JPH116784A - Device and method for measuring shape of aspherical surface - Google Patents
Device and method for measuring shape of aspherical surfaceInfo
- Publication number
- JPH116784A JPH116784A JP9175125A JP17512597A JPH116784A JP H116784 A JPH116784 A JP H116784A JP 9175125 A JP9175125 A JP 9175125A JP 17512597 A JP17512597 A JP 17512597A JP H116784 A JPH116784 A JP H116784A
- Authority
- JP
- Japan
- Prior art keywords
- light
- shape
- aspherical
- wave
- optical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非球面により構成
されたレンズ、ミラーなどの光学素子等の表面形状を高
精度に測定するための非球面形状測定装置および測定方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical shape measuring apparatus and a measuring method for measuring a surface shape of an optical element such as a lens or a mirror constituted by an aspherical surface with high accuracy.
【0002】[0002]
【従来の技術】従来、光の干渉を利用した面形状測定で
は、フィゾー干渉計などを用いて、被検面の設計形状に
対応した波面を有する測定光を形成し、その測定光の被
検面からの反射光と参照光を干渉させることによって、
被検面と測定光の波面の差を計測している。特に、被検
面が非球面形状の場合には、容易に非球面波が得られる
ゾーンプレートなどの回折光学素子、あるいは回折光学
素子とレンズ作用を有する光学素子の組み合わせが波面
形成手段として用いられている。2. Description of the Related Art Conventionally, in a surface shape measurement using light interference, a measurement light having a wavefront corresponding to the design shape of a surface to be measured is formed using a Fizeau interferometer or the like, and the measurement light is measured. By making the reflected light from the surface interfere with the reference light,
The difference between the test surface and the wavefront of the measurement light is measured. In particular, when the surface to be measured has an aspherical shape, a diffractive optical element such as a zone plate or the like, which can easily obtain an aspherical wave, or a combination of a diffractive optical element and an optical element having a lens function is used as a wavefront forming means. ing.
【0003】[0003]
【発明が解決しようとする課題】しかし、波面形成手段
の回折光学素子の基板やレンズ部材の曲率半径、面間隔
などの製作誤差および屈折率むらの影響で、波面形成手
段で発生した波面は誤差を含むため高精度な形状測定は
困難であり問題であった。However, the wavefront generated by the wavefront forming means has an error due to the manufacturing errors such as the radius of curvature and the surface interval of the substrate and lens member of the diffractive optical element of the wavefront forming means and the influence of the refractive index unevenness. , It was difficult and problematic to measure the shape with high accuracy.
【0004】本発明は、かかる問題に鑑みてなされたも
のであり、非球面形状を高精度に測定することができる
非球面形状測定装置および測定方法の提供を目的とす
る。The present invention has been made in view of such a problem, and an object of the present invention is to provide an aspherical shape measuring apparatus and a measuring method capable of measuring an aspherical shape with high accuracy.
【0005】[0005]
【課題を解決するための手段】本発明による非球面形状
測定装置は、光源からの光を分割し、一方の光を参照面
で反射させて参照光とし、他方の光を波面形成手段を介
して被検非球面で反射させて測定光とし、該測定光を前
記参照光と干渉させて干渉縞を形成し、該干渉縞に基づ
いて前記被検面の面形状を測定する非球面形状測定装置
において、前記波面形成手段は少なくとも回折光学素子
を含み、前記回折光学素子の所定の次数の回折光は前記
被検面の面形状に対応した非球面波であり、前記回折光
学素子の0次光は球面波であることを特徴としている。An aspherical shape measuring apparatus according to the present invention divides light from a light source, reflects one light on a reference surface as reference light, and converts the other light through a wavefront forming means. An aspherical shape measurement for reflecting the light on a test aspheric surface to form a measurement light, causing the measurement light to interfere with the reference light to form an interference fringe, and measuring a surface shape of the test surface based on the interference fringe In the apparatus, the wavefront forming means includes at least a diffractive optical element, and the diffracted light of a predetermined order of the diffractive optical element is an aspherical wave corresponding to the surface shape of the surface to be measured, and the zeroth order of the diffractive optical element. Light is characterized by being a spherical wave.
