JPH0483133A - Three-dimensional scanner - Google Patents

Three-dimensional scanner

Info

Publication number
JPH0483133A
JPH0483133A JP19732090A JP19732090A JPH0483133A JP H0483133 A JPH0483133 A JP H0483133A JP 19732090 A JP19732090 A JP 19732090A JP 19732090 A JP19732090 A JP 19732090A JP H0483133 A JPH0483133 A JP H0483133A
Authority
JP
Japan
Prior art keywords
measured
laser
information
color information
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19732090A
Other languages
Japanese (ja)
Inventor
Kazutoshi Iketani
池谷 和俊
Yukifumi Tsuda
津田 幸文
Kunio Sannomiya
三宮 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19732090A priority Critical patent/JPH0483133A/en
Publication of JPH0483133A publication Critical patent/JPH0483133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To allow non-contact form measurement and read of color information by conducting the scanning with a laser beam in which the optical axes of a plurality of laser beams having different wavelength are gathered to one and collecting the reflected scattered light from a material to be measured to a plurality of position detecting elements. CONSTITUTION:Laser beams 103 having different wavelengths from a laser oscillator 101 scan a material to be measured 104 by a laser scanner 102. The reflected lights 106 from a later radiating point 105 are collected to position detecting elements 112a-c through optical filters 109-111 by a light collecting lens 107 and half mirrors 108, respectively. The positions signals from them are subjected to the operation for color brightness data conversion of the radiating point 105 by color information detecting means 116a, b, 117 and outputted to an image memory 119. The above operation is successively repeated, whereby the color brightness information and three-dimensional distance information of the material to be measured 104 surface can be simultaneously obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非接触で対象物体の移動量または形状を測定
する三次元スキャナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a three-dimensional scanner that measures the amount of movement or shape of a target object in a non-contact manner.

従来の技術 従来の立体物測定装置としては、接触式の三次元測定器
が多く使用されているが、測定に時間がかかるため非接
触で高速に測定できる三次元測定器が開発されている。
BACKGROUND OF THE INVENTION Contact-type three-dimensional measuring instruments are often used as conventional three-dimensional object measuring devices, but since measurement takes time, three-dimensional measuring instruments that can perform non-contact and high-speed measurements have been developed.

非接触三次元測定器の一例として、特開昭63−182
503号公報には、レーザ光を用いた非接触三次元測定
器が提案されている。
As an example of a non-contact three-dimensional measuring device, JP-A-63-182
No. 503 proposes a non-contact three-dimensional measuring device using laser light.

第4図に、その従来例の基本構成を示す。401はレー
ザ発振器、402はレーザ発振器401よシ発射された
レーザビーム、403は被測定物、404は被測定物4
03を撮影するテレビカメラ、405はテレビカメラ4
04で撮影した被測定物403の映像情報をA/D変換
するA/Dコンバータである。
FIG. 4 shows the basic configuration of the conventional example. 401 is a laser oscillator, 402 is a laser beam emitted from the laser oscillator 401, 403 is an object to be measured, and 404 is an object to be measured 4
03 is the TV camera that takes pictures, 405 is the TV camera 4
This is an A/D converter that A/D converts the video information of the object to be measured 403 photographed in 04.

406はA/D変換された画像情報の雑音成分を除去す
る雑音除去回路、407は画像メモリ、408は画像情
報の中で最大値を見つけ出し、その時のアドレス情報を
検出するアドレス検出器、409は画像メモリ407に
記憶されている画像情報の中から、アドレス検出器40
8で検出されたアドレス情報をもとに小領域の画像情報
を抽出し、重心座標を計算する重心座標演算器である。
406 is a noise removal circuit that removes noise components of A/D converted image information, 407 is an image memory, 408 is an address detector that finds the maximum value in the image information and detects the address information at that time, and 409 is a From among the image information stored in the image memory 407, the address detector 40
This is a barycenter coordinate calculator that extracts image information of a small area based on the address information detected in step 8 and calculates the barycenter coordinates.

410は装置の制御を行うCPU、  411はCPU
メモリ、412はCRTコントローラ、413はモニタ
である。
410 is a CPU that controls the device, 411 is a CPU
A memory, 412 a CRT controller, and 413 a monitor.

以下、その動作を説明する。The operation will be explained below.

