 60 is adjusted until it returns to the laser. If it can be confirmed that the laser beam from the laser beam returns to the laser beam after being reflected by the plane mirror 63, the optical axis of the main mirror 60 is set in the predetermined direction.
Further, when adjusting the optical axis of the primary mirror 60 in a predetermined direction, an interferometer may be used.
Next, an operation of aligning the optical axis of the secondary mirror 70 with the optical axis of the primary mirror 60 is executed. First, the center of the concave mirror 71 of the secondary mirror 70 is aligned with the optical axis of the primary mirror 60. That is, the second laser is installed so that the laser beam travels on the optical axis of the primary mirror 60, and the concave mirror 71 is arranged so that this laser beam irradiates the center of the concave mirror 71 of the secondary mirror 70. Then, the direction of the secondary mirror 70 is adjusted until the laser light reflected by the plane mirror 73 of the secondary mirror 70 returns to the second laser. When the laser beam reflected by the plane mirror 73 from the second laser returns to the second laser, the optical axis of the secondary mirror 70 is aligned with the optical axis of the primary mirror 60.
In the above embodiment, when the main mirror 60 is molded, the plane mirror 63 can also be integrally molded at the same time, whereby the plane mirror 63 can be easily manufactured. In addition, when the secondary mirror 70 is molded, the plane mirror 73 can also be integrally molded at the same time. By doing so, the plane mirror 73 can be easily manufactured.
Instead of the plane mirror 73, a plane that can confirm the reflection of the laser beam, that is, a mirror having a substantially flat surface may be used.
FIG. 10 is a front view showing a primary mirror 60 a that is a modification of the primary mirror 60.
The primary mirror 60a is an embodiment in which a primary mirror 63a, which is a part of the primary mirror 60, is provided instead of the ring-shaped flat mirror 63.
Like the main mirror 60a, a plane mirror 63a may be provided on a part of the periphery of the main mirror 60. In this case, the plane mirror 63a is integrally formed with the main mirror 60. The laser provided for aligning the optical axis is provided at a position corresponding to the plane mirror 63a from the optical axis of the main mirror 60a. That is, the laser is provided at a position separated from the optical axis by the radius of the concave mirror 61 in the same direction as the direction in which the plane mirror 63a is provided.
Further, in the primary mirror 60a, only one plane mirror is provided on the periphery of the primary mirror. However, a plurality of plane mirrors may be provided, and the plane mirror 12 is not a quadrangle but has another shape such as an arc. Also good.
 図11は、本発明の実施例7である非球面ミラーの光軸合わせ装置100aを示す図である。
 非球面ミラーの光軸合わせ装置100aは、図3に示す非球面ミラーの光軸合わせ装置100において、干渉計30、平面リファレンスミラー40の代わりに、平行光発生装置及び波面測定装置50を設けた装置である。
 図12は、非球面ミラーの光軸合わせ装置100aにおける平行光発生装置及び波面測定装置50を示す図である。
 平行光発生装置及び波面測定装置50は、平行光発生装置51と、シロックハルトマン波面測定装置52と、ビームリデューサ53とを有する。
 平行光発生装置51は、レーザー511と、レンズ512、513と、ハーフミラー514とを有する。シロックハルトマン波面測定装置52は、レンズアレー521と、CCD/CMOS522とを有する。ビームリデューサ53は、凸レンズと、凹レンズとを有する。
 次に、非球面ミラーの光軸合わせ装置100aの動作について説明する。
 平行光発生装置51で発生した平行光の一部が非球面ミラー10の平面鏡12で反射し、この反射光を波面測定装置52で測定し、この測定した波面の傾きに応じて、非球面ミラー10の軸合わせをする。
 また、図4に示す非球面レンズの光軸合せ装置200において、干渉計30、平面リファレンスミラー40の代わりに、平行光発生装置及び波面測定装置50を設けるようにしてもよい。
 この場合、平行光発生装置51が発生した平行光の一部が非球面レンズ20の平面鏡22で反射し、この反射光を波面測定装置52で測定した波面の傾きに応じて、非球面レンズ20の軸合わせをする。
 上記各実施例を、カメラレンズ、望遠レンズにも適用することができる。つまり、カメラレンズを構成するレンズのうちの非球面レンズを検査するに際して、その非球面レンズの光軸を調整する場合、上記各実施例のうちで非球面レンズ、非球面レンズの光軸合わせ装置を適用するようにしてもよい。
