JP5025501B2 - Optical element holding mechanism and optical element measuring apparatus - Google Patents

Optical element holding mechanism and optical element measuring apparatus Download PDF

Info

Publication number
JP5025501B2
JP5025501B2 JP2008008109A JP2008008109A JP5025501B2 JP 5025501 B2 JP5025501 B2 JP 5025501B2 JP 2008008109 A JP2008008109 A JP 2008008109A JP 2008008109 A JP2008008109 A JP 2008008109A JP 5025501 B2 JP5025501 B2 JP 5025501B2
Authority
JP
Japan
Prior art keywords
optical element
holding
light
detection plate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008008109A
Other languages
Japanese (ja)
Other versions
JP2009168665A (en
Inventor
学 根本
光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008008109A priority Critical patent/JP5025501B2/en
Publication of JP2009168665A publication Critical patent/JP2009168665A/en
Application granted granted Critical
Publication of JP5025501B2 publication Critical patent/JP5025501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

本発明は、光学素子保持機構および光学素子測定装置に関する。   The present invention relates to an optical element holding mechanism and an optical element measuring apparatus.

従来、例えば、波面収差測定装置や焦点距離測定装置などの光学素子測定装置においては、測定を開始する際、被検体の位置、姿勢を光学素子測定装置の測定位置や光軸に対して調整して配置する必要がある。そのため、光学素子測定装置は、被検体である光学素子を位置調整可能に保持する光学素子保持機構を備えている。そして、被検体の保持部に、平行平板などの調整治具を配置し、この調整治具の反射光など利用して保持部の姿勢のずれ量を測定し、ずれ量が許容範囲以下となるように光学素子保持機構の調整を行っていた。
このような調整治具を用いないで調整を行う例としては、特許文献1に開示された技術がある。特許文献1には、光学素子測定装置としての干渉計によるレンズの波面収差の測定に際し、レンズのティルト補正が容易かつ迅速に調整できるように、光軸に平行な入射光に対して、レンズの第1面の有効径外領域が光軸に平行な反射光を返すような形状をもち、かつレンズの第2面の有効径外領域のフラット部が光軸に対して非垂直面で構成されたレンズを用いることが記載されている。
特開平8−334606号公報
Conventionally, for example, in an optical element measuring device such as a wavefront aberration measuring device or a focal length measuring device, when starting measurement, the position and orientation of the subject are adjusted with respect to the measuring position and optical axis of the optical element measuring device. Need to be placed. For this reason, the optical element measuring apparatus includes an optical element holding mechanism that holds the optical element that is the subject so that the position of the optical element can be adjusted. Then, an adjustment jig such as a parallel plate is arranged on the holding part of the subject, and the amount of deviation of the posture of the holding part is measured using the reflected light of the adjustment jig, and the deviation amount is below the allowable range. In this way, the optical element holding mechanism is adjusted.
As an example of performing adjustment without using such an adjustment jig, there is a technique disclosed in Patent Document 1. In Patent Document 1, when measuring the wavefront aberration of a lens by an interferometer as an optical element measuring device, the lens tilt is corrected with respect to incident light parallel to the optical axis so that the tilt correction of the lens can be adjusted easily and quickly. The area outside the effective diameter of the first surface has a shape that returns reflected light parallel to the optical axis, and the flat portion of the area outside the effective diameter on the second surface of the lens is configured as a non-perpendicular surface with respect to the optical axis. It is described that a lens is used.
JP-A-8-334606

しかしながら、上記のような従来の光学素子保持機構および光学素子測定装置には、以下のような問題があった。
従来技術のように、被検体の保持部に調整治具を配置して調整を行う場合には、被検体の代わりに、調整治具を配置して調整を行うため、段取り替えが必要となり測定の効率が悪くなるという問題がある。また、調整後に保持部の姿勢が変化しても変化を検知することができないため、保持部の姿勢がずれたままの状態で測定が続けられて、不正確な測定が実施されてしまうおそれがある。
一方、特許文献1に記載の技術では、被検体のフラット部でティルト調整を行うことができるので、調整治具の載せ替えなどを省略できる点では効率化できるものの、被検体の姿勢を高精度に調整するためには、干渉縞を観察するためにある程度広いフラット部を設ける必要があるので、被検体を小形化したり、低コスト化したりすることが難しくなるという問題がある。
However, the conventional optical element holding mechanism and optical element measuring apparatus as described above have the following problems.
When adjustment is performed by placing an adjustment jig in the holding part of the subject as in the prior art, adjustment is performed by placing an adjustment jig instead of the subject, so that setup change is required and measurement is required. There is a problem that the efficiency of. In addition, even if the posture of the holding unit changes after the adjustment, the change cannot be detected, and therefore the measurement may be continued with the holding unit being deviated, and inaccurate measurement may be performed. is there.
On the other hand, in the technique described in Patent Document 1, since the tilt adjustment can be performed at the flat portion of the subject, it is efficient in that the replacement of the adjustment jig can be omitted, but the posture of the subject is highly accurate. In order to make the adjustment, it is necessary to provide a flat portion that is somewhat wide in order to observe the interference fringes. Therefore, there is a problem that it is difficult to reduce the size and cost of the subject.

本発明は、上記のような問題に鑑みてなされたものであり、小形の被検体であっても保持姿勢の調整を容易かつ効率的に行うことができる光学素子保持機構および光学素子測定装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an optical element holding mechanism and an optical element measuring apparatus capable of easily and efficiently adjusting a holding posture even for a small subject. The purpose is to provide.

上記の課題を解決するために、請求項1に記載の発明では、被検体である光学素子に対する測定光を透過する開口部と、該開口部の周囲に設けられ、前記被検体の外周部を保持して光軸方向に位置決めする被検体保持部とを有する光学素子保持機構であって、前記被検体保持部の径方向外側に該被検体保持部と同一平面に整列して設けられた姿勢検知板保持部と、前記被検体保持部の径方向外側の該被検体保持部の周囲に設けられ、前記姿勢検知板保持部に対して前記測定光の入射方向側に貫通する外側開口部と、光反射性を有する干渉縞測定可能な検知平面を有し、該検知平面が、前記姿勢検知板保持部上に、前記外側開口部を覆うように配置された姿勢検知板とを備える構成とする。
この発明によれば、被検体保持部よりも径方向外側に、測定光と同方向から光が入射すると、外側開口部を透過して、姿勢検知板の検知平面に到達し、その光が入射方向側に向かう反射光が形成される。この反射光を用いた干渉縞観測を行うことで、姿勢検知板保持部の姿勢を検知することができる。したがって、被検体保持部に被検体を保持した状態であっても、姿勢検知板保持部と同一平面上にある被検体保持部の姿勢を検知することが可能となる。
In order to solve the above problems, in the invention according to claim 1, an opening that transmits measurement light to the optical element that is the subject, and an outer peripheral portion of the subject that is provided around the opening are provided. An optical element holding mechanism having a subject holding portion that is held and positioned in the optical axis direction, and is provided on the radially outer side of the subject holding portion so as to be aligned in the same plane as the subject holding portion A detection plate holding portion, and an outer opening provided around the subject holding portion on the radially outer side of the subject holding portion and penetrating toward the incident direction side of the measurement light with respect to the posture detection plate holding portion; A detection plane capable of measuring interference fringes having light reflectivity, and the detection plane includes a posture detection plate disposed on the posture detection plate holding portion so as to cover the outer opening; To do.
According to the present invention, when light enters from the same direction as the measurement light on the radially outer side than the subject holding part, the light passes through the outer opening, reaches the detection plane of the posture detection plate, and the light enters. Reflected light traveling toward the direction is formed. By performing interference fringe observation using the reflected light, the posture of the posture detection plate holding unit can be detected. Therefore, even when the subject is held by the subject holding unit, it is possible to detect the posture of the subject holding unit that is on the same plane as the posture detection plate holding unit.

請求項2に記載の発明では、請求項1に記載の光学素子保持機構において、前記姿勢検知板は、環状に形成され、環状の内周部で、前記光学素子を外嵌できるようにした構成とする。
この発明によれば、姿勢検知板の内周部によって光学素子を外嵌することで、光学素子の径方向の位置決め部材を兼用することができるので、簡素な構成とすることができる。
According to a second aspect of the present invention, in the optical element holding mechanism according to the first aspect, the posture detection plate is formed in an annular shape, and the optical element can be externally fitted at an annular inner peripheral portion. And
According to this invention, since the optical element is externally fitted by the inner peripheral portion of the attitude detection plate, the radial positioning member of the optical element can also be used, so that a simple configuration can be achieved.

請求項3に記載の発明では、請求項1または2に記載の光学素子保持機構において、前記被検体保持部は、前記光学素子を保持する平面が、凹部を挟んだ状態で前記光学素子の周方向に配置された構成とする。
この発明によれば、被検体保持部の、光学素子を保持する平面が凹部を挟んだ状態で光学素子の周方向に配置されているので、凹部の面積分だけ、被検体保持部の面積を低減することができ、ゴミや加工面の仕上げ状態により光学素子が傾くことを少なくすることができる。
According to a third aspect of the present invention, in the optical element holding mechanism according to the first or second aspect of the invention, the subject holding unit is configured such that the plane that holds the optical element sandwiches the recess and the periphery of the optical element. The configuration is arranged in the direction.
According to this invention, since the plane for holding the optical element of the subject holding portion is arranged in the circumferential direction of the optical element with the concave portion interposed therebetween, the area of the subject holding portion is increased by the area of the concave portion. It is possible to reduce the inclination of the optical element due to dust and the finished state of the processed surface.

請求項4に記載の発明では、請求項1〜3のいずれかに記載の光学素子保持機構において、前記姿勢検知板は、光透過性を有し、前記検知平面に対向する裏面が光拡散性を有する構成とする。
この発明によれば、姿勢検知板の検知平面に対向する裏面が光拡散性を有するため、検知平面を透過して裏面で反射される光は拡散され、干渉縞画像を得る場合に検知平面での反射光と同一の光路に戻る光が低減されるので、姿勢検知板の検知面からの反射光による干渉縞観測が容易となる。
According to a fourth aspect of the present invention, in the optical element holding mechanism according to any one of the first to third aspects, the posture detection plate has light permeability, and a back surface facing the detection plane is light diffusive. It is set as the structure which has.
According to the present invention, since the back surface of the posture detection plate facing the detection plane has light diffusibility, the light transmitted through the detection plane and reflected by the back surface is diffused, and the interference detection pattern is obtained when an interference fringe image is obtained. Since the light returning to the same optical path as the reflected light is reduced, it becomes easy to observe the interference fringes by the reflected light from the detection surface of the posture detection plate.

請求項5に記載の発明では、請求項1〜3のいずれかに記載の光学素子保持機構において、前記姿勢検知板は、光透過性を有し、前記検知平面に対向する裏面が前記検知平面に対して傾斜されている構成とする。
この発明によれば、姿勢検知板の検知平面に対向する裏面が、検知平面に対して傾斜されているため、検知平面を透過して裏面に入射する光が入射方向に対して斜め方向に反射され、干渉縞画像を得る場合に検知平面での反射光と同一の光路に戻る光が低減されるので、姿勢検知板の検知面からの反射光による干渉縞観測が容易となる。
According to a fifth aspect of the present invention, in the optical element holding mechanism according to any one of the first to third aspects, the posture detection plate is light transmissive, and a back surface facing the detection plane is the detection plane. It is set as the structure inclined with respect to.
According to the present invention, since the back surface of the posture detection plate facing the detection plane is inclined with respect to the detection plane, light that passes through the detection plane and enters the back surface is reflected obliquely with respect to the incident direction. In addition, since the light returning to the same optical path as the reflected light on the detection plane is reduced when obtaining the interference fringe image, the interference fringe observation by the reflected light from the detection surface of the posture detection plate is facilitated.