レーザ発振器4旧より発射されたレーザビーム402を
被測定物403に照射し、その被測定物403をテレビ
カメラ404で撮影する。テレビカメラ404で撮影し
た映像をA/Dコンバータ405でA/D変換し、雑音
除去回路406に入力され、定められた値よシ小さい画
像情報は“0”に変換された後、画像メモリ407に格
納される。
A laser beam 402 emitted from a laser oscillator 4 is irradiated onto an object to be measured 403, and the object to be measured 403 is photographed by a television camera 404. The video shot by the television camera 404 is A/D converted by the A/D converter 405 and input to the noise removal circuit 406. Image information smaller than a predetermined value is converted to "0" and then stored in the image memory 407. is stored in

雑音除去された画像情報はアドレス検出器408に入力
され、画像情報が最大のときのXおよびY座標をアドレ
スとして出力する。このアドレスは重心座標演算器40
9に引き渡され、この値を中心にその周辺の小領域の画
像情報とアドレス情報により重心座標が計算され、この
重心座標により被測定物403まで距離を第5図に示す
三角測量の原理を用いて計算して、被測定物403の形
状あるいは移動量を求めている。
The image information from which noise has been removed is input to an address detector 408, which outputs the X and Y coordinates when the image information is at its maximum as an address. This address is the center of gravity coordinate calculator 40
9, the center of gravity coordinates are calculated based on the image information and address information of a small area around this value, and the distance to the object to be measured 403 is calculated using the coordinates of the center of gravity using the principle of triangulation shown in Fig. 5. The shape or amount of movement of the object to be measured 403 is determined by calculation.

即ち、第5図は三角測量の原理を示しており、レーザビ
ーム501を対象物上の点P502に照射し、その時の
反射光503をテレビカメラ504などで撮像する。こ
のとき、被測定物の表面の凹凸により生じたテレビカメ
ラ504のスクリーン505上での像の移動量を抽出す
ることにより、基線AB 506と反射光503との交
差角θb及びθdが求められ、これらの値とレーザビー
ム501の照射角、即ち基線AB506とレーザビーム
501との交差角θa及びθCと基線AB506の長さ
Lから物体表面の三次元座標情報を取得することができ
る。
That is, FIG. 5 shows the principle of triangulation, in which a laser beam 501 is irradiated to a point P502 on an object, and the reflected light 503 at that time is imaged by a television camera 504 or the like. At this time, by extracting the amount of movement of the image of the television camera 504 on the screen 505 caused by the unevenness of the surface of the object to be measured, the intersection angles θb and θd between the base line AB 506 and the reflected light 503 are determined. Three-dimensional coordinate information of the object surface can be obtained from these values, the irradiation angle of the laser beam 501, that is, the intersection angles θa and θC between the base line AB506 and the laser beam 501, and the length L of the base line AB506.

発明が解決しようとする課題 しかし、物体の形状を測定して、その物体を検査したシ
認識したシする時にその物体の表面の色情報か必要にな
る場合がある。第4図に示した従来の三次元測定器では
、被測定物の形状を非接触で測定する事はできるが、被
測定物の表面の色情報までは読み取ることはできないと
いう課題がある。以上の課題に鑑み、本発明の目的は、
被測定物の形状を非接触で測定すると同時に、被測定物
の表面の色情報までも読み取ることである。
Problems to be Solved by the Invention However, when the shape of an object is measured and the object is inspected and recognized, color information on the surface of the object may be required. The conventional three-dimensional measuring instrument shown in FIG. 4 can measure the shape of an object without contact, but there is a problem in that it cannot read color information on the surface of the object. In view of the above problems, the purpose of the present invention is to
The aim is to measure the shape of an object without contact and at the same time read color information on the surface of the object.

課題を解決するための手段 上記課題を解決するため本発明の技術的解決手段は、そ
れぞれ波長の異なる複数のレーザ光の光軸をひとつに合
わせたレーザ光を被計測物上に走査するレーザ光走査手
段と、前記レーザ光の走査により前記被測定物上から反
射して得られる散乱光を、集光レンズと各レーザ波長の
透過用フィルタを用いて複数の位置検出素子に集光し光
電流信号を出力する光量検出手段と、前記光量検出手段
からの光電流信号により前記被測定物までの距離情報を
演算する距離演算手段と、前記複数の光量検出手段から
の光電流信号により、反射光の色情報を出力する色情報
検出手段とから構成されている。
Means for Solving the Problems In order to solve the above problems, the technical solution of the present invention is a laser beam that scans an object to be measured with a laser beam in which the optical axes of a plurality of laser beams each having a different wavelength are aligned into one. A scanning means condenses the scattered light obtained by being reflected from the object to be measured by scanning the laser beam onto a plurality of position detection elements using a condenser lens and a filter for transmitting each laser wavelength, and generates a photocurrent. A light amount detection means for outputting a signal, a distance calculation means for calculating distance information to the object to be measured based on the photocurrent signal from the light amount detection means, and a reflected light by the photocurrent signals from the plurality of light amount detection means. and color information detection means for outputting color information.