【0006】かかる構成により、回折光学素子の所定次
数の非球面波面を用いて、被検非球面を干渉測定、いわ
ゆるヌルテストを行うことが出来る。加えて、回折光学
素子の0次光である球面波を用いた基準球面に対するさ
らなる測定結果に基づいて前記ヌルテストの結果を校正
することで、回折光学素子等の製作誤差等を除去でき高
精度に被検非球面を測定することが出来る。[0006] With this configuration, it is possible to perform an interference measurement, that is, a so-called null test, on the aspheric surface to be measured using the aspherical wavefront of a predetermined order of the diffractive optical element. In addition, by calibrating the result of the null test based on a further measurement result with respect to the reference spherical surface using the spherical wave that is the 0th-order light of the diffractive optical element, it is possible to eliminate a manufacturing error of the diffractive optical element and the like and to achieve high precision. The measured aspheric surface can be measured.
【0007】また、本発明による非球面形状測定方法
は、光源からの光を分割し、一方の光を参照面で反射さ
せて参照光とし、他方の光を、所定の次数の回折光は被
検面の面形状に対応した非球面波であり、0次光は球面
波である回折光学素子を含む波面形成手段を介して被検
面で反射させて測定光とし、前記測定光と前記参照光を
干渉させて干渉縞を形成し、前記干渉縞に基づいて前記
被検面の面形状と前記所定の次数の回折光である前記非
球面波の波面形状との差分を測定する工程と、前記被検
面を基準球面に置き換え、前記基準球面の面形状と前記
回折光学素子の0次光である前記球面波の波面形状との
差分を測定する工程と、前記基準球面の面形状と前記球
面波の波面形状との前記差分に基づいて、前記非球面波
の波面形状を校正することにより前記被検面の面形状を
算出する工程とからなることを特徴としている。In the aspherical surface shape measuring method according to the present invention, light from a light source is divided, one light is reflected by a reference surface to be a reference light, and the other light is diffracted by a predetermined order. The 0th-order light is an aspherical wave corresponding to the surface shape of the test surface, and the 0th-order light is reflected by the test surface via wavefront forming means including a diffractive optical element which is a spherical wave to be the measurement light, and the measurement light and the reference Interfering light to form an interference fringe, and measuring a difference between the surface shape of the test surface and the wavefront shape of the aspherical wave that is the diffracted light of the predetermined order based on the interference fringe, Replacing the test surface with a reference spherical surface, measuring the difference between the surface shape of the reference spherical surface and the wavefront shape of the spherical wave that is the zero-order light of the diffractive optical element; and The wavefront shape of the aspherical wave is calibrated based on the difference from the wavefront shape of the spherical wave. It is characterized by comprising the step of calculating the surface shape of the test surface by.
【0008】かかる行程により、回折光学素子の所定の
次数の非球面波を用いて被検非球面を干渉測定(ヌルテ
スト)する事が出来る。さらに、回折光学素子の0次光
である球面波を用いて基準球面を干渉測定した結果に基
づいて、前記被検非球面の干渉測定結果を校正すること
で、回折光学素子の製作誤差等による影響を除去できる
ので、高精度に非球面を測定することが出来る。According to this process, interference measurement (null test) of the aspheric surface to be measured can be performed using the aspherical wave of a predetermined order of the diffractive optical element. Further, by calibrating the interference measurement result of the aspheric surface to be measured based on the result of interference measurement of the reference spherical surface using the spherical wave which is the 0th-order light of the diffractive optical element, the manufacturing error of the diffractive optical element can be reduced. Since the influence can be removed, the aspherical surface can be measured with high accuracy.