請求項6に記載の発明では、被検体である光学素子に対して測定光を照射して、該測定光によって、前記光学素子の測定を行う光学素子測定装置であって、請求項1〜5のいずれかに記載の光学素子保持機構と、前記光学素子保持機構の前記姿勢検知板保持部に保持された前記姿勢検知板の前記検知平面の傾斜を検出するための参照平面と、前記光学素子保持機構の前記検知平面および前記参照平面に平行光を照射する光源部と、該光源部から前記検知平面および前記参照平面に照射された前記平行光のそれぞれの反射光を干渉させて得られる干渉縞によって、前記参照平面に対する前記姿勢検知板の検知平面の姿勢のずれ量を観測できるようにした干渉縞観測部とを備える構成とする。
この発明によれば、光源部から、参照平面および検知平面に対して、平行光を照射し、干渉縞観測部によって、それらの反射光を干渉させて得られる干渉縞から、参照平面に対する検知平面の姿勢のずれ量を観測することができる。その際、請求項1〜5の光学素子保持機構を備えるため、被検体保持部に被検体を保持した状態で、被検体保持部の姿勢を検知することができる。
The invention according to claim 6 is an optical element measuring apparatus that irradiates an optical element as a subject with measurement light and measures the optical element with the measurement light. An optical element holding mechanism according to any one of the above, a reference plane for detecting an inclination of the detection plane of the posture detection plate held by the posture detection plate holding portion of the optical element holding mechanism, and the optical element A light source unit that irradiates parallel light to the detection plane and the reference plane of the holding mechanism, and interference obtained by causing the reflected lights of the parallel light irradiated from the light source unit to the detection plane and the reference plane to interfere with each other An interference fringe observation unit configured to observe the amount of deviation of the attitude of the detection plane of the attitude detection plate with respect to the reference plane by the fringes.
According to the present invention, the detection plane with respect to the reference plane is obtained from the interference fringes obtained by irradiating the reference plane and the detection plane with parallel light from the light source unit and causing the interference fringe observation unit to interfere with the reflected light. The amount of misalignment can be observed. At this time, since the optical element holding mechanism according to claims 1 to 5 is provided, the posture of the subject holding unit can be detected in a state where the subject is held by the subject holding unit.

請求項7に記載の発明では、請求項6に記載の光学素子測定装置において、前記光源部は、前記測定光を発生する光源を兼ねる構成とする。
この発明によれば、光源部が、測定光を発生する光源を兼ねるので、測定光を用いた光学素子測定と同時に、姿勢検知板、すなわち被検体保持部の姿勢のずれを観測することができる。
この発明では、参照平面は、光学素子の測定のための基準波面を生成するための参照平面を兼ねる構成とすることが、部品数を少なくする点で好ましい。
According to a seventh aspect of the present invention, in the optical element measurement apparatus according to the sixth aspect, the light source unit also serves as a light source that generates the measurement light.
According to the present invention, since the light source unit also serves as a light source that generates measurement light, it is possible to observe the deviation of the posture of the posture detection plate, that is, the subject holding unit, simultaneously with the optical element measurement using the measurement light. .
In the present invention, it is preferable that the reference plane also serves as a reference plane for generating a reference wavefront for measuring the optical element from the viewpoint of reducing the number of parts.

請求項8に記載の発明では、請求項6または7に記載の光学素子測定装置において、前記姿勢検知板の前記検知平面の反射率は、前記参照平面の反射率と略等しい構成とする。
この発明によれば、検知平面の反射率と参照平面の反射率とが略等しいので、それぞれの反射光による干渉縞のコントラストが高くなり、より精度のよい姿勢の検知を行うことができる。
According to an eighth aspect of the present invention, in the optical element measuring apparatus according to the sixth or seventh aspect, the reflectance of the detection plane of the posture detection plate is substantially equal to the reflectance of the reference plane.
According to this invention, since the reflectance of the detection plane and the reflectance of the reference plane are substantially equal, the contrast of the interference fringes due to the respective reflected light is increased, and the posture can be detected with higher accuracy.

本発明の光学素子保持機構および光学素子測定装置によれば、光学素子保持機構に、被検体保持部の径方向外側に設けられた外側開口部を覆うように姿勢検知板の検知平面を配置して、姿勢検知を行えるようにするので、小形の被検体であっても保持姿勢の調整を容易かつ効率的に行うことができるという効果を奏する。   According to the optical element holding mechanism and the optical element measuring apparatus of the present invention, the detection plane of the posture detection plate is arranged in the optical element holding mechanism so as to cover the outer opening provided on the radially outer side of the subject holding part. Thus, since posture detection can be performed, the holding posture can be adjusted easily and efficiently even for a small subject.

以下では、本発明の実施の形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common description is omitted.

[第1の実施形態]
本発明の第1の実施形態に係る光学素子保持機構について、それを備える光学素子測定装置とともに説明する。
図1は、本発明の第1の実施形態に係る光学素子測定装置の概略構成を示す模式構成図である。図2(a)は、本発明の第1の実施形態に係る光学素子測定装置の被検体の形状の一例を示す模式的な平面図である。図2(b)は、図2(a)におけるA視の裏面図である。図3は、本発明の第1の実施形態に係る光学素子保持機構の概略構成を示す模式的な斜視図である。図4は、本発明の第1の実施形態に係る光学素子保持機構に被検体を保持した場合の、図3のB−B断面に相当する断面図である。
[First Embodiment]
The optical element holding mechanism according to the first embodiment of the present invention will be described together with an optical element measuring apparatus including the optical element holding mechanism.
FIG. 1 is a schematic configuration diagram showing a schematic configuration of the optical element measuring apparatus according to the first embodiment of the present invention. FIG. 2A is a schematic plan view showing an example of the shape of the subject of the optical element measuring apparatus according to the first embodiment of the present invention. FIG. 2B is a back view as viewed from A in FIG. FIG. 3 is a schematic perspective view showing a schematic configuration of the optical element holding mechanism according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view corresponding to the BB cross section of FIG. 3 when the subject is held by the optical element holding mechanism according to the first embodiment of the present invention.

本実施形態の波面収差測定装置100は、被検体である被検レンズ5(光学素子)の波面収差を測定する光学素子測定装置である。
波面収差測定装置100の概略構成は、図1に示すように、光源部4、ハーフミラー3、保持機構2(光学素子保持機構)、位置調整機構11、反射ミラー7、参照平板8、結像レンズ9、撮像素子10、およびコンピュータ12からなる。
The wavefront aberration measuring apparatus 100 of the present embodiment is an optical element measuring apparatus that measures the wavefront aberration of a test lens 5 (optical element) that is a subject.
As shown in FIG. 1, the schematic configuration of the wavefront aberration measuring apparatus 100 includes a light source unit 4, a half mirror 3, a holding mechanism 2 (optical element holding mechanism), a position adjusting mechanism 11, a reflecting mirror 7, a reference flat plate 8, and an imaging. The lens 9, the image sensor 10, and the computer 12 are included.

被検レンズ5は、図2(a)、(b)に示すように、外形が円状のフランジ部5cを有し、その中心部にレンズ面5a、5bが形成されてなるフランジ付きのレンズである。フランジ部5cは、レンズ面5a側に、被検レンズ5を光軸方向に位置決めするため被検レンズ5の光軸と直交する平面として形成された受け面5dを備える。
フランジ部5cにおけるレンズ面5b側の裏面5eの形状や仕上げは、適宜の形状や仕上げを採用することができる。例えば、受け面5dに平行な平面で平滑面であってもよい。
また、フランジ部5cの外径は、受け面5dの面積として、被検レンズ5を位置決めできる程度の面積を確保できれば、いくら小径であってもよい。
レンズ面5a、5bは、本実施形態では、一例として、光ピックアップなどに用いる非球面レンズを想定して、両凸レンズ形状に図示しているが、レンズ面5a、5bは、必要に応じて、球面でもよく、また、凹面や平面を有していてもよい。
As shown in FIGS. 2A and 2B, the test lens 5 has a flange portion 5c having a circular outer shape, and a lens with a flange having lens surfaces 5a and 5b formed at the center thereof. It is. The flange portion 5c includes, on the lens surface 5a side, a receiving surface 5d formed as a plane orthogonal to the optical axis of the test lens 5 in order to position the test lens 5 in the optical axis direction.
As the shape and finish of the back surface 5e on the lens surface 5b side in the flange portion 5c, an appropriate shape and finish can be adopted. For example, it may be a flat surface parallel to the receiving surface 5d.
Further, the outer diameter of the flange portion 5c may be as small as possible as long as the area of the receiving surface 5d can be secured to the extent that the lens 5 can be positioned.
In the present embodiment, the lens surfaces 5a and 5b are illustrated in a biconvex lens shape assuming an aspheric lens used for an optical pickup or the like as an example, but the lens surfaces 5a and 5b may be It may be a spherical surface, and may have a concave surface or a flat surface.

光源部4は、被検レンズ5の波面収差を測定する測定光として干渉縞を形成するためにコヒーレントな平行光Lを発生するもので、図1に示すように、例えば、レーザ光源からなる光源4aと、コリメートレンズ4bとからなる。
本実施形態では、平行光Lは、保持機構2の姿勢を検知するための干渉縞を得る光を兼ねており、後述する外側開口部20bを覆う範囲に照射できる光束径を有している。
ハーフミラー3は、光源部4から出射された平行光Lの光路上に配置され、平行光Lの約50%の光を透過して直進させ、他の約50%の光を側方に反射させる光分岐素子である。
The light source unit 4 generates coherent parallel light L to form interference fringes as measurement light for measuring the wavefront aberration of the lens 5 to be examined. As shown in FIG. 4a and a collimating lens 4b.
In the present embodiment, the parallel light L also serves as light for obtaining interference fringes for detecting the posture of the holding mechanism 2 and has a light beam diameter that can be applied to a range covering an outer opening 20b described later.
The half mirror 3 is disposed on the optical path of the parallel light L emitted from the light source unit 4, transmits about 50% of the parallel light L and travels straight, and reflects the other about 50% of the light sideways. It is an optical branching element.

