JPH03255910A - Three-dimensional position measurement system - Google Patents

Three-dimensional position measurement system

Info

Publication number
JPH03255910A
JPH03255910A JP2053770A JP5377090A JPH03255910A JP H03255910 A JPH03255910 A JP H03255910A JP 2053770 A JP2053770 A JP 2053770A JP 5377090 A JP5377090 A JP 5377090A JP H03255910 A JPH03255910 A JP H03255910A
Authority
JP
Japan
Prior art keywords
point
dimensional position
measured
pointing
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2053770A
Other languages
Japanese (ja)
Other versions
JPH0769144B2 (en
Inventor
Yoshiro Nishimoto
善郎 西元
Shinichi Imaoka
今岡 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2053770A priority Critical patent/JPH0769144B2/en
Publication of JPH03255910A publication Critical patent/JPH03255910A/en
Publication of JPH0769144B2 publication Critical patent/JPH0769144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the inside of the hole of an object work to be measured, etc., and to improve the measurement accuracy by measuring the three- dimensional position of an object point to be measured according to a stereoscopic image of the spot light source of a measured object point teaching means. CONSTITUTION:When the three-dimensional position of the measured object point P at the recessed part 4a of the work which can not be picked up directly by TV cameras 1 and 2 is measured, the indication point 6 of a coordinate teaching pen 5 (measured object point teaching means) is brought into contact with the object point P. Consequently, a switch 8 is closed and respective LEDs 7 of the pen 5 illuminate. In this state, the stereoscopic image of the pen 5 including the LEDs 7 is picked up by the cameras 1 and 2. An image processor 3 calculates a three-dimensional position of each LED 7 according to the bright point parallax between the right and left images of the stereoscopic image of the LED 7. Each LED 7 and the indication point are in known fixed position relation, so when the three-dimensional positions of the respective LEDs 7 are known, the fixed position relation is added to the positions to calculate the three-dimensional position of the indication point 6 at the position which can not be picked up by the cameras 1 and 2, i.e. the object point P.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、CA D (Computer Aided
 Design) 。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is applicable to computer aided
Design).

CA T (Computer Aided Test
ing)等の利用時に加工品実体三次元形状寸法を入力
する際や、三次元情報の交換によるコンピュータとのマ
ンマシンインターフェイスとして用いて好適の三次元位
置測定方式に関する。
CA T (Computer Aided Test
The present invention relates to a three-dimensional position measuring method suitable for inputting the three-dimensional shape and dimensions of a processed product when using a software such as ing), and for use as a man-machine interface with a computer by exchanging three-dimensional information.

[従来の技術] この種の三次元位置測定装置としては、従来、特開昭6
3−61904号公報に示されたものがある。この従来
装置は、ワーク表面上の測定点の三次元座標を得るため
に、■測定点に輝点を投射するための複数の投光器と、
■輝点周辺のステレオ画像を得るための2台の撮像器と
、■ステレオ画像から三角測量法により複数の測定点の
三次元座標を算出する手段と、■複数の測定点の三次元
座標から測定ヘッド(投光器、撮像器)とワークとの相
対的位置関係を求める手段とから構成されている。つま
り、この従来装置では、ワーク表面上の測定点を教示す
るために、投光器から投射された輝点を用いている。
[Prior art] This type of three-dimensional position measuring device has been developed by
There is one shown in Publication No. 3-61904. In order to obtain the three-dimensional coordinates of the measurement point on the workpiece surface, this conventional device includes: (1) multiple projectors for projecting bright spots onto the measurement point;
■Two imagers to obtain stereo images around the bright spot; ■Means for calculating the three-dimensional coordinates of multiple measurement points from the stereo images by triangulation; ■From the three-dimensional coordinates of the multiple measurement points. It consists of means for determining the relative positional relationship between the measurement head (projector, imager) and the workpiece. In other words, this conventional device uses a bright spot projected from a light projector to indicate the measurement point on the workpiece surface.

また、上記従来技術のほかに、ワーク表面上の測定点に
点光源を直接付加する手段も開示されている〔テレビジ
ョン学会技術報告ITA40−2(1977)第7頁「
倉沢他:半導体装置検出方式による歩行パターン計測シ
ステム」参照〕。
In addition to the above-mentioned conventional technology, a means for directly adding a point light source to a measurement point on the surface of a workpiece is also disclosed [Television Society of Japan Technical Report ITA40-2 (1977) p. 7.
Kurasawa et al.: “Gait pattern measurement system using semiconductor device detection method”].