【0009】[0009]
【発明の実施の形態】以下添付図面に基づいて本発明の
実施の形態を説明する。図1は、本発明の実施例にかか
る非球面形状測定装置の構成を示す図であり、フィゾー
干渉計によって構成されている。光源ユニット1から射
出した直線偏光したビームLは、コリメータレンズ2で
平行光に変換されて、偏光ビームスプリッター3に入射
する。この光ビームLの偏光面は、偏光ビームスプリッ
ター3で反射されるように選択されている。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a configuration of an aspherical shape measuring apparatus according to an embodiment of the present invention, which is configured by a Fizeau interferometer. The linearly polarized beam L emitted from the light source unit 1 is converted into parallel light by the collimator lens 2 and enters the polarization beam splitter 3. The polarization plane of the light beam L is selected so as to be reflected by the polarization beam splitter 3.
【0010】偏光ビームスプリッター3で反射された光
ビームLは、1/4波長板4を経て、フイゾー部材5へ
入射する。フイゾー部材5に入射した光ビームLは、フ
ィゾー部材5の参照平面(フィゾー面)5aを透過する
測定光LMと、参照平面5aで反射される参照光LRに
分割される。The light beam L reflected by the polarizing beam splitter 3 is incident on a fuso member 5 via a quarter-wave plate 4. The light beam L incident on the Fizeau member 5 is split into a measurement light LM passing through a reference plane (Fizeau surface) 5a of the Fizeau member 5 and a reference light LR reflected by the reference plane 5a.
【0011】測定光LMは、レンズと回折光学素子の組
み合わせで構成される非球面波形成手段6へ入射し、非
球面波に変換され、被検非球面7に入射する。被検非球
面7で反射された測定光LMは、非球面波形成手段6お
よび1/4波長板4を再度透過し、偏光ビームスプリッ
ター3へ入射する。The measurement light LM is incident on the aspherical wave forming means 6 composed of a combination of a lens and a diffractive optical element, is converted into an aspherical wave, and is incident on the aspherical surface 7 to be measured. The measurement light LM reflected by the test aspherical surface 7 passes through the aspherical wave forming means 6 and the quarter-wave plate 4 again, and enters the polarization beam splitter 3.
【0012】一方、参照平面5aで反射された参照光L
Rも、測定光LMと同様に1/4波長板4を再度透過
し、偏光ビームスプリッター3へ入射する。On the other hand, the reference light L reflected by the reference plane 5a
R also transmits through the quarter-wave plate 4 again like the measurement light LM and enters the polarization beam splitter 3.
【0013】測定光LMと参照光LRは、1/4波長板
を往復で2度透過するので、偏光面が90度回転するた
め、偏光ビームスプリッター3を透過することとなる。The measurement light LM and the reference light LR transmit through the quarter-wave plate twice in a reciprocating manner, so that the polarization plane is rotated by 90 degrees, so that they pass through the polarization beam splitter 3.
【0014】偏光ビームスプリッター3を透過した測定
光LMと参照光LRは、ビームエクスパンダー8でビー
ム径を変換され、2次元画像検出器9に入射し、干渉縞
が観察される。The measurement light LM and the reference light LR transmitted through the polarization beam splitter 3 have their beam diameters converted by a beam expander 8 and are incident on a two-dimensional image detector 9, where interference fringes are observed.
【0015】図2(a)、(b)に、非球面波形成手段
6と形成される波面の状態を示す。図2(a)は、回折
光学素子6bにより回折された所定の次数の回折光の状
態を表し、図2(b)は、回折光学素子6bの0次回折
光(直接透過光)の状態を表す図である。FIGS. 2A and 2B show the state of the wavefront formed with the aspherical wave forming means 6. FIG. FIG. 2A shows a state of diffracted light of a predetermined order diffracted by the diffractive optical element 6b, and FIG. 2B shows a state of 0th-order diffracted light (directly transmitted light) of the diffractive optical element 6b. FIG.