保持機構2は、被検レンズ5を、ハーフミラー3を透過する平行光Lの光軸上に保持するもので、図3に示すように、保持部材20、姿勢検知板21を備える。
保持部材20は、図1に示すように、例えば、この保持部材を取り付けたチルトテーブルや、このテーブルを光軸方向および光軸に垂直な平面内での移動機構などを含む位置調整機構11によって平行光Lの光軸方向の位置および光軸に対する中心開口部20a(後述)の位置や傾き等の姿勢を調整できるように保持されている。
保持部材20の形状は、略円板状部材の中心に、被検レンズ5のレンズ面5aより大きく、フランジ部5cの外径より小さい中心開口部20a(開口部)が貫通して設けられ、中心開口部20aの径方向外側には、光源部4と反対側の表面から中心開口部20aと同軸の円穴が設けられ、この円穴の穴底に平面からなる保持面20cが形成されている。保持面20cは、被検レンズ5の受け面5dの保持位置の繰り返し再現性が良好となるような平面度および面精度を有する平面に形成されている。
中心開口部20aの径方向外側には、保持部材20の厚さ方向に貫通する外側開口部20bが、中心開口部20aの周囲となる周方向に沿って等ピッチで4箇所に形成されている。
外側開口部20bの径方向の位置は、本実施形態では、中心開口部20aに被検レンズ5を配置したときフランジ部5cと重ならず、ハーフミラー3を透過する平行光Lが入射できるような位置に設定される。
保持部材20の材質は、例えば、金属などを採用することできる。
The holding mechanism 2 holds the lens 5 to be tested on the optical axis of the parallel light L that passes through the half mirror 3, and includes a holding member 20 and a posture detection plate 21 as shown in FIG.
As shown in FIG. 1, the holding member 20 is, for example, a position adjustment mechanism 11 including a tilt table to which the holding member is attached and a mechanism for moving the table in a plane perpendicular to the optical axis direction and the optical axis. The position of the parallel light L in the direction of the optical axis and the position of the central opening 20a (described later) with respect to the optical axis and the posture such as the tilt are held.
The shape of the holding member 20 is provided in the center of the substantially disk-like member through a central opening 20a (opening) that is larger than the lens surface 5a of the lens 5 to be tested and smaller than the outer diameter of the flange 5c, A circular hole coaxial with the central opening 20a is provided on the outer side in the radial direction of the central opening 20a from the surface opposite to the light source part 4, and a flat holding surface 20c is formed at the bottom of the circular hole. Yes. The holding surface 20c is formed in a plane having flatness and surface accuracy so that the repeatability of the holding position of the receiving surface 5d of the lens 5 to be tested is good.
Outside the center opening 20a in the radial direction, outer openings 20b penetrating in the thickness direction of the holding member 20 are formed at four positions along the circumferential direction around the center opening 20a at an equal pitch. .
In the present embodiment, the radial position of the outer opening 20b does not overlap the flange 5c when the lens 5 to be tested is disposed in the center opening 20a, so that the parallel light L that passes through the half mirror 3 can enter. Is set to the correct position.
For example, a metal or the like can be used as the material of the holding member 20.

姿勢検知板21は、外側開口部20bの内径よりも大きい円板部材である。姿勢検知板21の厚さ方向に対向する検知面21a(検知平面)、裏面21bのうち、検知面21aは、研磨され良好な面精度に仕上げられた平面からなり、平行光Lを反射光Lとして反射する光反射性を備えている。検知面21aは、反射率を向上するため、反射膜コートを施すことが好ましいが、後述する干渉縞観測に支障がない場合には、反射膜コートは施さなくてもよい。
姿勢検知板21の材質としては、金属やガラスを採用することができる。
姿勢検知板21としてガラス板を用いる場合、検知面21aを透過して裏面21bで反射される光が干渉縞観測のノイズとならないようにするため、裏面21bに光拡散性を付与しておくことが好ましい。例えば、裏面21bに砂目面等の粗面加工を施すことが好ましい。
The posture detection plate 21 is a disc member that is larger than the inner diameter of the outer opening 20b. Of the detection surface 21a (detection plane) and the back surface 21b facing in the thickness direction of the posture detection plate 21, the detection surface 21a is a flat surface that is polished and finished with good surface accuracy, and reflects the parallel light L as reflected light L. 1 is provided with light reflectivity. The detection surface 21a is preferably coated with a reflective film in order to improve the reflectance. However, if there is no problem in observation of interference fringes described later, the reflective film may not be applied.
As the material of the attitude detection plate 21, metal or glass can be employed.
When a glass plate is used as the posture detection plate 21, light diffusibility is imparted to the back surface 21b so that light transmitted through the detection surface 21a and reflected by the back surface 21b does not become interference fringe observation noise. Is preferred. For example, it is preferable to apply a rough surface processing such as a grained surface to the back surface 21b.

各姿勢検知板21は、外側開口部20bを覆うようにして、外側開口部20bの近傍の保持面20c上に、検知面21aを密着させた状態で保持されている。保持手段は、検知面21aを保持面20cに密着させることができれば、適宜の保持手段を採用することができる。例えば、接着や、不図示のクランプなどを採用することができる。   Each posture detection plate 21 is held in a state where the detection surface 21a is in close contact with the holding surface 20c in the vicinity of the outer opening 20b so as to cover the outer opening 20b. As the holding means, an appropriate holding means can be adopted as long as the detection surface 21a can be brought into close contact with the holding surface 20c. For example, adhesion or a clamp (not shown) can be employed.

このように、本実施形態の保持機構の保持面20cは、中心開口部20aの近傍で被検レンズ5のフランジ部5cを保持する被検レンズ保持部20A(被検体保持部)と、被検レンズ保持部20Aの周囲に形成された外側開口部20bの近傍で姿勢検知板21を保持する姿勢検知板保持部20Bとが、同一平面内の異なる領域として形成される場合の例となっている。
このため、被検レンズ保持部20A、姿勢検知板保持部20Bは、同一加工面として形成することができる。その結果、加工精度が同一となり、同一平面に高精度に整列した平面として形成することができる。
As described above, the holding surface 20c of the holding mechanism of the present embodiment includes the test lens holding unit 20A (subject holding unit) that holds the flange portion 5c of the test lens 5 in the vicinity of the center opening 20a, and the test subject. This is an example in which the posture detection plate holding portion 20B that holds the posture detection plate 21 in the vicinity of the outer opening 20b formed around the lens holding portion 20A is formed as a different region in the same plane. .
Therefore, the lens holding unit 20A and the posture detection plate holding unit 20B can be formed as the same processed surface. As a result, the processing accuracy is the same, and it can be formed as a plane aligned with high precision on the same plane.

反射ミラー7は、被検レンズ5を透過し、被検レンズ5の焦点位置に集光されてから拡散する光を、参照面7aで反射して、同一光路上に逆進させ、ハーフミラー3上で、干渉縞を形成させるものである。
ただし、本実施形態では、被検レンズ5として、光ディスクなどのメディアを含んだ状態で収差補正がなされている光ピックアップ用のレンズを用いているため、被検レンズ5と反射ミラー7との間に、メディアの光透過部に相当する補正板6が配置されている。
被検レンズ5が、レンズ単体で収差補正されている場合には、補正板6を用いる必要はない。
The reflection mirror 7 is transmitted through the test lens 5, and then diffused after being condensed at the focal position of the test lens 5, is reflected by the reference surface 7 a, and travels backward on the same optical path, so that the half mirror 3. Above, interference fringes are formed.
However, in this embodiment, since the lens for optical pickup in which aberration correction is performed in a state including a medium such as an optical disk is used as the test lens 5, the test lens 5 is interposed between the test lens 5 and the reflection mirror 7. Further, a correction plate 6 corresponding to the light transmission part of the medium is arranged.
When the lens 5 to be tested is aberration corrected by a single lens, it is not necessary to use the correction plate 6.

参照平板8は、光源部4から出射され、ハーフミラー3によって側方に反射された平行光Lに直交して配置された光反射性を有する平板部材である。これにより、ハーフミラー3によって側方に反射された平行光Lを同一光路上に反射光Lとして反射してハーフミラー3側に戻すことができる。
この反射光Lは、姿勢検知板21の検知面21aで反射された反射光Lと干渉縞を発生させる光である。そのため、参照平板8は、ハーフミラー3側に、研磨され良好な面精度を有する平面からなる参照平面8aを備える。本実施形態では、参照平面8aの反射率は、姿勢検知板21の反射率と略同一となるようにしている。
The reference flat plate 8 is a flat plate member having light reflectivity arranged orthogonal to the parallel light L emitted from the light source unit 4 and reflected laterally by the half mirror 3. Thereby, the parallel light L reflected to the side by the half mirror 3 can be reflected on the same optical path as the reflected light L 0 and returned to the half mirror 3 side.
The reflected light L 0 is light that generates interference fringes with the reflected light L 1 reflected by the detection surface 21 a of the posture detection plate 21. Therefore, the reference flat plate 8 is provided with a reference flat surface 8a made of a flat surface that is polished and has good surface accuracy on the half mirror 3 side. In the present embodiment, the reflectance of the reference plane 8 a is set to be substantially the same as the reflectance of the attitude detection plate 21.

結像レンズ9は、参照平面8aで反射されハーフミラー3を透過した反射光Lと、被検レンズ5を透過し反射ミラー7で反射されて被検レンズ5を再透過した光との干渉縞画像を撮像素子10上に結像するとともに、参照平板8で反射されハーフミラー3を透過した反射光Lと、ハーフミラー3に対して保持機構2側から入射し、ハーフミラー3を透過し、姿勢検知板21の検知面21aで反射され、再びハーフミラー3に到達してハーフミラー3で反射される反射光Lとによって形成される干渉縞画像を、撮像素子10上に結像するレンズである。
撮像素子10は、結像レンズ9で結像された各干渉縞画像を光電変換して、コンピュータ12に送出するもので、例えば、CCDやCMOS素子などからなる。
The imaging lens 9 interferes with the reflected light L 0 reflected by the reference plane 8 a and transmitted through the half mirror 3, and the light transmitted through the test lens 5, reflected by the reflective mirror 7, and retransmitted through the test lens 5. A fringe image is formed on the image sensor 10, and the reflected light L 0 reflected by the reference flat plate 8 and transmitted through the half mirror 3 is incident on the half mirror 3 from the holding mechanism 2 side and transmitted through the half mirror 3. Then, an interference fringe image formed by the reflected light L 1 that is reflected by the detection surface 21 a of the posture detection plate 21, reaches the half mirror 3 again, and is reflected by the half mirror 3 is formed on the image sensor 10. It is a lens to do.
The imaging element 10 photoelectrically converts each interference fringe image formed by the imaging lens 9 and sends it to the computer 12, and is composed of, for example, a CCD or CMOS element.

コンピュータ12は、CPU、メモリ、入出力インタフェース、外部記憶装置、キーボードなどを備えるコンピュータ本体12aと、表示モニタ12bとからなる。
コンピュータ本体12aは、演算処理プログラムを実行することにより、撮像素子10から送出される画像信号に、例えば、ノイズ除去などの適宜の画像処理を施して表示モニタ12bに各干渉縞画像を表示するとともに、被検レンズ5のレンズ有効径内の干渉縞画像と、外側開口部20bの位置に対応する干渉縞画像とを分離し、被検レンズ5による干渉縞画像から、被検レンズ5の波面収差を算出する測定処理を行うことができるようになっている。波面収差測定の測定処理については、周知のいかなる処理を採用してもよい。例えば、フリンジスキャン法を用いる場合には、フリンジスキャン法のアルゴリズムに基づいて、不図示の制御装置により移動制御される参照平板8を光軸方向に移動させる制御を行えるようになっている。
また、必要に応じて、外側開口部20bの位置に対応する干渉縞画像から、保持機構2の姿勢を算出できるようになっている。
The computer 12 includes a computer main body 12a including a CPU, a memory, an input / output interface, an external storage device, a keyboard, and the like, and a display monitor 12b.
The computer main body 12a executes an arithmetic processing program to perform appropriate image processing such as noise removal on the image signal transmitted from the image sensor 10 and display each interference fringe image on the display monitor 12b. The interference fringe image within the lens effective diameter of the test lens 5 and the interference fringe image corresponding to the position of the outer opening 20b are separated, and the wavefront aberration of the test lens 5 is determined from the interference fringe image by the test lens 5. It is possible to perform measurement processing for calculating. Any known process may be employed for the measurement process of wavefront aberration measurement. For example, when the fringe scanning method is used, control for moving the reference flat plate 8 controlled to move by a control device (not shown) in the optical axis direction can be performed based on an algorithm of the fringe scanning method.
Moreover, the attitude | position of the holding mechanism 2 can be calculated from the interference fringe image corresponding to the position of the outer side opening part 20b as needed.