[発明が解決しようとする課題] しかしながら、測定点を光ビームの照射による輝点て教
示する従来装置では、次のような問題がある。
[Problems to be Solved by the Invention] However, the conventional apparatus that uses a bright spot as a measurement point by irradiation with a light beam has the following problems.

(a)ワークの穴内部や背面、側面など左右の撮像器で
共通に見ることのできない部位の教示は不可能である。
(a) It is impossible to teach parts such as the inside of a hole, the back surface, and the side surface of a workpiece that cannot be seen in common with the left and right imagers.

(b)ワーク表面が鏡面の場合、輝点から散乱光が生じ
ず、撮像できなくなる。
(b) If the work surface is a mirror surface, no scattered light is generated from the bright spot, making it impossible to capture an image.

(c)ワーク表面が低反射率の場合、輝点の像が得られ
ない。
(c) If the workpiece surface has low reflectance, an image of a bright spot cannot be obtained.

(d)ワーク表面が拡散面であっても面が傾いていると
、近い方に明るい輝点が生じ、誤差の原因となる。
(d) Even if the surface of the workpiece is a diffusive surface, if the surface is tilted, a bright bright spot will appear on the closer side, causing an error.

(e)ワークの形状変化が激しいと多重反射を生じ、輝
点が複数となる。
(e) If the shape of the workpiece changes drastically, multiple reflections occur, resulting in multiple bright spots.

また、測定点に点光源を直接付加する従来手段では、上
述した(a)、 (d)、 (e)と同様の問題がある
ほか、点光源の位置が実際の表面から光源の大きさの半
分程度ずれ、誤差の原因となってしまうなどの課題もあ
る。
In addition, with the conventional method of directly adding a point light source to the measurement point, there are problems similar to those in (a), (d), and (e) above, and the position of the point light source is far from the actual surface due to the size of the light source. There are also problems such as a shift of about half, which can cause errors.

本発明は、このような課題を解決しようとするもので、
測定対象ワークの穴内部、背面、側面、あるいはその表
面が鏡面、拡散面9反射率の大小に係らず測定を可能に
するとともに、測定精度の向上をはかった三次元位置測
定方式を提供することを目的とする。
The present invention aims to solve such problems,
To provide a three-dimensional position measuring method that enables measurement regardless of whether the inside of a hole, back, side, or surface of a workpiece to be measured is a mirror surface or a diffused surface 9 reflectance, and which improves measurement accuracy. With the goal.

[課題を解決するための手段] 上記目的を達成するために、本発明の三次元位置測定方
式は、ステレオ画像を得るための少なくとも2台の撮像
装置と、該撮像装置からのステレオ画像に基づき三次元
位置を算出する演算手段と、測定対象点を指示する指示
点と該指示点に対し予め既知の固定的位置関係にある複
数の点光源とを有する測定対象点教示手段とをそなえ、
前記指示点により前記測定対象点を指示し前記複数の点
光源を点灯させた状態の前記測定対象点教示手段を前記
撮像装置により撮像し、前記演算手段が、前記撮像装置
からの前記複数の点光源のステレオ画像に基づき前記の
各点光源の三次元位置を演算し、得られた三次元位置と
前記固定的位置関係とに基づき前記指示点の三次元位置
を演算し、該三次元位置を前記測定対象点の三次元位置
として出力することを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the three-dimensional position measurement method of the present invention includes at least two imaging devices for obtaining stereo images, and a method based on the stereo images from the imaging devices. comprising a calculating means for calculating a three-dimensional position, a measuring point teaching means having a pointing point indicating a measuring point and a plurality of point light sources having a fixed positional relationship known in advance with respect to the pointing point,
The imaging device images the measurement target point teaching means in a state where the measurement target point is indicated by the pointing point and the plurality of point light sources are turned on, and the calculation means A three-dimensional position of each point light source is calculated based on the stereo image of the light source, a three-dimensional position of the indicated point is calculated based on the obtained three-dimensional position and the fixed positional relationship, and the three-dimensional position is calculated. It is characterized in that it is output as a three-dimensional position of the point to be measured.

[作   用] 上述した本発明の三次元位置測定方式では、測定対象点
の三次元位置を測定する際には、その測定対象点に、測
定対象点教示手段の指示点を接触配置し、この状態で測
定対象点教示手段の複数の点光源を点灯させ、その点光
源のステレオ画像を撮像装置により撮像する。
[Function] In the three-dimensional position measuring method of the present invention described above, when measuring the three-dimensional position of a point to be measured, the pointing point of the measuring point teaching means is placed in contact with the point to be measured, and this In this state, a plurality of point light sources of the measurement target point teaching means are turned on, and a stereo image of the point light sources is captured by an imaging device.