【0016】図2(a)に示すように、回折光学素子6
bの所定の次数の回折光である非球面波は、被検非球面
7に垂直に入射するように設計されている。As shown in FIG. 2A, the diffractive optical element 6
The aspherical wave, which is the diffracted light of the predetermined order b, is designed to be incident perpendicularly on the aspherical surface 7 to be measured.
【0017】一方、図2(b)に示したように、回折光
学素子6bの0次光は、所定の焦点位置Fに集光するよ
うに設計されている。On the other hand, as shown in FIG. 2B, the zero-order light of the diffractive optical element 6b is designed to be focused at a predetermined focal position F.
【0018】次に測定手順を説明する。まず、被検非球
面7を光路内に挿入する。回折光学素子6bでの所定の
次数の回折光は、被検非球面7の設計形状に対して垂直
に入射するように設計されているから、測定光は被検非
球面7で反射した後、往路の波面形状をほぼ維持して往
路を逆進する。従って、ほぼ平面波となって参照光LR
と干渉する。この干渉縞を解析することにより、被検非
球面7の位置での非球面波の波面形状WAと、被検非球
面の面形状WMとの差、 φTA=WA−WM を測定することができる。Next, the measurement procedure will be described. First, the test aspheric surface 7 is inserted into the optical path. Since the diffracted light of a predetermined order in the diffractive optical element 6b is designed to be incident perpendicularly to the design shape of the aspherical surface 7 to be measured, the measuring light is reflected by the aspherical surface 7 to be measured. Reverse traveling on the outward path while almost maintaining the wavefront shape of the outward path. Therefore, the reference light LR becomes substantially a plane wave.
Interfere with. By analyzing this interference fringe, it is possible to measure the difference between the wavefront shape WA of the aspherical wave at the position of the test aspherical surface 7 and the surface shape WM of the test aspherical surface, φTA = WA−WM. .
【0019】しかし、非球面波形成手段を構成するレン
ズや回折光学素子の基板の形状誤差や屈折率むら、さら
に組立誤差のために、非球面波に波面形状誤差が発生す
る。すなわち、被検非球面7の位置での非球面波の形状
WAは、設計上の非球面波形状をW’A、波面形状誤差
をWE1とすると、次式、 WA=W’A+WE1 (1) のように表すことができる。このため、非球面波形状W
Aを校正する必要がある。However, a wavefront shape error occurs in the aspherical wave due to a shape error and a non-uniform refractive index of the substrate of the lens and the diffractive optical element constituting the aspherical wave forming means, and an assembling error. That is, the shape WA of the aspherical wave at the position of the test aspherical surface 7 is represented by the following equation, where W'A is the designed aspherical wave shape and WE1 is the wavefront shape error: WA = W'A + WE1 (1) Can be expressed as Therefore, the aspherical wave shape W
A needs to be calibrated.
【0020】そこで、非球面波形状WAを校正するた
め、被検非球面7を基準球面としての参照原器10に置
き換えて測定を行う。参照原器10は、回折光学素子6
bの0次回折光の集光位置Fと回折光学素子6bの距離
をd、参照原器10の曲率半径をrとして、回折光学素
子6bから距離d−rの位置に、参照球面10aと0次
回折光が一致するように設置する。Therefore, in order to calibrate the aspherical wave shape WA, the measurement is performed by replacing the aspherical surface 7 to be measured with the reference prototype 10 as a reference spherical surface. The reference prototype 10 includes the diffractive optical element 6
Assuming that the distance between the condensing position F of the 0th-order diffracted light b and the diffractive optical element 6b is d and the radius of curvature of the reference prototype 10 is r, the reference spherical surface 10a and the 0th order are located at a distance dr from the diffractive optical element 6b. Set up so that the folding light matches.
【0021】回折光学素子6bの0次光は球面波を形成
し、参照球面10aに対して垂直に入射するように設計
されているので、0次回折光は参照球面10aで反射し
た後、往路の波面形状をほぼ維持して往路を逆進し、ほ
ぼ平面波となって参照光LRと干渉する。Since the 0th-order light of the diffractive optical element 6b forms a spherical wave and is designed to be incident perpendicularly to the reference spherical surface 10a, the 0th-order diffracted light is reflected by the reference spherical surface 10a, It reverses on the outward path while substantially maintaining the wavefront shape, and becomes almost a plane wave and interferes with the reference light LR.