本発明の波面収差測定装置100の動作について、保持機構2の姿勢調整動作を中心に説明する。
図5(a)、(b)、(c)は、それぞれ姿勢調整前および姿勢調整後の干渉縞画像の一例を示す模式図である。
The operation of the wavefront aberration measuring apparatus 100 of the present invention will be described focusing on the attitude adjustment operation of the holding mechanism 2.
FIGS. 5A, 5 </ b> B, and 5 </ b> C are schematic diagrams illustrating examples of interference fringe images before and after posture adjustment, respectively.

波面収差測定装置100で被検レンズ5の測定を行うには、まず、被検レンズ5を保持機構2の被検レンズ保持部20Aに保持させる。このとき、フランジ部5cの受け面5dと保持機構2の保持面20cとが、被検レンズ保持部20Aにおいて密着するように配置する。これにより、被検レンズ5のレンズ面5aが光源部4側に面した状態で、中心開口部20aの中心に保持される。   In order to measure the test lens 5 with the wavefront aberration measuring apparatus 100, first, the test lens 5 is held by the test lens holding unit 20 </ b> A of the holding mechanism 2. At this time, the receiving surface 5d of the flange portion 5c and the holding surface 20c of the holding mechanism 2 are arranged so as to be in close contact with each other at the lens holding portion 20A. Accordingly, the lens surface 5a of the lens 5 to be tested is held at the center of the central opening 20a in a state where the lens surface 5a faces the light source unit 4 side.

次に、光源部4から平行光Lを出射する。
平行光Lは、ハーフミラー3に到達すると、約50%の光が透過して保持機構2に照射され、中心開口部20aを通して被検レンズ5に、各外側開口部20bを通して検知面21aにそれぞれ到達する。
被検レンズ5に到達してレンズ面5aを透過した光は、レンズ面5bを透過して、集光されつつ進み、焦点位置で結像した後、拡散して進み、補正板6を透過し、反射ミラー7の参照面7aに到達して反射される。この反射光は、同一光路を逆進してレンズ面5b、レンズ面5aを透過し、平行光として出射される。そして、ハーフミラー3に到達し、結像レンズ9側に反射される。この平行光は、被検レンズ5の透過波面収差の2倍に相当する光路差を有しているため、平行光Lと干渉を起こす光になっている。このため、結像レンズ9によって、被検レンズ5の波面収差に基づく干渉縞画像が撮像素子10上に結像される。
撮像素子10で撮像された干渉縞画像は、コンピュータ12の表示モニタ12b上に、中心開口部20aの内周部の領域の干渉縞30Aとして、表示される(図5(a)参照)。
また、検知面21aに到達した光は、検知面21aで反射光Lとして反射されて、同一光路を逆進し、ハーフミラー3に到達し、結像レンズ9側に反射される(図1、4参照)。
Next, the parallel light L is emitted from the light source unit 4.
When the parallel light L reaches the half mirror 3, approximately 50% of the light is transmitted and irradiated to the holding mechanism 2, through the central opening 20a to the lens 5 to be detected, and through each outer opening 20b to the detection surface 21a. To reach.
The light that has reached the test lens 5 and transmitted through the lens surface 5a passes through the lens surface 5b, proceeds while being condensed, forms an image at the focal position, proceeds after diffusing, and passes through the correction plate 6. The light reaches the reference surface 7a of the reflection mirror 7 and is reflected. The reflected light travels backward in the same optical path, passes through the lens surface 5b and the lens surface 5a, and is emitted as parallel light. Then, it reaches the half mirror 3 and is reflected to the imaging lens 9 side. Since the parallel light has an optical path difference corresponding to twice the transmitted wavefront aberration of the lens 5 to be examined, the parallel light is light that causes interference with the parallel light L. Therefore, an interference fringe image based on the wavefront aberration of the test lens 5 is formed on the image sensor 10 by the imaging lens 9.
The interference fringe image picked up by the image sensor 10 is displayed on the display monitor 12b of the computer 12 as an interference fringe 30A in the inner peripheral area of the central opening 20a (see FIG. 5A).
Further, the light reaching the sensing surface 21a is reflected as reflected light L 1 at the detection surface 21a, and backward the same optical path to reach the half mirror 3, it is reflected to the imaging lens 9 side (FIG. 1 4).

一方、光源部4からハーフミラー3に到達した平行光Lのうち、ハーフミラー3で側方に反射された残り約50%の光は、参照平板8の参照平面8aに到達して反射されて、反射光Lとして同一光路を逆進し、ハーフミラー3に到達して結像レンズ9側に透過する(図1参照)。
そして、反射光Lは、ハーフミラー3を透過した後、結像レンズ9によって、撮像素子10上に結像される。一方、ハーフミラー3を透過し、姿勢検知板21の検知面21aで反射され、再びハーフミラー3に到達して、ハーフミラー3で反射された反射光Lも、反射光Lと同一の光路を進み、結像レンズ9によって撮像素子10上に結像される。
ここで、反射光L、Lは、参照平面8aに対して、検知面21aが傾斜されている場合、傾斜方向に沿って一様な光路差が傾斜量に応じて発生する。そのため、反射光L、Lは、ハーフミラー3を透過、反射した後に合成された光路上で干渉を起こす光となる。
この干渉縞画像は、撮像素子10によって撮像され、コンピュータ12の表示モニタ12b上に、各外側開口部20bの内周部の領域の干渉縞31Aとして表示される(図5(a)参照)。
On the other hand, of the parallel light L that has reached the half mirror 3 from the light source unit 4, the remaining about 50% of the light reflected laterally by the half mirror 3 reaches the reference plane 8 a of the reference flat plate 8 and is reflected. Then, the reflected light L 0 travels backward in the same optical path, reaches the half mirror 3, and passes through the imaging lens 9 (see FIG. 1).
The reflected light L 0 is transmitted through the half mirror 3 and then imaged on the image sensor 10 by the imaging lens 9. On the other hand, the reflected light L 1 that passes through the half mirror 3, is reflected by the detection surface 21 a of the attitude detection plate 21, reaches the half mirror 3 again, and is reflected by the half mirror 3 is also the same as the reflected light L 0 . The light travels along the optical path and is imaged on the image sensor 10 by the imaging lens 9.
Here, when the detection surface 21a is tilted with respect to the reference plane 8a, the reflected light L 0 and L 1 has a uniform optical path difference according to the tilt amount along the tilt direction. Therefore, the reflected lights L 0 and L 1 become light that causes interference on the combined optical path after being transmitted and reflected by the half mirror 3.
This interference fringe image is picked up by the image pickup device 10 and displayed on the display monitor 12b of the computer 12 as an interference fringe 31A in the area of the inner periphery of each outer opening 20b (see FIG. 5A).

本実施形態では、中心開口部20aと各外側開口部20bとは、中心開口部20aの径方向に連通していないため、干渉縞30A、31Aの画像は、画像処理上でも視覚上でも容易に分離して、観測することができる。   In the present embodiment, since the center opening 20a and each outer opening 20b are not in communication with each other in the radial direction of the center opening 20a, the images of the interference fringes 30A and 31A can be easily processed both visually and visually. It can be separated and observed.

参照平面8a、検知面21aは、ぞれぞれ、良好な面精度を有する研磨平面であるため、干渉縞31Aはそれぞれの間の傾斜量による光路差のみが反映されており、平行線状の干渉縞画像となる。この平行線状の干渉縞の方向およびピッチと平行光Lの波長とから、参照平面8aに対する検知面21aの傾斜方向および傾斜量を算出することができる。
そのため、例えば、位置調整機構11を、コンピュータ本体12aによって自動制御可能な構成とすれば、コンピュータ本体12aによって算出された検知面21aの傾斜方向および傾斜量に応じて、位置調整機構11を駆動して、保持部材20の姿勢、すなわち検知面21aの姿勢を参照平面8aに相当する姿勢に自動調整することができる。
Since the reference plane 8a and the detection surface 21a are polished planes having good surface accuracy, the interference fringes 31A reflect only the optical path difference due to the amount of inclination between them, and are parallel lines. It becomes an interference fringe image. From the direction and pitch of the parallel interference fringes and the wavelength of the parallel light L, the inclination direction and the inclination amount of the detection surface 21a with respect to the reference plane 8a can be calculated.
Therefore, for example, if the position adjustment mechanism 11 is configured to be automatically controllable by the computer main body 12a, the position adjustment mechanism 11 is driven according to the inclination direction and the inclination amount of the detection surface 21a calculated by the computer main body 12a. Thus, the posture of the holding member 20, that is, the posture of the detection surface 21a can be automatically adjusted to a posture corresponding to the reference plane 8a.

ただし、測定者が、コンピュータ12の表示モニタ12b上に表示された干渉縞画像を見ながら、手動操作を行って位置調整機構11を駆動することで、検知面21aの姿勢を調整してもよい。
例えば、干渉縞31Aを見て、各外側開口部20bにおける干渉縞31Aの出方が均等となり、かつそれぞれの縞の間隔がより広くなるように、位置調整機構11を駆動することで、検知面21aに姿勢を参照平面8aに相当する姿勢に調整することができる。
図5(b)は、このような調整の結果、一例として、干渉縞31Aが、各外側開口部20bで縞が見られない程度に干渉縞ピッチが拡大した干渉縞31Bにまで変化した様子を示す。
このとき、本実施形態では、中心開口部20aと各外側開口部20bとは、中心開口部20aの径方向に連通していないため、干渉縞31Aから干渉縞31Bへの変化を、近傍の干渉縞30Aから干渉縞30Bへの変化に影響されることなく観測することができる。
However, the measurer may adjust the posture of the detection surface 21a by manually operating the position adjustment mechanism 11 while viewing the interference fringe image displayed on the display monitor 12b of the computer 12. .
For example, when the interference fringes 31A are viewed, the position adjustment mechanism 11 is driven so that the interference fringes 31A are uniformly provided in the respective outer openings 20b and the intervals between the fringes are further widened. The posture can be adjusted to a posture corresponding to the reference plane 8a.
FIG. 5B shows, as an example, a state in which the interference fringe 31A has changed to an interference fringe 31B in which the interference fringe pitch is enlarged to such an extent that no fringes are seen at each outer opening 20b. Show.
At this time, in the present embodiment, since the center opening 20a and each outer opening 20b are not in communication with each other in the radial direction of the center opening 20a, a change from the interference fringe 31A to the interference fringe 31B Observation can be performed without being affected by the change from the fringe 30A to the interference fringe 30B.

姿勢調整の目標値は、被検レンズ5の測定の必要に応じて適宜設定することができる。また、この場合の、調整完了となる干渉縞31Bの目標値は、外側開口部20bの大きさや配置に応じて適宜設定することができる。
例えば、図5(b)において、各外側開口部20bで観測される干渉縞の本数が「n本以下(nは自然数)」といった調整目標値を設定することができる。
The target value for posture adjustment can be appropriately set according to the necessity of measurement of the lens 5 to be measured. In this case, the target value of the interference fringe 31B for which adjustment is completed can be appropriately set according to the size and arrangement of the outer opening 20b.
For example, in FIG. 5B, an adjustment target value can be set such that the number of interference fringes observed at each outer opening 20b is “n or less (n is a natural number)”.