FIG. 11 is a diagram showing an aspherical mirror optical axis aligning device 100a that is Embodiment 7 of the present invention.
The aspherical mirror optical axis aligning device 100a is provided with a parallel light generating device and a wavefront measuring device 50 instead of the interferometer 30 and the planar reference mirror 40 in the aspherical mirror optical axis aligning device 100 shown in FIG. Device.
FIG. 12 is a diagram showing a parallel light generating device and a wavefront measuring device 50 in the optical axis aligning device 100a of the aspherical mirror.
The parallel light generator and wavefront measuring device 50 includes a parallel light generating device 51, a Siroc Hartmann wavefront measuring device 52, and a beam reducer 53.
The parallel light generator 51 includes a laser 511, lenses 512 and 513, and a half mirror 514. The Siroc Hartmann wavefront measuring apparatus 52 includes a lens array 521 and a CCD / CMOS 522. The beam reducer 53 has a convex lens and a concave lens.
Next, the operation of the aspherical mirror optical axis aligning device 100a will be described.
A part of the parallel light generated by the parallel light generator 51 is reflected by the plane mirror 12 of the aspherical mirror 10, and the reflected light is measured by the wavefront measuring device 52, and the aspherical mirror is measured according to the measured inclination of the wavefront. Align 10 axes.
Further, in the optical axis aligning device 200 of the aspherical lens shown in FIG. 4, a parallel light generator and a wavefront measuring device 50 may be provided instead of the interferometer 30 and the planar reference mirror 40.
In this case, a part of the parallel light generated by the parallel light generating device 51 is reflected by the plane mirror 22 of the aspherical lens 20, and the reflected light is aspherical lens 20 according to the inclination of the wavefront measured by the wavefront measuring device 52. Align the axis.
The above embodiments can also be applied to camera lenses and telephoto lenses. That is, when inspecting the aspherical lens of the lenses constituting the camera lens, when adjusting the optical axis of the aspherical lens, the optical axis aligning device for the aspherical lens and the aspherical lens in each of the above embodiments May be applied.
 本発明の非球面ミラー、非球面ミラーの光軸合わせ装置、非球面レンズ、非球面レンズの光軸合わせ装置は、非球面ミラーまたは非球面レンズの光軸合わせが容易であるので、非球面ミラーの光軸合わせ装置、非球面レンズの光軸合わせ装置等において有用である。
 また、本発明のカセグレン望遠鏡は、カセグレン望遠鏡の副鏡の光軸を主鏡の光軸の方向に合わせるための作業が容易であるので、カセグレン望遠鏡の分野において有用である。
Since the aspherical mirror, the aspherical mirror optical axis aligning device, the aspherical lens, and the aspherical lens optical axis aligning device of the present invention can easily align the optical axis of the aspherical mirror or the aspherical lens, This is useful in an optical axis aligning apparatus, an aspherical lens optical axis aligning apparatus, and the like.
Further, the Cassegrain telescope of the present invention is useful in the field of Cassegrain telescopes because it is easy to work to align the optical axis of the secondary mirror of the Cassegrain telescope with the direction of the optical axis of the primary mirror.
 10 非球面ミラー
 12 平面鏡
 20 非球面レンズ
 22 平面鏡
 30 干渉計
 40 平面リファレンスミラー
 100 非球面ミラーの光軸合わせ装置
 200 非球面レンズの光軸合わせ装置
 400 カセグレン望遠鏡
 60 主鏡
 61 凹面鏡
 63 平面鏡
 70 副鏡
 71 凸面鏡
 73 平面鏡
DESCRIPTION OF SYMBOLS 10 Aspherical mirror 12 Plane mirror 20 Aspherical lens 22 Plane mirror 30 Interferometer 40 Plane reference mirror 100 Aspherical mirror optical axis alignment device 200 Aspherical lens optical axis alignment device 400 Cassegrain telescope 60 Primary mirror 61 Concave mirror 63 Flat mirror 70 Secondary mirror 71 Convex mirror 73 Plane mirror