【0022】この干渉縞を解析することにより、参照球
面10aの位置での球面波の波面形状WBと、参照原器
10の参照球面形状WSとの差、 φTB=WB−WS を測定することができる。参照球面波形状WSは高精度
に測定されているため、波面形成手段で発生する球面波
の波面形状WBを高精度で知ることができる。参照球面
10aの位置における球面波形状をWB、設計上の球面
波形状をW’Bとすると、次式(2)、 WE2=WB−W’B (2) により、球面波の波面形状誤差WE2を知ることができ
る。非球面波に含まれる波面形状誤差WE1と、球面波
に含まれる波面形状誤差WE2は等しいため、式
(1)、(2)より非球面波形状WAを校正できる。従
って、非球面波形状WAと被検面形状WMとの差の測定
値φTAにより、被検面7の面形状を高精度で測定する
ことができる。By analyzing the interference fringes, it is possible to measure the difference between the wavefront shape WB of the spherical wave at the position of the reference spherical surface 10a and the reference spherical shape WS of the reference prototype 10, φTB = WB−WS. it can. Since the reference spherical wave shape WS is measured with high accuracy, the wavefront shape WB of the spherical wave generated by the wavefront forming means can be known with high accuracy. Assuming that the spherical wave shape at the position of the reference spherical surface 10a is WB and the designed spherical wave shape is W'B, the wavefront shape error WE2 of the spherical wave is given by the following equation (2), WE2 = WB-W'B (2) You can know. Since the wavefront shape error WE1 included in the aspherical wave is equal to the wavefront shape error WE2 included in the spherical wave, the aspherical wave shape WA can be calibrated from the equations (1) and (2). Therefore, the surface shape of the test surface 7 can be measured with high accuracy by the measured value φTA of the difference between the aspherical wave shape WA and the test surface shape WM.
【0023】なお、設計上の非球面波形状WA’および
球面波形状WB’は、それぞれ被検非球面の設計形状と
参照球面形状に等しいことが望ましい。It is desirable that the designed aspherical wave shape WA 'and the spherical wave shape WB' are equal to the designed shape of the test aspherical surface and the reference spherical shape, respectively.
【0024】また、本実施例に係る非球面形状測定装置
および測定方法では、フィゾー干渉計を利用したが、ト
ワイマンーグリーン干渉計を用いることも可能である。Further, in the aspherical surface shape measuring apparatus and measuring method according to the present embodiment, a Fizeau interferometer is used, but a Twyman-Green interferometer can also be used.
【0025】[0025]
【発明の効果】以上のように本発明によれば、回折光学
素子の0次光である球面波を高精度に測定し、非球面測
定結果を校正することによって、回折光学素子等の製作
誤差を除去し高精度に非球面形状を測定することができ
る。As described above, according to the present invention, a spherical wave, which is the zero-order light of the diffractive optical element, is measured with high precision, and the aspherical measurement result is calibrated, whereby the manufacturing error of the diffractive optical element and the like can be improved. And the aspherical shape can be measured with high accuracy.
【図1】本発明の一実施例である非球面形状測定装置の
光学的配置を示す図である。FIG. 1 is a diagram showing an optical arrangement of an aspherical shape measuring apparatus according to one embodiment of the present invention.
【図2】(a)は回折素子6bの所定の次数の回折光の
状態を、(b)は0次光の状態をそれぞれ表す図であ
る。2A is a diagram illustrating a state of diffracted light of a predetermined order of a diffraction element 6b, and FIG. 2B is a diagram illustrating a state of zero-order light.