作   用 本発明は上記構成により、それぞれ波長の異なる複数の
レーザ光の光軸をひとつに合わせたレーザ光を被計測物
上に走査し、被測定物上から反射して得られる散乱光を
集光レンズと各レーザ波長の透過用フィルタを用いて複
数の位置検出素子に集光し、光電流信号を得て、その光
電流信号により被測定物までの距離情報を演算すると同
時に、複数の光量検出手段からの光電流信号により反射
光の色情報を出力することにより、非接触で被測定物の
三次元形状を計測できると同時に、被測定物の表面の色
情報も読み取ることができ、距離情報と色情報とを1対
1に対応させて被測定物の検査や認識に利用することが
できるため、検査や認識の精度の向上に大きな効果があ
る。
According to the above configuration, the present invention scans the object to be measured with a laser beam in which the optical axes of a plurality of laser beams having different wavelengths are aligned into one, and collects the scattered light obtained by reflection from the object to be measured. Using an optical lens and a transmission filter for each laser wavelength, the light is focused on multiple position detection elements to obtain a photocurrent signal, and the distance information to the object to be measured is calculated using the photocurrent signal. By outputting the color information of the reflected light using the photocurrent signal from the detection means, it is possible to measure the three-dimensional shape of the object to be measured without contact, and at the same time, it is possible to read the color information on the surface of the object to be measured. Since information and color information can be used in one-to-one correspondence for inspection and recognition of the object to be measured, this has a great effect on improving the accuracy of inspection and recognition.

実施例 以下、第1図を参照しながら本発明の一実施例について
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIG.

第1図は、本発明の三次元スキャナの実施例を示すブロ
ック結線図である。第1図において、101は3種類の
異なる波長のレーザ光を発振するレーザ発振器、102
はレーザ発振器101からのレーザ光103を被測定物
104上に走査するレーザスキャナ、107は被測定物
104上のレーザ照射点105からの反射光106を集
光する集光レンズ、108はハーフミラ−109,11
0および111はそれぞれのレーザ波長を透過するフィ
ルタ、112ab、cは位置検出素子、113.114
および115は位置検出素子112 a * b 、c
からの位置信号、116a、bおよび117は色情報検
出手段、118は距離演算手段、119は画像メモリ、
120は同期信号発生回路である。
FIG. 1 is a block diagram showing an embodiment of the three-dimensional scanner of the present invention. In FIG. 1, 101 is a laser oscillator that oscillates laser beams of three different wavelengths; 102
107 is a laser scanner that scans a laser beam 103 from a laser oscillator 101 onto an object to be measured 104; 107 is a condenser lens that focuses reflected light 106 from a laser irradiation point 105 on the object to be measured 104; and 108 is a half mirror. 109,11
0 and 111 are filters that transmit the respective laser wavelengths, 112ab and c are position detection elements, 113.114
and 115 are position detection elements 112 a * b , c
116a, b and 117 are color information detection means, 118 is a distance calculation means, 119 is an image memory,
120 is a synchronization signal generation circuit.

以下、その動作を説明する。The operation will be explained below.

レーザ発振器101から発振された3種類の異なる波長
のレーザ光103を、レーザスキャナ102により被測
定物104上に走査する。この時の3種類のレーザ光の
波長は、636.Onm、  537.8nmおよび4
41.6nmとした。被測定物104上のレーザ照射点
105からの反射光106を、集光レンズ107及びハ
ーフミラ−108により光学フィルタ109゜110お
よび111を通して位置検出素子112a、b、c上に
それぞれ集光する。光学フィルタ109.110および
111は、それぞれ各レーザ波長近傍の波長を透過する
フィルタである。
A laser scanner 102 scans an object to be measured 104 with laser beams 103 having three different wavelengths emitted from a laser oscillator 101 . The wavelengths of the three types of laser beams at this time are 636. Onm, 537.8nm and 4
It was set to 41.6 nm. Reflected light 106 from a laser irradiation point 105 on the object to be measured 104 is focused by a condenser lens 107 and a half mirror 108 onto position detection elements 112a, b, and c through optical filters 109, 110, and 111, respectively. Optical filters 109, 110 and 111 are filters that transmit wavelengths near the respective laser wavelengths.