Claims (12)

  1.  非球面ミラーの周縁または中心部に平面鏡が設けられ、上記平面鏡の法線が、非球面ミラーの光軸と平行であることを特徴とする非球面ミラー。 An aspherical mirror characterized in that a plane mirror is provided at the periphery or center of the aspherical mirror, and the normal of the plane mirror is parallel to the optical axis of the aspherical mirror.
  2.  請求項1において、
     上記平面鏡は、非球面ミラーと一体成型されていることを特徴とする非球面ミラー。
    In claim 1,
    An aspherical mirror, wherein the plane mirror is integrally formed with an aspherical mirror.
  3.  干渉計と、
     平面リファレンスミラーと、
     周縁に平面鏡が設けられている非球面ミラーであって、上記平面鏡の法線が、上記非球面ミラーの光軸と平行である非球面ミラーと、
     を有し、上記干渉計からの平行光の一部が上記平面リファレンスミラーで反射した参照光と、上記干渉計からの平行光のうちで上記平面リファレンスミラーを透過した光が上記非球面ミラーの上記平面鏡で反射し上記平面リファレンスミラーを透過したテスト光とを干渉させた干渉縞に応じて、上記非球面ミラーの軸合わせをすることを特徴とする非球面ミラーの光軸合わせ装置。
    An interferometer,
    A planar reference mirror;
    An aspherical mirror provided with a flat mirror at the periphery, wherein the normal of the flat mirror is parallel to the optical axis of the aspherical mirror;
    And a part of the parallel light from the interferometer is reflected by the planar reference mirror, and the parallel light from the interferometer is transmitted through the planar reference mirror. An optical axis alignment apparatus for an aspherical mirror, wherein axial alignment of the aspherical mirror is performed according to an interference fringe obtained by causing interference with test light reflected by the planar mirror and transmitted through the planar reference mirror.
  4.  平行光発生装置と、
     波面測定装置と、
     周縁に平面鏡が設けられている非球面ミラーであって、上記平面鏡の法線が、上記非球面ミラーの光軸と平行である非球面ミラーと、
     を有し、上記平行光発生装置からの平行光の一部が上記非球面ミラーの上記平面鏡で反射しこの反射光を上記波面測定装置で測定した波面の傾きに応じて上記非球面ミラーの軸合わせをすることを特徴とする非球面ミラーの光軸合わせ装置。
    A parallel light generator;
    A wavefront measuring device;
    An aspherical mirror provided with a flat mirror at the periphery, wherein the normal of the flat mirror is parallel to the optical axis of the aspherical mirror;
    A part of the parallel light from the parallel light generator is reflected by the plane mirror of the aspherical mirror, and the axis of the aspherical mirror is reflected according to the inclination of the wavefront measured by the wavefront measuring device. An optical axis aligning device for an aspherical mirror characterized by performing alignment.
  5.  非球面レンズの周縁または中心部に平面鏡が設けられ、上記平面鏡の法線が、上記非球面レンズの光軸と平行であることを特徴とする非球面レンズ。 An aspheric lens, wherein a plane mirror is provided at the periphery or center of the aspheric lens, and the normal of the plane mirror is parallel to the optical axis of the aspheric lens.
  6.  請求項5において、
     上記平面鏡は、上記非球面レンズと一体成型されていることを特徴とする非球面レンズ。
    In claim 5,
    The aspherical lens, wherein the plane mirror is integrally formed with the aspherical lens.
  7.  干渉計と、
     平面リファレンスミラーと、
     周縁に平面鏡が設けられている非球面レンズであって、上記平面鏡の法線が、上記非球面レンズの光軸と平行である非球面レンズと、
     を有し、上記干渉計からの平行光の一部が上記平面リファレンスミラーで反射した参照光と、上記干渉計からの平行光のうちで上記平面リファレンスミラーを透過した光が上記非球面レンズの上記平面鏡で反射し上記平面リファレンスミラーを透過したテスト光とを干渉させた干渉縞に応じて、上記非球面レンズの軸合わせをすることを特徴とする非球面レンズの光軸合わせ装置。
    An interferometer,
    A planar reference mirror;
    An aspheric lens provided with a plane mirror at the periphery, wherein the normal of the plane mirror is parallel to the optical axis of the aspheric lens;
    And a part of the parallel light from the interferometer reflected by the planar reference mirror and a part of the parallel light from the interferometer transmitted through the planar reference mirror is transmitted from the aspheric lens. An aspherical lens optical axis aligning apparatus for axially aligning the aspherical lens according to an interference fringe that is caused to interfere with test light reflected by the planar mirror and transmitted through the planar reference mirror.