1 光源ユニット 2 コリメータレンズ 3 偏光ビームスプリッター 4 1/4波長板 5 フィゾー部材 5a 参照平面 6 非球面波形成手段 6a レンズ部 6b 回折光学素子部 7 被検面 8 ビームエクスパンダー 9 2次元画倹検出器 10 球面参照原器 10a 参照球面 DESCRIPTION OF SYMBOLS 1 Light source unit 2 Collimator lens 3 Polarization beam splitter 4 1/4 wavelength plate 5 Fizeau member 5a Reference plane 6 Aspherical wave forming means 6a Lens part 6b Diffractive optical element part 7 Surface to be inspected 8 Beam expander 9 Two-dimensional image sparing detection Vessel 10 Spherical reference prototype 10a Reference sphere
Claims (2)
面で反射させて参照光とし、他方の光を波面形成手段を
介して被検非球面で反射させて測定光とし、該測定光を
前記参照光と干渉させて干渉縞を形成し、該干渉縞に基
づいて前記被検面の面形状を測定する非球面形状測定装
置において、 前記波面形成手段は少なくとも回折光学素子を含み、前
記回折光学素子の所定の次数の回折光は前記被検面の面
形状に対応した非球面波であり、前記回折光学素子の0
次光は球面波であることを特徴とする非球面形状測定装
置。1. A light from a light source is split, one light is reflected by a reference surface to be a reference light, and the other light is reflected by an aspheric surface to be measured via a wavefront forming means to be a measurement light. An aspherical shape measuring apparatus that forms interference fringes by causing measurement light to interfere with the reference light and measures the surface shape of the surface to be measured based on the interference fringes, wherein the wavefront forming means includes at least a diffractive optical element. The diffracted light of a predetermined order of the diffractive optical element is an aspherical wave corresponding to the surface shape of the surface to be inspected.
An aspherical shape measuring device, wherein the next light is a spherical wave.
面で反射させて参照光とし、他方の光を、所定の次数の
回折光は被検面の面形状に対応した非球面波であり、0
次光は球面波である回折光学素子を含む波面形成手段を
介して被検面で反射させて測定光とし、前記測定光と前
記参照光を干渉させて干渉縞を形成し、前記干渉縞に基
づいて前記被検面の面形状と前記所定の次数の回折光で
ある前記非球面波の波面形状との差分を測定する工程
と、 前記被検面を基準球面に置き換え、前記基準球面の面形
状と前記回折光学素子の0次光である前記球面波の波面
形状との差分を測定する工程と、 前記基準球面の面形状と前記球面波の波面形状との前記
差分に基づいて、前記非球面波の波面形状を校正するこ
とにより前記被検面の面形状を算出する工程とからなる
ことを特徴とする非球面形状測定方法。2. A light from a light source is split, one light is reflected by a reference surface to be a reference light, and the other light is an aspherical surface corresponding to a surface shape of a surface to be measured, and a diffracted light of a predetermined order is used. Wave, 0
The next light is reflected on the surface to be measured through a wavefront forming means including a diffractive optical element that is a spherical wave to form measurement light, and the measurement light and the reference light interfere with each other to form an interference fringe. Measuring the difference between the surface shape of the test surface and the wavefront shape of the aspherical wave that is the diffracted light of the predetermined order based on the test surface; replacing the test surface with a reference spherical surface; Measuring the difference between the shape of the spherical wave that is the zero-order light of the diffractive optical element and the wavefront shape of the spherical wave. Calculating the surface shape of the test surface by calibrating the wavefront shape of the spherical wave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9175125A JPH116784A (en) | 1997-06-17 | 1997-06-17 | Device and method for measuring shape of aspherical surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9175125A JPH116784A (en) | 1997-06-17 | 1997-06-17 | Device and method for measuring shape of aspherical surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH116784A true JPH116784A (en) | 1999-01-12 |
Family
ID=15990731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9175125A Withdrawn JPH116784A (en) | 1997-06-17 | 1997-06-17 | Device and method for measuring shape of aspherical surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH116784A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002257525A (en) * | 2001-04-27 | 2002-09-11 | Nikon Corp | Wave front conversion optical system, surface shape measuring device, and surface shape measuring method |