位置検出素子112a、b、cからの位置信号113゜
114および115は、色情報検出手段116a、bお
よび117へ出力される。
Position signals 113, 114 and 115 from position detection elements 112a, b and c are output to color information detection means 116a, b and 117.

なお、上記実施例では、位置検出素子としてPSD(ポ
ジション センシティブ デテクタ;Po5ition
 5ensitive Detector : 半導体
装置検出素子)を用いており、PSDに入射する入射位
置は、素子の両極電極に流れる電流が各電極間との距離
に反比例する特徴を利用し、後述の演算で求めている。
In the above embodiment, a PSD (position sensitive detector) is used as a position detection element.
The position of incidence on the PSD is determined by the calculation described below, taking advantage of the characteristic that the current flowing through the bipolar electrodes of the element is inversely proportional to the distance between each electrode. .

次に、色情報検出手段116a、b、  117では、
それぞれの位置信号113〜115であるII、I2.
I3およびI4よシ、被測定物104上のレーザ照射点
105のカラー輝度データに変換する演算を行い、画像
メモリ119に出力する。
Next, the color information detection means 116a, b, 117,
II, I2., which are the respective position signals 113-115.
I3 and I4 perform calculations to convert the laser irradiation point 105 on the object to be measured 104 into color luminance data, and output the data to the image memory 119.

距離演算手段118では、位置検出素子112からの位
置信号115であるIf 、 I2 、IaおよびI4
より、被測定物104上のレーザ照射点105までの距
離データに変換する演算を行い、画像メモリ119に出
力する。
In the distance calculation means 118, the position signals 115 from the position detection element 112, If, I2, Ia, and I4
Then, calculation is performed to convert it into distance data to the laser irradiation point 105 on the object to be measured 104, and the data is output to the image memory 119.

以上の動作を繰シ返し、順次行うことにより被測定物1
04表面のカラー輝度情報と三次元距離情報を同時に取
得することができる。この一連の動作は、同期信号発生
回路120からの同期信号を用いて同期を取った。
By repeating the above operations and performing them in sequence, the object to be measured 1
04 surface color brightness information and three-dimensional distance information can be obtained simultaneously. This series of operations was synchronized using a synchronization signal from the synchronization signal generation circuit 120.

次に、色情報検出手段116.117および距離演算手
段118について、第2図、第3図を用いて更に詳しく
説明する。
Next, the color information detection means 116 and 117 and the distance calculation means 118 will be explained in more detail using FIGS. 2 and 3.

第2図は、色情報検出手段116aの詳細構成を示すブ
ロック結線図である。色情報検出手段116aは、二次
元位置検出素子112aからの位置信号113であゐI
f、I2.I3およびI4をA/Dコンバータ205〜
208でそれぞれデジタル信号に変換する。ここで、I
IおよびI2は二次元位置検出素子のX方向の位置情報
を示し、I3およびI4は二次元位置検出素子のX方向
の位置情報を示している。位置信号■lおよびI2を加
算回路209で加算し、位置信号I3およびI4を加算
回路210で加算し、加算回路209および210の出
力値をさらに加算回路211で加算して輝度データ(L
l)212を得る。輝度データ(Ll)212は、レー
ザ波長636.0nm近傍の波長を透過するフィルタ1
09を通して得た赤色の色情報を示しており、同様に他
のレーザ波長から得た輝度データから緑色および青色の
色情報が得られる。
FIG. 2 is a block diagram showing the detailed configuration of the color information detection means 116a. The color information detection means 116a receives the position signal 113 from the two-dimensional position detection element 112a.
f, I2. I3 and I4 are connected to A/D converter 205~
At 208, each is converted into a digital signal. Here, I
I and I2 indicate position information in the X direction of the two-dimensional position detection element, and I3 and I4 indicate position information in the X direction of the two-dimensional position detection element. The position signals ■l and I2 are added in an adder circuit 209, the position signals I3 and I4 are added in an adder circuit 210, the output values of the adder circuits 209 and 210 are further added in an adder circuit 211, and the luminance data (L
l) Obtain 212. The brightness data (Ll) 212 is based on the filter 1 that transmits wavelengths near the laser wavelength of 636.0 nm.
09, and similarly, green and blue color information can be obtained from brightness data obtained from other laser wavelengths.