  8.  平行光発生装置と、
     波面測定装置と、
     周縁に平面鏡が設けられている非球面レンズであって、上記平面鏡の法線が、上記非球面レンズの光軸と平行である非球面レンズと、
     を有し、上記平行光発生装置からの平行光の一部が上記非球面レンズの上記平面鏡で反射しこの反射光を上記波面測定装置で測定した波面の傾きに応じて上記非球面レンズの軸合わせをすることを特徴とする非球面レンズの光軸合わせ装置。
    A parallel light generator;
    A wavefront measuring device;
    An aspheric lens provided with a plane mirror at the periphery, wherein the normal of the plane mirror is parallel to the optical axis of the aspheric lens;
    A part of the parallel light from the parallel light generator is reflected by the plane mirror of the aspheric lens, and the axis of the aspheric lens is reflected according to the inclination of the wavefront measured by the wavefront measuring device. An optical axis aligning device for an aspherical lens, characterized by performing alignment.
  9.  非球面ミラーの周縁または中心部に平面鏡が設けられ、上記平面鏡の法線が、非球面ミラーの光軸と平行である非球面ミラーであって、
     上記非球面ミラーが、カセグレン望遠鏡の主鏡または副鏡であることを特徴とする非球面ミラー。
    A plane mirror is provided at the periphery or center of the aspheric mirror, and the normal of the plane mirror is an aspheric mirror parallel to the optical axis of the aspheric mirror,
    An aspherical mirror, wherein the aspherical mirror is a primary mirror or a secondary mirror of a Cassegrain telescope.
  10.  非球面ミラーの周縁または中心部に平面鏡が設けられ、上記平面鏡の法線が、非球面ミラーの光軸と平行である非球面ミラーであって、
     上記非球面ミラーが、カセグレン望遠鏡の副鏡であり、上記カセグレン望遠鏡の副鏡の中央部に、上記平面鏡が設けられていることを特徴とする非球面ミラー。
    A plane mirror is provided at the periphery or center of the aspheric mirror, and the normal of the plane mirror is an aspheric mirror parallel to the optical axis of the aspheric mirror,
    The aspherical mirror, wherein the aspherical mirror is a secondary mirror of the Cassegrain telescope, and the planar mirror is provided at the center of the secondary mirror of the Cassegrain telescope.
  11.  カセグレン望遠鏡の主鏡と、
     上記主鏡の周縁に設けられている第1の平面鏡であって、上記第1の平面鏡の法線が上記主鏡の光軸と平行である第1の平面鏡と、
     カセグレン望遠鏡の副鏡と、
     上記副鏡の中央部または周縁に設けられている第2の平面鏡であって、上記第2の平面鏡の法線が上記副鏡の光軸と平行である第2の平面鏡と、
     を有することを特徴とするカセグレン望遠鏡。
    The primary mirror of the Cassegrain telescope,
    A first plane mirror provided at a peripheral edge of the primary mirror, wherein a normal line of the first plane mirror is parallel to the optical axis of the primary mirror;
    The secondary mirror of the Cassegrain telescope,
    A second plane mirror provided at a central portion or a peripheral edge of the secondary mirror, wherein a normal line of the second plane mirror is parallel to the optical axis of the secondary mirror;
    A Cassegrain telescope characterized by comprising:
  12.  請求項11において、
     上記第1の平面鏡が、上記主鏡と一体成型され、または上記第2の平面鏡が、上記副鏡と一体成型されていることを特徴とするカセグレン望遠鏡。
    In claim 11,
    The Cassegrain telescope, wherein the first plane mirror is integrally molded with the primary mirror, or the second plane mirror is molded with the secondary mirror.
PCT/JP2015/069812 2014-11-27 2015-07-02 Aspherical mirror, optical axis aligning device for aspherical mirror, aspherical lens, optical axis aligning device for aspherical lens, and cassegrain telescope WO2016084418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-240589 2014-11-27
JP2014240589A JP2016102875A (en) 2014-11-27 2014-11-27 Aspherical lens, device for aligning optical axis thereof, aspherical mirror, and cassegrain telescope