US6788389B2 (en) | 2001-07-10 | 2004-09-07 | Nikon Corporation | Production method of projection optical system |
JP2007537426A (en) * | 2004-05-14 | 2007-12-20 | カール・ツァイス・エスエムティー・アーゲー | Optical element manufacturing method |
JP2009544953A (en) * | 2006-07-28 | 2009-12-17 | カール・ツァイス・エスエムティー・アーゲー | Method and apparatus for measuring deviation of actual shape of optical surface from desired shape |
JP2011058872A (en) * | 2009-09-08 | 2011-03-24 | Konica Minolta Opto Inc | Method for adjusting and measuring eccentricity of optical element by use of autocollimator, and method for working lens |
-
1997
- 1997-06-17 JP JP9175125A patent/JPH116784A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002257525A (en) * | 2001-04-27 | 2002-09-11 | Nikon Corp | Wave front conversion optical system, surface shape measuring device, and surface shape measuring method |
JP4635371B2 (en) * | 2001-04-27 | 2011-02-23 | 株式会社ニコン | Wavefront conversion optical system, surface shape measuring apparatus, and surface shape measuring method |
US6788389B2 (en) | 2001-07-10 | 2004-09-07 | Nikon Corporation | Production method of projection optical system |
JP2007537426A (en) * | 2004-05-14 | 2007-12-20 | カール・ツァイス・エスエムティー・アーゲー | Optical element manufacturing method |
JP2009544953A (en) * | 2006-07-28 | 2009-12-17 | カール・ツァイス・エスエムティー・アーゲー | Method and apparatus for measuring deviation of actual shape of optical surface from desired shape |
US8345262B2 (en) | 2006-07-28 | 2013-01-01 | Carl Zeiss Smt Gmbh | Method and apparatus for determining a deviation of an actual shape from a desired shape of an optical surface |
JP2011058872A (en) * | 2009-09-08 | 2011-03-24 | Konica Minolta Opto Inc | Method for adjusting and measuring eccentricity of optical element by use of autocollimator, and method for working lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7072042B2 (en) | Apparatus for and method of measurement of aspheric surfaces using hologram and concave surface | |
JP4302512B2 (en) | Interferometric scanning for aspheric surfaces and wavefronts | |
JP3237309B2 (en) | System error measuring method and shape measuring device using the same | |
JPH02170033A (en) | Inspection method and apparatus for | |
JP2005509875A (en) | Aspheric and wavefront scanning interferometers | |
US20050179911A1 (en) | Aspheric diffractive reference for interferometric lens metrology | |
JPH02228505A (en) | Interferometer | |
JPH1163946A (en) | Methods for measuring shape and manufacturing high-precision lens | |
US6909510B2 (en) | Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses | |
CN103278105B (en) | The detection method of axicon surface shape and cone angle | |
JPH116784A (en) | Device and method for measuring shape of aspherical surface | |
JP3773073B2 (en) | Apparatus and method for measuring aspheric shape | |
JPH07229721A (en) | Device for generating aspherical wave and method for measuring aspherical shape | |
JP2000097622A (en) | Interferometer | |
JP2006284233A (en) | Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same | |
JP3461566B2 (en) | Interferometer for measuring cone shape | |
JPS5890110A (en) | Interferometer | |
JP2000088513A (en) | Aspherical wave generating lens system assembling adjusting equipment | |
JPH11311600A (en) | Method and apparatus for measuring refractive index distribution | |
JP2000097657A (en) | Interferometer | |
JPH11325848A (en) | Aspherical surface shape measurement device | |
JPH10232115A (en) | Measurement for interference of lens | |
JP2000097650A (en) | Device for measuring shape of aspheric surface | |
JPH10260020A (en) | Aspherical shape measuring device and method | |
JP2003106934A (en) | Device and method for measuring optical path length, device and method for measuring thickness, and device and method for measuring inclined component of refractive index distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040907 |