第3図は、色情報検出手段117の詳細構成を示すブロ
ック結線図である。色情報検出手段117は、二次元位
置検出素子112Cからの位置信号115であるIl、
 I2 、 IaおよびI4をA/Dコンバータ305
〜308でそれぞれデジタル信号に変換する。
FIG. 3 is a block diagram showing the detailed configuration of the color information detection means 117. The color information detection means 117 detects Il, which is the position signal 115 from the two-dimensional position detection element 112C,
I2, Ia and I4 are connected to A/D converter 305
~308, each is converted into a digital signal.

ここで、工1およびI2は二次元位置検出素子のX方向
の位置情報を示し、I3および工4は二次元位置検出素
子のX方向の位置情報を示している。
Here, I3 and I2 indicate the position information of the two-dimensional position detection element in the X direction, and I3 and I2 indicate the position information of the two-dimensional position detection element in the X direction.

位置信号■1およびI2を加算回路309で加算し、ま
た減算回路310で減算する。同様に、位置信号I3お
よびI4を加算回路311で加算し、また減算回路31
2で減算する。加算回路309および加算回路311の
出力値をさらに加算回路313で加算して輝度データ(
I3)314を得、加算回路309゜311からの信号
(Il+ I2 ) 316.  (I3 + I4 
)317と、減算回路310.312からの信号(工2
−11)  315.  (I4−13) 318を距
離演算手段118へ出力する。
An addition circuit 309 adds the position signals 1 and I2, and a subtraction circuit 310 subtracts them. Similarly, position signals I3 and I4 are added by an adder circuit 311, and a subtracter circuit 31
Subtract by 2. The output values of the adder circuit 309 and the adder circuit 311 are further added in the adder circuit 313 to obtain luminance data (
I3) 314 and the signal (Il+I2) 316 from the adder circuit 309°311. (I3 + I4
) 317 and signals from subtraction circuits 310 and 312 (engine 2
-11) 315. (I4-13) 318 is output to the distance calculation means 118.

そして、距離演算手段118では、色情報検出手段11
7からの信号(Il+I2)、  (I3+I4)。
Then, in the distance calculation means 118, the color information detection means 11
Signals from 7 (Il+I2), (I3+I4).

(I2− II )および(I4−I3)より第(1)
式および第(2)式を用いて二次元位置検出素子上の位
置を計算し、第5図に示す三角測量の原理に基づいて被
測定物上のレーザ照射点までの距離データに変換する演
算を行い、画像メモリに出力する。
(1) from (I2-II) and (I4-I3)
An operation that calculates the position on the two-dimensional position detection element using the formula and formula (2), and converts it into distance data to the laser irradiation point on the object to be measured based on the principle of triangulation shown in Figure 5. and output to image memory.

なお、K1およびに2は、正規化するだめの係数である
Note that K1 and K2 are coefficients that are not used for normalization.

位置検出素子上の位置(x、y)としてX=に111(
I2−If )/(If + I2)  ・・・(1)
Y=に2・ (I4−Ia ) /(Ia + I4)
  ・・・(2)なお本実施例では、3種類の異なる波
長のレーザ光を発振するレーザ発振器を用いたが、1種
類の波長のレーザ光を発振するレーザ発振器で、しかも
それぞれ波長の異なる発振器を複数個設け、反射ミラー
を用いてそれぞれのレーザ光の光軸をひとつに合わせて
も良く、同様の効果が得られる。
As the position (x, y) on the position detection element, 111 (
I2-If)/(If + I2)...(1)
Y=2・(I4-Ia)/(Ia+I4)
...(2) In this example, a laser oscillator that oscillates laser beams with three different wavelengths was used, but a laser oscillator that oscillates laser beams with one type of wavelength, and each oscillator with a different wavelength. A similar effect can be obtained by providing a plurality of laser beams and aligning the optical axes of the respective laser beams with one using a reflecting mirror.