このように、本実施形態において、ハーフミラー3、結像レンズ9、撮像素子10、およびコンピュータ12は、光源部4から検知面21aおよび参照平面8aに照射された平行光Lのそれぞれの反射光L、Lを干渉させて得られる干渉縞31A(31B)によって、参照平面8aに対する検知面21aの姿勢のずれ量を観測できるようにした干渉縞観測部を構成している。 As described above, in the present embodiment, the half mirror 3, the imaging lens 9, the imaging device 10, and the computer 12 reflect the respective reflected lights of the parallel light L emitted from the light source unit 4 to the detection surface 21a and the reference plane 8a. An interference fringe observation unit configured to observe the amount of deviation of the attitude of the detection surface 21a with respect to the reference plane 8a is configured by the interference fringes 31A (31B) obtained by causing L 1 and L 0 to interfere with each other.

各検知面21aは、姿勢検知板保持部20Bに密着されており、姿勢検知板保持部20Bと被検レンズ保持部20Aとは同一平面に整列されているため、上記の姿勢調整は、被検レンズ保持部20Aの姿勢調整を行うことと同じである。したがって、上記の姿勢調整によって、被検レンズ保持部20Aに保持された被検レンズ5の受け面5dの位置が、波面収差測定装置100の測定の光軸に直交する姿勢に調整されることになる。   Each detection surface 21a is in close contact with the posture detection plate holding unit 20B, and the posture detection plate holding unit 20B and the lens holding unit 20A are aligned on the same plane. This is the same as adjusting the posture of the lens holding portion 20A. Therefore, the position adjustment of the receiving surface 5d of the test lens 5 held by the test lens holding unit 20A is adjusted to a posture orthogonal to the measurement optical axis of the wavefront aberration measuring apparatus 100 by the posture adjustment. Become.

このような姿勢調整によって、図5(b)に示すように、外側開口部20bでは、被検レンズ5の保持姿勢の誤差が許容値以下に低減された干渉縞31Bが得られる。
その後、位置調整機構11により、保持機構2を介して、光軸方向および光軸に垂直な面内での被検レンズ5の位置調整を行い、図5(c)に示すように、中心開口部20aの内周側の干渉縞30Cをほぼ0本の状態(ヌル状態)にする。このときに外側開口部20bで得られる干渉縞を干渉縞31Cとする。
この干渉縞30Cの画像に基づいて、被検レンズ5の波面収差測定を行う。すなわち、撮像素子10によって撮像された干渉縞30Cが、コンピュータ本体12aに送出され、周知の波面形状測定処理が行われる。これにより、被検レンズ5の波面収差が測定される。
このとき、コンピュータ本体12aには、干渉縞30Cと、干渉縞30Cから分離された干渉縞31Cとの画像が送出されており、それぞれを表示モニタ12bに表示できるようになっている。
これにより、例えば、何らかの外乱によって、保持機構2の姿勢が変化した場合、測定者あるいはコンピュータ本体12bは、干渉縞31Cの画像の変化から、姿勢の変化を検知し、必要に応じて、手動または自動で姿勢調整を行うことができる。そのため、常に適切な姿勢に被検レンズ5を保持して測定を行うことができる。
By such an attitude adjustment, as shown in FIG. 5B, an interference fringe 31B in which the error in the holding attitude of the lens 5 to be tested is reduced to an allowable value or less is obtained at the outer opening 20b.
Thereafter, the position adjustment mechanism 11 adjusts the position of the lens 5 to be measured in the optical axis direction and in the plane perpendicular to the optical axis via the holding mechanism 2, and as shown in FIG. The interference fringes 30C on the inner peripheral side of the portion 20a are set to almost zero state (null state). At this time, an interference fringe obtained at the outer opening 20b is referred to as an interference fringe 31C.
Based on the image of the interference fringe 30C, the wavefront aberration of the lens 5 to be measured is measured. That is, the interference fringes 30C imaged by the image sensor 10 are sent to the computer main body 12a, and a known wavefront shape measurement process is performed. Thereby, the wavefront aberration of the test lens 5 is measured.
At this time, images of the interference fringes 30C and the interference fringes 31C separated from the interference fringes 30C are sent to the computer main body 12a and can be displayed on the display monitor 12b.
Thereby, for example, when the posture of the holding mechanism 2 changes due to some disturbance, the measurer or the computer main body 12b detects the change in posture from the change in the image of the interference fringe 31C, and manually or as necessary. Posture adjustment can be performed automatically. Therefore, it is possible to perform measurement while holding the lens 5 in an appropriate posture at all times.

このように本実施形態の保持機構2によれば、被検レンズ保持部20Aの径方向外側に、外側開口部20bを設け、外側開口部20bの近傍の姿勢検知板保持部20Bに姿勢検知板21を保持することで、被検レンズ5を被検レンズ保持部20Aに保持した状態であっても、被検レンズ保持部20Aの姿勢を検知することができる。
これにより、測定中であっても、常に、被検レンズ5の姿勢を検知することができるため、高精度な波面収差測定を行うことが可能となる。
また、例えば、従来技術のように被検レンズ5に代えて姿勢測定用の治具を配置して被検レンズ5の測定とは別に被検レンズ保持部20Aの姿勢調整を行う場合に比べて、姿勢調整から波面収差測定への段取り替えなどが不要となり、効率的な測定を行うことができる。
また、本実施形態では、被検レンズ5のフランジ部5cを姿勢調整に用いないため、被検レンズ保持部20Aで保持可能な範囲でフランジ部5cを小形化することができ、このような小形の被検レンズ5であっても、容易かつ高精度に姿勢調整を行うことができる。また、被検レンズ5のフランジ部5cの形状に左右されない汎用的な測定を行うことができる。
As described above, according to the holding mechanism 2 of the present embodiment, the outer opening 20b is provided on the outer side in the radial direction of the lens holding portion 20A, and the posture detection plate is provided on the posture detection plate holding portion 20B in the vicinity of the outer opening 20b. By holding 21, it is possible to detect the posture of the test lens holding portion 20A even when the test lens 5 is held by the test lens holding portion 20A.
Thereby, even during measurement, the posture of the lens 5 to be detected can always be detected, so that highly accurate wavefront aberration measurement can be performed.
Further, for example, as compared with the case where the posture adjustment of the test lens holding portion 20A is performed separately from the measurement of the test lens 5 by arranging a posture measuring jig instead of the test lens 5 as in the prior art. This eliminates the need for changeover from posture adjustment to wavefront aberration measurement, and enables efficient measurement.
Further, in the present embodiment, since the flange portion 5c of the test lens 5 is not used for posture adjustment, the flange portion 5c can be miniaturized within a range that can be held by the test lens holding portion 20A. Even the lens 5 to be tested can be adjusted in posture easily and with high accuracy. Further, general-purpose measurement that is not affected by the shape of the flange portion 5c of the lens 5 to be tested can be performed.

次に、本実施形態の第1変形例について説明する。
図6は、本発明の第1の実施形態の第1変形例に係る保持機構の概略構成を示す模式的な部分平面図である。
Next, a first modification of the present embodiment will be described.
FIG. 6 is a schematic partial plan view showing a schematic configuration of a holding mechanism according to a first modification of the first embodiment of the present invention.

本変形例の保持機構2A(光学素子保持機構)は、上記第1の実施形態の保持機構2の姿勢検知板21に代えて形状と大きさが異なる姿勢検知板22を備えたものである。以下、上記第1の実施形態および第1変形例と異なる点を中心に説明する。   A holding mechanism 2A (optical element holding mechanism) according to this modification includes a posture detecting plate 22 having a shape and a size different from the posture detecting plate 21 of the holding mechanism 2 according to the first embodiment. Hereinafter, differences from the first embodiment and the first modification will be mainly described.

姿勢検知板22は、図6に示すように、保持部材20の各外側開口部20bを覆うリング状部材である。姿勢検知板22の孔部22cの内径は、被検レンズ5のフランジ部5cの外径よりも大きく、姿勢検知板22の外周部22dの外径は、保持部材20の側壁20fの内径より小さい設定とされる。
また、図6におけるC−C断面は、図4と同様の断面となる。すなわち、厚さ方向には、検知面22a(検知平面)、裏面22bを備え、保持面20c上に、検知面22aが密着して保持されている。
姿勢検知板22の材質は、上記第1の実施形態の姿勢検知板21と同様の材質を採用することができる。また、検知面22a、裏面22bは、それぞれ、外形状が環状である点を除いて、上記第1の実施形態における検知面21a、裏面21bと同様に形成された平面からなる。
The posture detection plate 22 is a ring-shaped member that covers each outer opening 20b of the holding member 20, as shown in FIG. The inner diameter of the hole 22c of the posture detection plate 22 is larger than the outer diameter of the flange portion 5c of the lens 5 to be tested, and the outer diameter of the outer peripheral portion 22d of the posture detection plate 22 is smaller than the inner diameter of the side wall 20f of the holding member 20. It is set.
Moreover, the CC cross section in FIG. 6 becomes a cross section similar to FIG. That is, in the thickness direction, a detection surface 22a (detection plane) and a back surface 22b are provided, and the detection surface 22a is held in close contact with the holding surface 20c.
The material of the posture detection plate 22 can be the same material as the posture detection plate 21 of the first embodiment. Moreover, the detection surface 22a and the back surface 22b are each formed of a plane formed in the same manner as the detection surface 21a and the back surface 21b in the first embodiment, except that the outer shape is annular.

本変形例によれば、姿勢検知板22が環状部材からなるため、各外側開口部20bを1部品で覆うことができ、部品点数を削減することができる。また、保持部材20に対する姿勢検知板22の配置、組み付け、交換などが容易となる。   According to this modification, since the posture detection plate 22 is made of an annular member, each outer opening 20b can be covered with one component, and the number of components can be reduced. In addition, the posture detection plate 22 can be easily arranged, assembled, and exchanged with respect to the holding member 20.

次に、本実施形態の第2変形例について説明する。
図7は、本発明の第1の実施形態の第2変形例に係る保持機構の概略構成を示す模式的な部分平面図である。
Next, a second modification of the present embodiment will be described.
FIG. 7 is a schematic partial plan view showing a schematic configuration of a holding mechanism according to a second modification of the first embodiment of the present invention.

本変形例の保持機構2B(光学素子保持機構)は、上記第1の実施形態の保持機構2の保持部材20および姿勢検知板21に代えて、それぞれ、形状または大きさが異なる保持部材23および上記第1変形例の姿勢検知板22を備えたものである。
保持部材23は、図7に示すように、上記第1の実施形態の保持部材20の4つの外側開口部20bに代えて、3つの外側開口部23bを備えるものである。以下、上記第1の実施形態および第1変形例と異なる点を中心に説明する。
The holding mechanism 2B (optical element holding mechanism) of the present modified example is different from the holding member 20 and the posture detection plate 21 of the holding mechanism 2 of the first embodiment, and holding members 23 and 23 having different shapes or sizes, respectively. The posture detection plate 22 of the first modified example is provided.
As shown in FIG. 7, the holding member 23 includes three outer openings 23 b instead of the four outer openings 20 b of the holding member 20 of the first embodiment. Hereinafter, differences from the first embodiment and the first modification will be mainly described.

外側開口部23bは、中心開口部20aの径方向外側において、中心開口部20aの同心円の周方向に沿って、周方向を略3分割するように延ばされた円弧状孔が、保持面20cから表面20dまで厚さ方向に貫通されて形成されたものである。
そして、姿勢検知板22は、各外側開口部23bを保持面20c上で覆うように保持される。
また、図7におけるD−D断面は、図4に示されるような断面となる。
The outer opening 23b has an arcuate hole extending so as to divide the circumferential direction into approximately three along the circumferential direction of the concentric circle of the central opening 20a on the radially outer side of the central opening 20a. To the surface 20d in the thickness direction.
And the attitude | position detection board 22 is hold | maintained so that each outer side opening part 23b may be covered on the holding surface 20c.
Moreover, the DD cross section in FIG. 7 becomes a cross section as shown in FIG.