そして、演算手段により、撮像装置からの複数の点光源
のステレオ画像に基づき、各点光源の三次元位置が演算
される。ここで、複数の点光源と指示点とは、予め既知
の固定的位置関係にあるので、複数の点光源の三次元位
置が分かるとその三次元位置に前記固定的位置関係を加
味することで、容易に指示点の三次元位置が演算される
。そして、現ステレオ画像は、指示点で測定対象点を指
示した状態で得られたものであるので、指示点の三次元
位置は、そのまま測定対象点の三次元位置となっている
Then, the calculation means calculates the three-dimensional position of each point light source based on the stereo images of the plurality of point light sources from the imaging device. Here, since the plurality of point light sources and the indicated point have a fixed positional relationship known in advance, once the three-dimensional positions of the plurality of point light sources are known, it is possible to add the fixed positional relationship to the three-dimensional position. , the three-dimensional position of the indicated point can be easily calculated. Since the current stereo image is obtained with the pointing point pointing to the point to be measured, the three-dimensional position of the pointing point remains the three-dimensional position of the point to be measured.

これにより、測定対象点のステレオ画像を直接撮像する
ことができなくても、測定対象点教示手段の複数の点光
源のステレオ画像が得られれば、その画像から測定対象
点の三次元位置を測定することができる。
As a result, even if it is not possible to directly capture a stereo image of the measurement target point, if stereo images of multiple point light sources of the measurement target point teaching means are obtained, the three-dimensional position of the measurement target point can be determined from that image. can do.

[発明の実施例] 以下、図面により本発明の一実施例としての三次元位置
測定方式について説明すると、第1図はその説明図、第
2図その座標教示ペンを示す正面図、第3図は該座標教
示ペンの回路構成を示す回路図、第4図は本実施例の方
式の他の使用例を示す説明図である。
[Embodiments of the Invention] A three-dimensional position measuring method as an embodiment of the present invention will be explained below with reference to the drawings. Fig. 1 is an explanatory diagram thereof, Fig. 2 is a front view showing the coordinate teaching pen, and Fig. 3 is a drawing. 4 is a circuit diagram showing the circuit configuration of the coordinate teaching pen, and FIG. 4 is an explanatory diagram showing another usage example of the system of this embodiment.

第1図において、1,2はステレオ画像を得るための2
台のTVカメラ(撮像装置)、3はこれらのTVカメラ
1,2からのステレオ画像の左右画像中の輝点ずれ(視
差)に基づいて三次元位置を算出する画像処理器(演算
手段)、4は三吹元位置測定対象のワークで、このワー
ク4は、TVカメラ1.2からは撮像不可能な凹部4a
を有している。
In Fig. 1, 1 and 2 are 2 for obtaining stereo images.
3 is an image processor (calculating means) that calculates a three-dimensional position based on a bright point shift (parallax) in the left and right images of the stereo images from these TV cameras 1 and 2; Reference numeral 4 indicates a workpiece whose position is to be measured, and this workpiece 4 has a concave portion 4a that cannot be imaged by the TV camera 1.2.
have.

5は座標教示ペン(測定対象点教示手段)で、この座標
教示ペン5は、第2,3図に示すように、ワーク4表面
上の測定対象点Pを指示する指示点6と、この指示点6
に対し予め既知の固定的位置関係にある4個のLED(
点光源)7と、指示点6を含むペン5の先端部において
指示点6がワーク4表面に接すると閉路状態になるスイ
ッチ8と。
Reference numeral 5 denotes a coordinate teaching pen (measuring target point teaching means), and as shown in FIGS. Point 6
Four LEDs (
a point light source) 7, and a switch 8 which becomes a closed circuit state when the pointing point 6 contacts the surface of the workpiece 4 at the tip of the pen 5 including the pointing point 6.

LED7点灯用の電源となる電池9と、LED7を覆う
ガラスカバー10と、保護抵抗11とから構成されてい
る。各LED7は、第3図に示すように、相互に並列的
に接続され、スイッチ8が閉路されると保護抵抗11を
介して電池9からの給電を受けて点灯するようになって
いる。また、第2図に示すように、指示点6および各L
ED7はすべて座標教示ペン5の中心軸上に配置され、
指示点6と最下部のLED7どの距離はQ′、各LED
7,7間の距離はΩとなっており、予め既知である。さ
らに、各LED7としては例えば400μ履角の大きさ
のものが用いられる。
It is composed of a battery 9 that serves as a power source for lighting the LED 7, a glass cover 10 that covers the LED 7, and a protective resistor 11. As shown in FIG. 3, the LEDs 7 are connected in parallel with each other, and when the switch 8 is closed, they receive power from the battery 9 via the protective resistor 11 and turn on. In addition, as shown in FIG.
All ED7 are arranged on the central axis of the coordinate teaching pen 5,
The distance between the indicator point 6 and the lowest LED 7 is Q', and each LED
The distance between 7 and 7 is Ω, which is known in advance. Further, each LED 7 has a footprint angle of 400 μm, for example.