発明の効果 以上の実施例で明らかなように、それぞれ波長の異なる
複数のレーザ光の光軸をひとつに合わせだレーザ光を被
計測物上に走査し、被測定物上から反射して得られる散
乱光を集光レンズと各レーザ波長の透過用フィルタを用
いて複数の位置検出素子に集光し、光電流信号を得て、
その光電流信号により被測定物までの距離情報を演算す
ると同時に、複数の光量検出手段からの光電流信号によ
り反射光の色情報を出力することにより、非接触で被測
定物の三次元形状を計測できると同時に、被測定物の表
面の色情報も読み取ることができ、距離情報と色情報と
を1対1に対応させて被測定物の検査や認識に利用する
ことができるため、検査や認識の精度の向上に大きな効
果がある。
Effects of the Invention As is clear from the above embodiments, the invention is obtained by aligning the optical axes of multiple laser beams with different wavelengths, scanning the laser beams over the object to be measured, and reflecting them from the object to be measured. The scattered light is focused on multiple position detection elements using a condenser lens and a transmission filter for each laser wavelength, and a photocurrent signal is obtained.
By calculating the distance information to the object to be measured using the photocurrent signal, and at the same time outputting the color information of the reflected light using the photocurrent signals from the multiple light amount detection means, the three-dimensional shape of the object to be measured can be determined without contact. At the same time as measurement, it is also possible to read the color information on the surface of the object to be measured, and the one-to-one correspondence between distance information and color information can be used for inspection and recognition of the object. This has a great effect on improving recognition accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における三次元スキャナのブ
ロック結線図、第2図、第3図は同要部の詳細ブロック
結線図、第4図は従来の三次元スキャナのブロック結線
図、第5図は三角測量の原理を示す幾何学的配置図であ
る。 101・・・レーザ発振器、102・・・レーザスキャ
ナ、104・・・被測定物、107−・・集光レンズ、
108・・・ハーフミラ−109〜111・・・光学フ
ィルタ、112・・・位置検出素子、116〜117・
・・色情報検出手段、118・・・距離演算手段、11
9・・・画像メモリ。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名ム 第 図 と ;
FIG. 1 is a block wiring diagram of a three-dimensional scanner according to an embodiment of the present invention, FIGS. 2 and 3 are detailed block wiring diagrams of the same essential parts, and FIG. 4 is a block wiring diagram of a conventional three-dimensional scanner. FIG. 5 is a geometric layout diagram showing the principle of triangulation. 101... Laser oscillator, 102... Laser scanner, 104... Measured object, 107-... Condenser lens,
108... Half mirror 109-111... Optical filter, 112... Position detection element, 116-117...
... Color information detection means, 118 ... Distance calculation means, 11
9... Image memory. Name of agent: Patent attorney Shigetaka Awano and one other person;

Claims (1)

【特許請求の範囲】[Claims] それぞれ波長の異なる複数のレーザ光の光軸をひとつに
合わせたレーザ光を被測定物上に走査するレーザ光走査
手段と、前記レーザ光の走査により前記被測定物上から
反射して得られる散乱光を、集光レンズと各レーザ波長
の透過用フィルタを用いて複数の位置検出素子に集光し
光電流信号を出力する光量検出手段と、前記光量検出手
段からの光電流信号により前記被測定物までの距離情報
を演算する距離演算手段と、前記複数の光量検出手段か
らの光電流信号により、反射光の色情報を出力する色情
報検出手段とから構成されている三次元スキャナ。
A laser beam scanning means that scans an object to be measured with a laser beam that is made by aligning the optical axes of a plurality of laser beams each having a different wavelength, and scattering that is obtained by being reflected from the object to be measured by scanning the laser beam. A light amount detection means for condensing light onto a plurality of position detection elements using a condensing lens and a transmission filter for each laser wavelength and outputting a photocurrent signal; A three-dimensional scanner comprising distance calculation means for calculating distance information to an object, and color information detection means for outputting color information of reflected light based on photocurrent signals from the plurality of light amount detection means.
JP19732090A 1990-07-25 1990-07-25 Three-dimensional scanner Pending JPH0483133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19732090A JPH0483133A (en) 1990-07-25 1990-07-25 Three-dimensional scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19732090A JPH0483133A (en) 1990-07-25 1990-07-25 Three-dimensional scanner

Publications (1)

Publication Number Publication Date
JPH0483133A true JPH0483133A (en) 1992-03-17

Family

ID=16372499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19732090A Pending JPH0483133A (en) 1990-07-25 1990-07-25 Three-dimensional scanner

Country Status (1)