本変形例によれば、保持部材23が、円弧状の貫通孔である外側開口部23bを備えるので、上記第1の実施形態に比べて、検知面22aの反射光Lによる干渉縞画像を周方向に沿ってより広い範囲で観測することができるため、姿勢調整が容易となり、より高精度に調整することが可能となる。 According to this modification, the holding member 23, since an outer opening 23b is an arc-shaped through-holes, as compared with the first embodiment, the interference fringe image by the reflected light L 1 of the sensing surface 22a Since observation can be performed in a wider range along the circumferential direction, posture adjustment is facilitated, and adjustment can be performed with higher accuracy.

次に、本実施形態の第3変形例について説明する。
図8は、本発明の第1の実施形態の第3変形例に係る保持部材の概略構成を示す模式的な斜視図である。図9は、本発明の第1の実施形態の第3変形例に係る保持機構の概略構成を示す模式的な部分平面図である。図10は、図9におけるE−E断面図である。
Next, a third modification of the present embodiment will be described.
FIG. 8 is a schematic perspective view showing a schematic configuration of a holding member according to a third modification of the first embodiment of the present invention. FIG. 9 is a schematic partial plan view showing a schematic configuration of a holding mechanism according to a third modification of the first embodiment of the present invention. 10 is a cross-sectional view taken along line EE in FIG.

本変形例の保持機構2C(光学素子保持機構)は、上記第1の実施形態の保持機構2の保持部材20および姿勢検知板21に代えて、それぞれ、形状または大きさが異なる保持部材24および上記第1変形例の姿勢検知板22を備えたものである。   A holding mechanism 2C (optical element holding mechanism) of the present modified example is different from the holding member 20 and the posture detection plate 21 of the holding mechanism 2 of the first embodiment, and holding members 24 and The posture detection plate 22 of the first modified example is provided.

保持部材24は、図8に示すように、上記第1の実施形態の保持部材20の4つの外側開口部20bを、周方向の等分に配置された3つの外側開口部20bに代え、それぞれの外側開口部20bを含む領域に、保持面20cから表面20d側へ陥没した凹部24eを設けたものである(図10参照)。以下、上記第1の実施形態および第1変形例と異なる点を中心に説明する。   As shown in FIG. 8, the holding member 24 replaces the four outer openings 20b of the holding member 20 of the first embodiment with three outer openings 20b arranged equally in the circumferential direction, respectively. A recess 24e that is recessed from the holding surface 20c toward the surface 20d is provided in a region including the outer opening 20b (see FIG. 10). Hereinafter, differences from the first embodiment and the first modification will be mainly described.

本変形例の3つの凹部24eは、平面視では、図9に示すように、中心開口部20aの円周を略3等分する円弧から径方向外側に張り出された半円より大きい円弧状に設けられる。このため、本変形例では、被検レンズ5の受け面5dを保持する被検レンズ保持部20Aは、保持面20cが3つの凹部24eによって切り欠かれることで中心開口部20aの径方向外側から径方向内側に向かってすぼまる凸状に形成された3箇所の領域によって構成されている。
また、姿勢検知板22の検知面22aを保持する姿勢検知板保持部24Bも、保持面20cが3つの凹部24eによって切り欠かれることで外側開口部20bが整列する同心円方向に沿って略3分割された3箇所の平面領域によって構成されている。
As shown in FIG. 9, the three recesses 24 e of this modification have an arc shape larger than a semicircle projecting radially outward from an arc that divides the circumference of the center opening 20 a into approximately three equal parts, as shown in FIG. 9. Provided. For this reason, in this modification, the test lens holding portion 20A that holds the receiving surface 5d of the test lens 5 is separated from the outer side in the radial direction of the central opening 20a by the holding surface 20c being cut out by the three concave portions 24e. It is composed of three regions formed in a convex shape that sag inward in the radial direction.
Further, the posture detection plate holding portion 24B that holds the detection surface 22a of the posture detection plate 22 is also substantially divided into three along the concentric direction in which the outer opening 20b is aligned by the holding surface 20c being cut out by the three concave portions 24e. It is constituted by three plane areas.

本変形例によれば、保持部材24の凹部24eによって、被検レンズ保持部24A、姿勢検知板保持部24Bが、それぞれ、周方向に離間した複数箇所に分かれて形成されるため、保持面20cが周方向に連続する場合に比べて、被検レンズ保持部24A、姿勢検知板保持部24Bの面積が低減され、保持面20cの平面度やゴミの影響をより受けにくくなる。したがって、被検レンズ5の受け面5d、姿勢検知板22の検知面22aの被検レンズ保持部24A、姿勢検知板保持部24Bに対する当たり方のバラツキを低減でき、より高精度に保持することができる。
また、凹部24eは、保持面20cを除去加工、研磨加工などによって加工する際には、加工逃げ穴となり加工面積も低減されるため、このような加工逃げ穴がない場合に比べて、高精度の加工を容易に行うことができる。
According to the present modified example, the lens holding portion 24A and the posture detection plate holding portion 24B are formed by being divided into a plurality of locations separated in the circumferential direction by the concave portion 24e of the holding member 24, and therefore the holding surface 20c. Compared to the case where the lens is continuous in the circumferential direction, the areas of the lens holding unit 24A and the posture detection plate holding unit 24B are reduced, and the flatness of the holding surface 20c and dust are less affected. Therefore, the variation in how the receiving surface 5d of the lens 5 to be tested and the detection surface 22a of the posture detection plate 22 are in contact with the lens holding portion 24A and the posture detection plate holding portion 24B can be reduced and held with higher accuracy. it can.
In addition, the recess 24e becomes a machining clearance hole when the holding surface 20c is processed by removal processing, polishing processing, or the like, so that the processing area is reduced. Therefore, the recess 24e has a higher accuracy than the case without such a processing clearance hole. Can be easily performed.

次に、本実施形態の第4変形例について説明する。
図11は、本発明の第1の実施形態の第4変形例に係る保持機構の概略構成を示す模式的な部分平面図である。
Next, a fourth modification of the present embodiment will be described.
FIG. 11 is a schematic partial plan view showing a schematic configuration of a holding mechanism according to a fourth modification of the first embodiment of the present invention.

本変形例の保持機構2D(光学素子保持機構)は、上記第1の実施形態の保持機構2の保持部材20および姿勢検知板21に代えて、それぞれ、形状または大きさが異なる保持部材40および上記第1変形例の姿勢検知板22を備えたものである。   A holding mechanism 2D (optical element holding mechanism) of the present modified example is different from the holding member 20 and the posture detection plate 21 of the holding mechanism 2 of the first embodiment, and holding members 40 and The posture detection plate 22 of the first modified example is provided.

保持部材40は、図11に示すように、上記第1の実施形態の保持部材20の中心開口部20a、外側開口部20bを、放射状開口部41に代えたものである。以下、上記第1の実施形態および第1変形例と異なる点を中心に説明する。   As shown in FIG. 11, the holding member 40 is obtained by replacing the central opening 20 a and the outer opening 20 b of the holding member 20 of the first embodiment with radial openings 41. Hereinafter, differences from the first embodiment and the first modification will be mainly described.

放射状開口部41は、保持面20cから表面20d側に貫通された平面視、三方に延びる放射状の貫通孔からなる。すなわち、中心部に中心開口部20aと同一径を有する3つの中心内周面41aが、同心円状に配置され、中心内周面41aの周方向の端部から、径方向外側に向かって、姿勢検知板22の外周部22dの近傍まで張り出された半円より大きい円弧状の外側孔部41bが設けられて、放射状開口部41が形成されている。
このため、被検レンズ5の受け面5dを保持する被検レンズ保持部20Aは、保持面20cが3つの外側孔部41bによって切り欠かれ、中心内周面41aの径方向外側から径方向内側に向かってすぼまる凸状に形成された3箇所の領域によって構成されている。
また、姿勢検知板22の検知面22aを保持する姿勢検知板保持部20Bは、保持面20cが、3つの外側孔部41bによって切り欠かれ、各外側孔部41bの隣接方向に、略3分割された3箇所の平面領域によって構成されている。
The radial opening 41 includes radial through-holes extending in three directions in a plan view penetrating from the holding surface 20c toward the surface 20d. That is, the three central inner peripheral surfaces 41a having the same diameter as the central opening 20a are arranged concentrically at the center, and the posture is directed radially outward from the circumferential end of the central inner peripheral surface 41a. An arcuate outer hole 41b larger than a semicircle projecting to the vicinity of the outer peripheral portion 22d of the detection plate 22 is provided, and a radial opening 41 is formed.
For this reason, the test lens holding portion 20A that holds the receiving surface 5d of the test lens 5 has the holding surface 20c cut out by the three outer hole portions 41b, and the radially inner side from the radially outer side of the central inner peripheral surface 41a. It is comprised by the area | region of 3 places formed in the convex shape which sags toward.
Further, the posture detection plate holding portion 20B that holds the detection surface 22a of the posture detection plate 22 has a holding surface 20c cut out by three outer hole portions 41b, and approximately divided into three adjacent directions of the outer hole portions 41b. It is constituted by three plane areas.

本変形例は、被検レンズ5に対する測定光を透過する開口部と、外側開口部とが、一体化された場合の例であり、中心内周面41aの内側が開口部となっており、外側孔部41bと姿勢検知板22とが重なる範囲が、外側開口部となっている。
この場合、表示モニタ12b上に出力する干渉縞画像は、見易さのため、中心内周面41aの内側と、姿勢検知板22に覆われた外側孔部41bの領域のみを切り出し、それらの間の画像をマスクして、干渉縞30A(30B)、干渉縞31A(31B)のみを表示することが好ましい。
This modification is an example in which an opening that transmits measurement light to the lens 5 to be examined and an outer opening are integrated, and the inner side of the center inner peripheral surface 41a is an opening. A range where the outer hole 41b and the posture detection plate 22 overlap is an outer opening.
In this case, the interference fringe image output on the display monitor 12b is cut out only for the inside of the center inner peripheral surface 41a and the region of the outer hole 41b covered by the posture detection plate 22 for easy viewing. It is preferable to display only the interference fringes 30A (30B) and the interference fringes 31A (31B) by masking the images between them.

[第2の実施形態]
本発明の第2の実施形態に係る光学素子保持機構について説明する。
図12は、本発明の第2の実施形態に係る光学素子保持機構の概略構成を示す模式的な部分平面図である。図13は、図12におけるF−F断面図である。
[Second Embodiment]
An optical element holding mechanism according to the second embodiment of the present invention will be described.
FIG. 12 is a schematic partial plan view showing a schematic configuration of the optical element holding mechanism according to the second embodiment of the present invention. 13 is a cross-sectional view taken along line FF in FIG.

本実施形態の保持機構2E(光学素子保持機構)は、上記第1の実施形態の保持部材20と、第1の実施形態とは異なる姿勢検知板25とを備える。以下、上記第1の実施形態と異なる点を中心に説明する。
姿勢検知板25は、図12、13に示すように、保持部材20の各外側開口部20bを覆う環状部材である。姿勢検知板25の孔部25c(環状の内周部)の内径は、被検レンズ5のフランジ部5cを外嵌する径寸法とされる。また、姿勢検知板25の外周部25dの外径は、保持部材20の側壁20fに内嵌される径寸法とされる。
The holding mechanism 2E (optical element holding mechanism) of the present embodiment includes the holding member 20 of the first embodiment and a posture detection plate 25 that is different from the first embodiment. Hereinafter, a description will be given centering on differences from the first embodiment.
As shown in FIGS. 12 and 13, the attitude detection plate 25 is an annular member that covers each outer opening 20 b of the holding member 20. The inner diameter of the hole 25c (annular inner peripheral portion) of the posture detection plate 25 is set to a diameter dimension for fitting the flange portion 5c of the lens 5 to be tested. In addition, the outer diameter of the outer peripheral portion 25 d of the posture detection plate 25 is a diameter dimension that is fitted into the side wall 20 f of the holding member 20.