Publications (1)

Publication Number Publication Date
WO2016084418A1 true WO2016084418A1 (en) 2016-06-02

Family

ID=56074002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069812 WO2016084418A1 (en) 2014-11-27 2015-07-02 Aspherical mirror, optical axis aligning device for aspherical mirror, aspherical lens, optical axis aligning device for aspherical lens, and cassegrain telescope

Country Status (3)

Country Link
JP (1) JP2016102875A (en)
TW (1) TW201625913A (en)
WO (1) WO2016084418A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903801A (en) * 2021-01-27 2021-06-04 南开大学 Ion photodissociation method and device
RU207727U1 (en) * 2021-06-18 2021-11-12 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Mirrored lens for small space telescope
US20220137380A1 (en) * 2020-10-30 2022-05-05 Kla Corporation Reflective compact lens for magneto-optic kerr effect metrology system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196378B (en) * 2017-12-14 2020-07-10 中航洛阳光电技术有限公司 Method for assembling and adjusting card type optical system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337309A (en) * 1986-08-01 1988-02-18 Hitachi Ltd Manufacture of composite type lens
JPH04369451A (en) * 1991-06-14 1992-12-22 Olympus Optical Co Ltd Measuring method for eccentricity of aspherical lens
JPH07272687A (en) * 1994-03-28 1995-10-20 Hikari Syst Kenkyusho:Kk Discharge lamp with spherical mirror structured in single piece
JP2002174771A (en) * 2000-08-29 2002-06-21 Perkinelmar Internatl Cv Microscope
JP2002188958A (en) * 2000-08-29 2002-07-05 Perkinelmar Internatl Cv Small detector array for infrared imaging microscope
JP2005115127A (en) * 2003-10-09 2005-04-28 Nikon Corp Catadioptric projection optical system, exposure device and exposing method
JP2011242544A (en) * 2010-05-17 2011-12-01 Fujifilm Corp Reflection deflector, relative tilt measuring device, and aspherical surface lens measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337309A (en) * 1986-08-01 1988-02-18 Hitachi Ltd Manufacture of composite type lens
JPH04369451A (en) * 1991-06-14 1992-12-22 Olympus Optical Co Ltd Measuring method for eccentricity of aspherical lens
JPH07272687A (en) * 1994-03-28 1995-10-20 Hikari Syst Kenkyusho:Kk Discharge lamp with spherical mirror structured in single piece
JP2002174771A (en) * 2000-08-29 2002-06-21 Perkinelmar Internatl Cv Microscope
JP2002188958A (en) * 2000-08-29 2002-07-05 Perkinelmar Internatl Cv Small detector array for infrared imaging microscope
JP2005115127A (en) * 2003-10-09 2005-04-28 Nikon Corp Catadioptric projection optical system, exposure device and exposing method
JP2011242544A (en) * 2010-05-17 2011-12-01 Fujifilm Corp Reflection deflector, relative tilt measuring device, and aspherical surface lens measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220137380A1 (en) * 2020-10-30 2022-05-05 Kla Corporation Reflective compact lens for magneto-optic kerr effect metrology system
CN112903801A (en) * 2021-01-27 2021-06-04 南开大学 Ion photodissociation method and device
RU207727U1 (en) * 2021-06-18 2021-11-12 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Mirrored lens for small space telescope

Also Published As

Publication number Publication date
TW201625913A (en) 2016-07-16
JP2016102875A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
RU2467286C1 (en) Device to align two-mirror aligned optical system
WO2016084418A1 (en) Aspherical mirror, optical axis aligning device for aspherical mirror, aspherical lens, optical axis aligning device for aspherical lens, and cassegrain telescope
US7375824B2 (en) Interferometer for measurement of dome-like objects
EP3084373B1 (en) Spectrometer for generating a two dimensional spectrum
JPWO2019065245A1 (en) Image projection device
US10976537B2 (en) Compact telescope having a plurality of focal lengths compensated for by a deformable mirror
CN102385170A (en) Optical system for measuring and regulating center deviation of optics lens at high precision
JP2009162539A (en) Light wave interferometer apparatus
RU2327194C2 (en) Three-mirror optical system without screening
US9700205B2 (en) Ophthalmologic apparatus
JP6020849B2 (en) Optical axis alignment device for aspherical mirror
EP3271770B1 (en) Telecentric lens
US9719882B2 (en) Optical device, optical test bench and optical test method
JP2016153915A (en) Aspherical mirror
JP5473743B2 (en) Off-axis transmitted wavefront measuring device
KR102197977B1 (en) Telescope comprising an active mirror and internal means for monitoring said active mirror
US20170102233A1 (en) Image-Forming Optical Component And Optical System Of Surveying Instrument
JP4857619B2 (en) Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system
US20200132982A1 (en) Projector
JP2017513043A (en) A method for setting tolerances on optical surfaces using local pupil regions
US11385471B1 (en) Active self-monitoring binocular calibration target
EP3580537B1 (en) Correction of curved projection of a spectrometer slit line
JP2007139585A (en) Reflectance measuring instrument and adjustment technique of optical axis thereof
RU2432546C1 (en) Interferometre for controlling shape of optical components
JP5448932B2 (en) Wavefront measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864212

Country of ref document: EP

Kind code of ref document: A1