Country Link
JP (1) JPH0483133A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518726A (en) * 1991-07-10 1993-01-26 Kubota Corp Three-dimensional color image input apparatus
US5668631A (en) * 1993-12-20 1997-09-16 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US6049385A (en) * 1996-06-05 2000-04-11 Minolta Co., Ltd. Three dimensional measurement system and pickup apparatus
US6141105A (en) * 1995-11-17 2000-10-31 Minolta Co., Ltd. Three-dimensional measuring device and three-dimensional measuring method
US6151118A (en) * 1996-11-19 2000-11-21 Minolta Co., Ltd Three-dimensional measuring system and method of measuring the shape of an object
US6292263B1 (en) 1998-02-18 2001-09-18 Minolta Co., Ltd. Three-dimensional measuring apparatus
US6346949B1 (en) 1995-11-14 2002-02-12 Minolta Co., Ltd. Three-dimensional form data processor retaining information on color boundaries of an object when thinning coordinate data
US6407817B1 (en) 1993-12-20 2002-06-18 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
KR100641401B1 (en) * 2004-03-31 2006-10-31 주식회사 포디컬쳐 Three dimensional laser scanner system having multi-heads and video signal processing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518726A (en) * 1991-07-10 1993-01-26 Kubota Corp Three-dimensional color image input apparatus
US6407817B1 (en) 1993-12-20 2002-06-18 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US6775010B2 (en) 1993-12-20 2004-08-10 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US6674534B2 (en) 1993-12-20 2004-01-06 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US6522412B2 (en) 1993-12-20 2003-02-18 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US6243165B1 (en) 1993-12-20 2001-06-05 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US5668631A (en) * 1993-12-20 1997-09-16 Minolta Co., Ltd. Measuring system with improved method of reading image data of an object
US6346949B1 (en) 1995-11-14 2002-02-12 Minolta Co., Ltd. Three-dimensional form data processor retaining information on color boundaries of an object when thinning coordinate data
US6529280B1 (en) 1995-11-17 2003-03-04 Minolta Co., Ltd. Three-dimensional measuring device and three-dimensional measuring method
US6141105A (en) * 1995-11-17 2000-10-31 Minolta Co., Ltd. Three-dimensional measuring device and three-dimensional measuring method
US6172755B1 (en) 1996-06-05 2001-01-09 Minolta Company, Ltd. Three dimensional measurement system and pickup apparatus
US6049385A (en) * 1996-06-05 2000-04-11 Minolta Co., Ltd. Three dimensional measurement system and pickup apparatus
US6151118A (en) * 1996-11-19 2000-11-21 Minolta Co., Ltd Three-dimensional measuring system and method of measuring the shape of an object
US6292263B1 (en) 1998-02-18 2001-09-18 Minolta Co., Ltd. Three-dimensional measuring apparatus
KR100641401B1 (en) * 2004-03-31 2006-10-31 주식회사 포디컬쳐 Three dimensional laser scanner system having multi-heads and video signal processing method thereof

Similar Documents

Publication Publication Date Title
JPH04115108A (en) Three-dimensional scanner
US6819436B2 (en) Image capturing apparatus and distance measuring method
US6538751B2 (en) Image capturing apparatus and distance measuring method
TWI428558B (en) Distance measurement method and system, and processing software thereof
KR101639227B1 (en) Three dimensional shape measurment apparatus
JP2005504305A (en) 3D scanning camera
JP3695188B2 (en) Shape measuring apparatus and shape measuring method
JP2004101530A (en) Confocal displacement sensor
JPH02114156A (en) Inspection device of mounted substrate
JPH0483133A (en) Three-dimensional scanner
JP3805791B2 (en) Method and apparatus for reducing undesirable effects of noise in three-dimensional color imaging systems
TWI288226B (en) Displacement measuring device and shape inspecting device using the same
JPH0483132A (en) Three-dimensional scanner
JP3711808B2 (en) Shape measuring apparatus and shape measuring method
JPH05322526A (en) Three dimensional form measuring apparatus
US20040263862A1 (en) Detecting peripheral points of reflected radiation beam spots for topographically mapping a surface
JPH11173840A (en) Device and method for measuring distance
JP3120176B2 (en) Automatic focusing lighting system
JPH0914914A (en) Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
JPH0311401B2 (en)
JPH0749930B2 (en) Mounted board inspection device
JP4003274B2 (en) Distance measuring device
JPH0666823A (en) Behavior measuring equipment for particulate
JPH044523B2 (en)
JPH03255910A (en) Three-dimensional position measurement system