また厚さ方向には、図13に示すように、互いに平行に対向する検知面25a(検知平面)、裏面25bを備え、保持面20c上に、検知面25aが密着して保持されている。このため、本実施形態では、保持面20cは、検知面25aと密着される部分が姿勢検知板保持部20Bとなり、それ以外の部分が、すべて被検レンズ保持部20Aとなっている。
姿勢検知板25の材質は、上記第1の実施形態の姿勢検知板21と同様の材質を採用することができる。また、検知面25a、裏面25bは、それぞれ、外形状が環状である点を除いて、上記第1の実施形態における検知面21a、裏面21bと同様に形成された平面からなる。
したがって、保持機構2Eを、上記第1の実施形態の保持機構2に代えて、波面収差測定装置100に備えることにより、上記第1の実施形態と同様に、被検レンズ5を保持して、測定中であっても、常に被検レンズ5の姿勢を検知することができるため、高精度な波面収差測定を行うことが可能となる。
In the thickness direction, as shown in FIG. 13, a detection surface 25a (detection plane) and a back surface 25b that face each other in parallel are provided, and the detection surface 25a is held in close contact with the holding surface 20c. For this reason, in this embodiment, the holding surface 20c is the posture detection plate holding portion 20B where the portion that is in close contact with the detection surface 25a, and the other portions are all the lens holding portion 20A.
As the material of the posture detection plate 25, the same material as that of the posture detection plate 21 of the first embodiment can be adopted. In addition, the detection surface 25a and the back surface 25b are each formed of a plane formed in the same manner as the detection surface 21a and the back surface 21b in the first embodiment, except that the outer shape is annular.
Therefore, by replacing the holding mechanism 2E with the wavefront aberration measuring apparatus 100 instead of the holding mechanism 2 of the first embodiment, the lens 5 to be measured is held as in the first embodiment, Even during measurement, the posture of the lens 5 to be detected can always be detected, so that it is possible to perform highly accurate wavefront aberration measurement.

また、本実施形態の保持機構2Eによれば、姿勢検知板25が、保持部材20の側壁20fに内嵌した状態で、保持面20cに密着されて径方向に位置決めされる。
そして、姿勢検知板25の孔部25cによって、被検レンズ5のフランジ部5cが外嵌されるため、姿勢検知板25は、被検レンズ5の径方向の位置決め部材を兼ねている。したがって、被検レンズ5の位置決め部材を省略することができ、簡素な構成とすることができる。
Further, according to the holding mechanism 2E of the present embodiment, the posture detection plate 25 is closely attached to the holding surface 20c and positioned in the radial direction in a state of being fitted inside the side wall 20f of the holding member 20.
Since the flange portion 5c of the test lens 5 is fitted by the hole 25c of the posture detection plate 25, the posture detection plate 25 also serves as a positioning member in the radial direction of the test lens 5. Therefore, the positioning member for the lens 5 to be examined can be omitted, and the configuration can be simplified.

次に、本実施形態の変形例について説明する。
図14は、本発明の第2の実施形態の変形例に係る保持機構の概略構成を示す模式的な部分断面図である。
Next, a modification of this embodiment will be described.
FIG. 14 is a schematic partial cross-sectional view showing a schematic configuration of a holding mechanism according to a modification of the second embodiment of the present invention.

本変形例の保持機構2F(光学素子保持機構)は、上記第2の実施形態の保持機構2Eの姿勢検知板25に代えて形状が異なる姿勢検知板25Aを備えたものである。以下、上記第2の実施形態と異なる点を中心に説明する。   A holding mechanism 2F (optical element holding mechanism) according to the present modification includes a posture detection plate 25A having a different shape instead of the posture detection plate 25 of the holding mechanism 2E of the second embodiment. Hereinafter, a description will be given focusing on differences from the second embodiment.

姿勢検知板25Aは、姿勢検知板25の裏面25bに代えて、検知面25aに対して、非平行となるように傾斜した傾斜面25fを備えるものである。本変形例は、姿勢検知板25Aの材質として、ガラス板など、光透過性を有する材質を用いる場合に、特に好適となる。   The posture detection plate 25A includes an inclined surface 25f that is inclined so as to be non-parallel to the detection surface 25a, instead of the back surface 25b of the posture detection plate 25. This modification is particularly suitable when a material having optical transparency such as a glass plate is used as the material of the posture detection plate 25A.

姿勢検知板25Aによれば、外側開口部20bからの入射光が、検知面25aを透過した場合に、傾斜面25fで入射方向と異なる方向に反射されるため、反射光Lに混じって光路差が異なる光が観測されないようにすることができる。
したがって、姿勢検知板25Aとして、ガラス板などを用いても外側開口部20bの領域で、良好な干渉縞画像を観測することができ、良好な姿勢調整を行うことができる。
また、姿勢検知板25Aを保持面20cに保持させる場合、間違うことなく、確実に、検知面25aを保持面20cに密着させて保持させることができる。
According to the posture detection plate 25A, the incident light from the outer opening 20b is, when passing through the detection surface 25a, to be reflected in a direction different from the incident direction by the inclined surface 25f, the optical path mixed in reflected light L 1 It is possible to prevent light having different differences from being observed.
Therefore, even if a glass plate or the like is used as the posture detection plate 25A, a good interference fringe image can be observed in the region of the outer opening 20b, and good posture adjustment can be performed.
Further, when the posture detection plate 25A is held on the holding surface 20c, the detection surface 25a can be securely held in close contact with the holding surface 20c without making a mistake.

なお、上記の説明では、外側開口部20bが、4箇所、または3箇所に設けられている場合の例で説明したが、外部開口部20bの個数は必要に応じていくつ設けてもよい。
例えば、第1の実施形態の第2変形例(図7)において隣り合う2つの外側開口部23b、23bを連続させて1つの長尺な外側開口部にするとともに、残りの外側開口部23bを形成しない(即ち、埋めた状態とする)ようにしてもよい。
In the above description, the example in which the outer openings 20b are provided at four places or three places has been described, but any number of the outer openings 20b may be provided as necessary.
For example, in the second modified example (FIG. 7) of the first embodiment, two adjacent outer openings 23b, 23b are made continuous to form one elongated outer opening, and the remaining outer openings 23b are replaced with each other. You may make it not form (namely, it is set as the filled state).

また、上記の説明では、姿勢検知板として、円板状、環状の例で説明したが、姿勢検知板は、外側開口部の形状に応じて適宜形状に設けることができる。例えば、上記第1の実施形態の第2変形例では、姿勢検知板として、外側開口部23bを覆う円弧状のもの3個用いてもよい。   In the above description, the posture detection plate is described as an example of a disk shape or an annular shape. However, the posture detection plate can be provided in a suitable shape according to the shape of the outer opening. For example, in the second modified example of the first embodiment, three arc-shaped members that cover the outer opening 23b may be used as the posture detection plate.

また、上記の説明では、被検体保持部と姿勢検知板保持部とが、同一平面からなる場合の例で説明したが、被検体保持部と姿勢検知板保持部とは、平行度の加工精度が略同一加工と見なせる程度に出ていれば、加工工程が異なって形成される、同一平面に整列している別々の平面あるいは突起部であってもよい。   Further, in the above description, the example in which the subject holding unit and the posture detection plate holding unit are on the same plane has been described. However, the subject holding unit and the posture detection plate holding unit have a parallelism processing accuracy. May be separate planes or protrusions aligned in the same plane, which are formed with different machining steps.

また、上記の説明では、光学素子測定装置は、一例として、波面収差測定装置の場合の例で説明したが、被検体として光学素子を保持して測定を行う光学素子測定装置であれば、いかなる測定を行う装置であってもよい。例えば、透過型および反射型の干渉計や焦点距離測定装置などを挙げることができる。
また、光学素子測定装置の種類によっては、姿勢調整を行う光源部の他に、測定光を発生させる光源を備えた構成としてもよい。
また、光学素子測定装置の被検体である光学素子はレンズには限定されない。例えば、曲面や平面を有する反射鏡や、プリズム、フィルタなどの光学素子を挙げることができる。
In the above description, the optical element measuring apparatus has been described as an example of the wavefront aberration measuring apparatus. However, any optical element measuring apparatus that performs measurement while holding an optical element as a subject may be used. It may be a device that performs measurement. For example, transmissive and reflective interferometers and focal length measuring devices can be used.
Further, depending on the type of the optical element measuring apparatus, a light source that generates measurement light may be provided in addition to the light source unit that performs posture adjustment.
Moreover, the optical element which is a subject of the optical element measuring apparatus is not limited to a lens. For example, optical elements such as a reflecting mirror having a curved surface or a plane, a prism, and a filter can be used.

また、上記の説明では、検知平面および参照平面にそれぞれ照射する平行光を照射する光源部が、測定光を発生する光源を兼ねる場合の例で説明したが、測定光を発生する光源は、光源部と別に設けてもよい。   In the above description, the light source unit that irradiates the parallel light that irradiates each of the detection plane and the reference plane is described as an example in which the light source that generates the measurement light also serves as the light source that generates the measurement light. You may provide separately from a part.

また、上記の各実施形態、各変形例で説明した構成要素は、本発明の技術的思想の範囲で適宜組み合わせて実施することができる。
例えば、第2の実施形態の変形例のように、姿勢検知板の検知面に対して裏面を傾斜させた構成は、第1の実施形態のいずれの姿勢検知板とも組み合わせることができる。
In addition, the constituent elements described in the above embodiments and modifications can be implemented in appropriate combination within the scope of the technical idea of the present invention.
For example, the configuration in which the back surface is inclined with respect to the detection surface of the posture detection plate as in the modification of the second embodiment can be combined with any posture detection plate of the first embodiment.

本発明の第1の実施形態に係る光学素子測定装置の概略構成を示す模式構成図である。It is a schematic block diagram which shows schematic structure of the optical element measuring device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光学素子測定装置の被検体の形状の一例を示す模式的な平面図およびそのA視の裏面図であるFIG. 2 is a schematic plan view showing an example of the shape of a subject of the optical element measuring apparatus according to the first embodiment of the present invention, and a back view of the A view thereof. 本発明の第1の実施形態に係る光学素子保持機構の概略構成を示す模式的な斜視図である。It is a typical perspective view which shows schematic structure of the optical element holding | maintenance mechanism which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る光学素子保持機構に被検体を保持した場合の、図3のB−B断面に相当する断面図である。FIG. 5 is a cross-sectional view corresponding to a cross section taken along line BB in FIG. 3 when a subject is held by the optical element holding mechanism according to the first embodiment of the present invention. 姿勢調整前および姿勢調整後の干渉縞画像の一例を示す模式図である。It is a schematic diagram which shows an example of the interference fringe image before attitude | position adjustment and after attitude | position adjustment. 本発明の第1の実施形態の第1変形例に係る保持機構の概略構成を示す模式的な部分平面図である。It is a typical fragmentary top view which shows schematic structure of the holding mechanism which concerns on the 1st modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の第2変形例に係る保持機構の概略構成を示す模式的な部分平面図である。It is a typical fragmentary top view which shows schematic structure of the holding mechanism which concerns on the 2nd modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の第3変形例に係る保持部材の概略構成を示す模式的な斜視図である。It is a typical perspective view showing a schematic structure of a holding member concerning the 3rd modification of a 1st embodiment of the present invention. 本発明の第1の実施形態の第3変形例に係る保持機構の概略構成を示す模式的な部分平面図である。It is a typical fragmentary top view which shows schematic structure of the holding mechanism which concerns on the 3rd modification of the 1st Embodiment of this invention. 図9におけるE−E断面図である。It is EE sectional drawing in FIG. 本発明の第1の実施形態の第4変形例に係る保持機構の概略構成を示す模式的な部分平面図である。It is a typical fragmentary top view which shows schematic structure of the holding mechanism which concerns on the 4th modification of the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光学素子保持機構の概略構成を示す模式的な部分平面図である。It is a typical fragmentary top view which shows schematic structure of the optical element holding | maintenance mechanism which concerns on the 2nd Embodiment of this invention. 図12におけるF−F断面図である。It is FF sectional drawing in FIG. 本発明の第2の実施形態の変形例に係る保持機構の概略構成を示す模式的な部分断面図である。It is a typical fragmentary sectional view showing a schematic structure of a maintenance mechanism concerning a modification of a 2nd embodiment of the present invention.