上述の構成により、例えば、第1図に示すように、TV
カメラ1,2からは直接撮像することのできないワーク
4の凹部4aにある測定対象点Pの三次元位置を測定す
る際には、まず、その測定対象点Pに、座標教示ペン5
の指示点6を接触配置する。座標教示ペン5の指示点6
が、測定対象点Pに対して接触ないし押し付けられると
、スイッチ8が閉じられ、座標教示ペン5の各LED7
が点灯する。
With the above configuration, for example, as shown in FIG.
When measuring the three-dimensional position of the measurement target point P in the recess 4a of the workpiece 4, which cannot be directly imaged by the cameras 1 and 2, first, the coordinate teaching pen 5 is attached to the measurement target point P.
The pointing point 6 of is placed in contact with the point 6 of FIG. Point 6 of coordinate teaching pen 5
is in contact with or pressed against the measurement target point P, the switch 8 is closed and each LED 7 of the coordinate teaching pen 5 is turned on.
lights up.

このようにして各LED7を点灯させた状態で、LED
7を含む座標教示ペン5のステレオ画像をTVカメラ1
,2により撮像する。
With each LED 7 lit in this way, the LED
A stereo image of the coordinate teaching pen 5 including 7 is captured by the TV camera 1.
, 2.

その撮像結果は画像処理器3へ入力され、この画像処理
器3においては、LED7のステレオ画像の左右画像中
における輝点視差に基づいて、各LED7の三次元位置
が演算される。
The imaging results are input to the image processor 3, and the image processor 3 calculates the three-dimensional position of each LED 7 based on the bright point parallax in the left and right images of the stereo images of the LEDs 7.

さらに、各LED7と指示点6とは、第2図により前述
した通り予め既知の固定的位置関係にあるのでS各LE
D7の三次元位置が分かるとその三次元位置にその固定
的位置関係を加味することで、TVカメラ1,2では直
接撮像することのできない位置にある指示点6の三次元
位置(三次元座標)、即ち、測定対象点Pの三次先位M
(三次元座標)が容易に演算される。
Furthermore, since each LED 7 and the pointing point 6 have a fixed positional relationship known in advance as described above with reference to FIG.
Once the three-dimensional position of D7 is known, by adding the fixed positional relationship to that three-dimensional position, the three-dimensional position (three-dimensional coordinate ), that is, the cubic top M of the measurement target point P
(three-dimensional coordinates) can be easily calculated.

ところで、上述した座標教示ペン5を、第4図に示すよ
うに、机上で平面的に並進移動させることにより、従来
のディジタイザやマウスと類似の二次元座標入力器とし
て用いることもできる。また、上述した座標教示ペン5
を用い、複数個のしED7の三次元位置を求めれば、こ
れらの三次元位置からペン5の中心軸の方向をもつベク
トル]も算出することが可能で、従来のジョイスティッ
クと類似の機能を得ることもできる。このような2種の
機能を組み合わせると、人間の空間感覚に合致した「三
次元座標+方向」という情報をコンピュータと交換でき
るため、新しいマンマシンインターフェイス機器として
有効に利用できる。
By the way, as shown in FIG. 4, the coordinate teaching pen 5 described above can be used as a two-dimensional coordinate input device similar to a conventional digitizer or mouse by moving it in translation on a plane on a desk. In addition, the coordinate teaching pen 5 mentioned above
If the three-dimensional positions of multiple ED7s are obtained using You can also do that. By combining these two types of functions, information such as "three-dimensional coordinates + direction" that matches the human sense of space can be exchanged with a computer, making it possible to effectively use it as a new man-machine interface device.

このように、本実施例の測定方式によれば、測定対象点
Pのステレオ画像を直接撮像することができなくても、
座標教示ペン5の各LED7のステレオ画像が得られれ
ば、その画像から測定対象点Pの三次元位置を求めるこ
とができるので、ワーク4の穴内部、背面、側面、ある
いはその表面が鏡面、拡散面2反射率の大小に係らず表
面の三次元位置の測定が可能になるほか、LED7の個
数を増すことで測定精度を大幅に向上することができる
In this way, according to the measurement method of this embodiment, even if it is not possible to directly capture a stereo image of the measurement target point P,
If a stereo image of each LED 7 of the coordinate teaching pen 5 is obtained, the three-dimensional position of the measurement target point P can be determined from that image. It becomes possible to measure the three-dimensional position of the surface regardless of the magnitude of the surface 2 reflectance, and by increasing the number of LEDs 7, the measurement accuracy can be greatly improved.