符号の説明Explanation of symbols

2、2A、2B、2C、2D、2E、2F 保持機構(光学素子保持機構)
3 ハーフミラー(干渉縞観測部)
4 光源部
5 被検レンズ(被検体、光学素子)
5c フランジ部
5d 受け面
7 反射ミラー
7a 参照面
8 参照平板
8a 参照平面
9 結像レンズ(干渉縞観測部)
10 撮像素子(干渉縞観測部)
11 位置調整機構
12 コンピュータ(干渉縞観測部)
20、23、40 保持部材
20A 被検レンズ保持部(被検体保持部)
20B 姿勢検知板保持部
20a 中心開口部(開口部)
20b、23b 外側開口部
20c 保持面
20f 側壁
21、22、25、25A 姿勢検知板
21a、22a、25a 検知面(検知平面)
21b、22b、25b 裏面
22d、25d 外周部
24e 凹部
25c 孔部(環状の内周部)
25f 傾斜面
30B、31B、30C、31C 干渉縞
41 放射状開口部
41a 中心内周面(開口部)
41b 外側孔部(外側開口部)
100 波面収差測定装置
L 平行光(測定光)
、L 反射光
2, 2A, 2B, 2C, 2D, 2E, 2F Holding mechanism (optical element holding mechanism)
3 Half mirror (interference fringe observation part)
4 Light source section 5 Test lens (test object, optical element)
5c Flange 5d Receiving surface 7 Reflecting mirror 7a Reference surface 8 Reference flat plate 8a Reference plane 9 Imaging lens (interference fringe observation unit)
10 Image sensor (interference fringe observation part)
11 Position adjustment mechanism 12 Computer (interference fringe observation part)
20, 23, 40 Holding member 20A Test lens holding part (subject holding part)
20B Posture detection plate holder 20a Center opening (opening)
20b, 23b Outer opening 20c Holding surface 20f Side walls 21, 22, 25, 25A Attitude detection plates 21a, 22a, 25a Detection surface (detection plane)
21b, 22b, 25b Back surface 22d, 25d Outer peripheral part 24e Recessed part 25c Hole (annular inner peripheral part)
25f Inclined surface 30B, 31B, 30C, 31C Interference fringe 41 Radial opening 41a Center inner peripheral surface (opening)
41b Outer hole (outer opening)
100 Wavefront aberration measuring apparatus L Parallel light (measurement light)
L 0 , L 1 reflected light

Claims (8)

被検体である光学素子に対する測定光を透過する開口部と、該開口部の周囲に設けられ、前記被検体の外周部を保持して光軸方向に位置決めする被検体保持部とを有する光学素子保持機構であって、
前記被検体保持部の径方向外側に該被検体保持部と同一平面に整列して設けられた姿勢検知板保持部と、
前記被検体保持部の径方向外側の該被検体保持部の周囲に設けられ、前記姿勢検知板保持部に対して前記測定光の入射方向側に貫通する外側開口部と、
光反射性を有する干渉縞測定可能な検知平面を有し、該検知平面が、前記姿勢検知板保持部上に、前記外側開口部を覆うように配置された姿勢検知板とを備えることを特徴とする光学素子保持機構。
An optical element having an opening that transmits measurement light to an optical element that is a subject, and a subject holding portion that is provided around the opening and holds the outer periphery of the subject and positions the subject in the optical axis direction. A holding mechanism,
A posture detection plate holding portion provided on the outer side in the radial direction of the subject holding portion and arranged in the same plane as the subject holding portion;
An outer opening provided around the subject holding portion on the radially outer side of the subject holding portion and penetrating in the incident direction side of the measurement light with respect to the posture detection plate holding portion;
It has a detection plane capable of measuring interference fringes having light reflectivity, and the detection plane includes a posture detection plate disposed on the posture detection plate holding portion so as to cover the outer opening. An optical element holding mechanism.
前記姿勢検知板は、環状に形成され、環状の内周部で、前記光学素子を外嵌できるようにしたことを特徴とする請求項1に記載の光学素子保持機構。   The optical element holding mechanism according to claim 1, wherein the posture detection plate is formed in an annular shape, and the optical element can be fitted on an annular inner peripheral portion. 前記被検体保持部は、前記光学素子を保持する平面が、凹部を挟んだ状態で前記光学素子の周方向に配置されたことを特徴とする請求項1または2に記載の光学素子保持機構。   3. The optical element holding mechanism according to claim 1, wherein the object holding portion is arranged in a circumferential direction of the optical element with a plane holding the optical element sandwiching a concave portion. 4. 前記姿勢検知板は、光透過性を有し、前記検知平面に対向する裏面が光拡散性を有することを特徴とする請求項1〜3のいずれかに記載の光学素子保持機構。   The optical element holding mechanism according to any one of claims 1 to 3, wherein the posture detection plate has light permeability, and a back surface facing the detection plane has light diffusibility. 前記姿勢検知板は、光透過性を有し、前記検知平面に対向する裏面が前記検知平面に対して傾斜されていることを特徴とする請求項1〜3のいずれかに記載の光学素子保持機構。   The optical element holding device according to any one of claims 1 to 3, wherein the posture detection plate is light transmissive, and a back surface facing the detection plane is inclined with respect to the detection plane. mechanism. 被検体である光学素子に対して測定光を照射して、該測定光によって、前記光学素子の測定を行う光学素子測定装置であって、
請求項1〜5のいずれかに記載の光学素子保持機構と、
前記光学素子保持機構の前記姿勢検知板保持部に保持された前記姿勢検知板の前記検知平面の傾斜を検出するための参照平面と、
前記光学素子保持機構の前記検知平面および前記参照平面に平行光を照射する光源部と、
該光源部から前記検知平面および前記参照平面に照射された前記平行光のそれぞれの反射光を干渉させて得られる干渉縞によって、前記参照平面に対する前記姿勢検知板の検知平面の姿勢のずれ量を観測できるようにした干渉縞観測部とを備える光学素子測定装置。
An optical element measuring apparatus that irradiates an optical element as a subject with measurement light and measures the optical element with the measurement light,
The optical element holding mechanism according to any one of claims 1 to 5,
A reference plane for detecting an inclination of the detection plane of the posture detection plate held by the posture detection plate holding portion of the optical element holding mechanism;
A light source unit that emits parallel light to the detection plane and the reference plane of the optical element holding mechanism;
The amount of deviation of the posture of the detection plane of the posture detection plate with respect to the reference plane is determined by interference fringes obtained by causing the reflected light of the parallel light emitted from the light source unit to the detection plane and the reference plane to interfere with each other. An optical element measuring apparatus comprising an interference fringe observation unit that can be observed.
前記光源部は、前記測定光を発生する光源を兼ねることを特徴とする請求項6に記載の光学素子測定装置。   The optical element measurement apparatus according to claim 6, wherein the light source unit also serves as a light source that generates the measurement light. 前記姿勢検知板の前記検知平面の反射率は、前記参照平面の反射率と略等しいことを特徴とする請求項6または7に記載の光学素子測定装置。   The optical element measuring apparatus according to claim 6 or 7, wherein a reflectance of the detection plane of the posture detection plate is substantially equal to a reflectance of the reference plane.
JP2008008109A 2008-01-17 2008-01-17 Optical element holding mechanism and optical element measuring apparatus Active JP5025501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008109A JP5025501B2 (en) 2008-01-17 2008-01-17 Optical element holding mechanism and optical element measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008109A JP5025501B2 (en) 2008-01-17 2008-01-17 Optical element holding mechanism and optical element measuring apparatus

Publications (2)

Publication Number Publication Date
JP2009168665A JP2009168665A (en) 2009-07-30
JP5025501B2 true JP5025501B2 (en) 2012-09-12

Family

ID=40969998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008109A Active JP5025501B2 (en) 2008-01-17 2008-01-17 Optical element holding mechanism and optical element measuring apparatus

Country Status (1)

Country Link
JP (1) JP5025501B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334606A (en) * 1995-06-05 1996-12-17 Matsushita Electric Ind Co Ltd Lens
JP2004279345A (en) * 2003-03-18 2004-10-07 Canon Inc Curved mirror and measuring method for surface profile
JP4857619B2 (en) * 2005-06-23 2012-01-18 株式会社ニコン Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system
JP2007010516A (en) * 2005-06-30 2007-01-18 Pentax Corp Wave aberration measuring device, wave aberration measuring method and inspection lens holding adjusting mechanism
JP4738949B2 (en) * 2005-09-15 2011-08-03 富士フイルム株式会社 Lightwave interference device

Also Published As

Publication number Publication date
JP2009168665A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5627610B2 (en) Method and apparatus for measuring substrate shape or thickness information
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
JPH102714A (en) Method and device for measurement
JP5208075B2 (en) Lightwave interference measuring device
JP2010164388A (en) Measuring method and measuring apparatus
US8879068B2 (en) Abscissa calibration jig and abscissa calibration method of laser interference measuring apparatus
US20130044332A1 (en) Surface profile measurement apparatus and alignment method thereof and an improved sub-aperture measurement data acquisition method
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JPH10512674A (en) Interferometric measurement of grazing incidence surface using diffractive optical element
JP2008089356A (en) Aspheric surface measuring element, lightwave interference measuring device and method using the aspheric surface measuring element, aspheric surface shape correction method, and system error correction method
JP2007078593A (en) Light wave interference device
JP5025501B2 (en) Optical element holding mechanism and optical element measuring apparatus
JP5307528B2 (en) Measuring method and measuring device
JP2005201703A (en) Interference measuring method and system
JP2012002548A (en) Light wave interference measurement device
JP2010223897A (en) Device for measuring shape of plane
JP5298619B2 (en) Eccentricity measuring method and eccentricity measuring device
KR101379677B1 (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
JP2007093293A (en) Optical system for objective lens inclination adjustment
JP4857619B2 (en) Method for measuring eccentricity of reflective aspherical optical element, method for manufacturing optical system, reflective aspherical optical element, and optical system
JP2007010609A (en) Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method
KR102028699B1 (en) Method of measuring three dimensional shape of lens and system for measuring the same
JP6445755B2 (en) Surface shape measuring device or wavefront aberration measuring device
JP2006098389A (en) Method and apparatus for measuring transmittance of finite-system optical element
JP2006090950A (en) Measuring system of inclination of surface to be tested

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5025501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250