また、本実施例の測定方式における座標教示ペン5は、
コンピュータとのマンマシンインターフェイス機器とし
て、従来のマウスのような二次元ディジタイザよりも一
次元情報量の多い三次元ディジタイザ機器として利用で
き、その場合、人間のもつ空間感覚と整合性の高いマン
マシンインターフェイスを実現することができる。
Further, the coordinate teaching pen 5 in the measurement method of this embodiment is
As a man-machine interface device with a computer, it can be used as a three-dimensional digitizer device that has a larger amount of one-dimensional information than a two-dimensional digitizer such as a conventional mouse, and in that case, a man-machine interface that is highly compatible with the spatial sense of humans. can be realized.

なお、上記実施例では、座標教示ペン5のLED7を4
個そなえた場合について説明しているが、最低限2個の
LEDがあれば上述した実施例と同様の機能を得ること
ができる。また、座標やベクトルの検出精度を向上する
ために多数個のLEDを配置してもよい。さらに、上記
実施例では、各LED7を直線に配置した場合について
説明しているが、指示点6との固定的位置関係が明確で
あれば、各LED7はどのように配置してもよい。
In the above embodiment, the LED 7 of the coordinate teaching pen 5 is set to 4.
Although the case where LEDs are provided is described, the same function as the above-mentioned embodiment can be obtained if there are at least two LEDs. Furthermore, a large number of LEDs may be arranged to improve the accuracy of detecting coordinates and vectors. Further, in the above embodiment, a case has been described in which the LEDs 7 are arranged in a straight line, but each LED 7 may be arranged in any manner as long as the fixed positional relationship with the pointing point 6 is clear.

また、上述の実施例では、各点光源の三次元位置を得る
ために、2台の撮像装置でステレオ画像を撮像し、画像
処理器で画像処理により演算する方式を開示しているが
、2台の撮像装置の代わりに2台の光点位置検出器を用
いると、画像処理器を要することなく簡単な演算で各点
光源の三次元位置を求めることも可能である。ただし、
光点位置検出器は同時に複数の点光源を扱えないため、
その場合には、各点光源を時系列的に点灯させることが
必要になる。
Further, in the above embodiment, in order to obtain the three-dimensional position of each point light source, a method is disclosed in which stereo images are captured using two imaging devices and calculations are performed by image processing using an image processor. If two light spot position detectors are used instead of one imaging device, it is also possible to determine the three-dimensional position of each point light source by simple calculations without requiring an image processor. however,
Since the light spot position detector cannot handle multiple point light sources at the same time,
In that case, it is necessary to turn on each point light source in chronological order.

[発明の効果コ 以上詳述したように、本発明の三次元位置測定方式によ
れば、測定対象点のステレオ画像を直接撮像することが
できなくても、測定対象点教示手段の点光源のステレオ
画像を撮像することで、そのステレオ画像に基づいて測
定対象点の三次元位置を測定できるように構成したので
、測定対象ワークの穴内部、背面、側面、あるいはその
表面が鏡面、拡散面9反射率の大小に係らず測定を行な
えるとともに、測定精度が大幅に向上するなどの効果が
ある。
[Effects of the Invention] As detailed above, according to the three-dimensional position measurement method of the present invention, even if it is not possible to directly capture a stereo image of the measurement target point, the point light source of the measurement target point teaching means can be used. By capturing a stereo image, the three-dimensional position of the measurement target point can be measured based on the stereo image. This method has the advantage of being able to perform measurements regardless of the magnitude of the reflectance, and significantly improving measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明の一実施例としての三次元位置測定
方式を示すもので、第1図はその説明図、第2図その座
標教示ペンを示す正面図、第3図は該座標教示ペンの回
路構成を示す回路図、第4図は本実施例の方式の他の使
用例を示す説明図である。 図において、1.2−TVカメラ(撮像装置)、3−画
像処理器(演算手段)、4−ワーク、4a凹部、5−座
標教示ペン(測定対象点教示手段)、6−指示点、7−
L E D (点光源)、8−スイッチ。 9−電池、10−ガラスカバー、11−保護抵抗、P−
−一測定対象点。
Figures 1 to 4 show a three-dimensional position measurement method as an embodiment of the present invention. Figure 1 is an explanatory diagram thereof, Figure 2 is a front view showing the coordinate teaching pen, and Figure 3 is a diagram showing the coordinates. FIG. 4 is a circuit diagram showing the circuit configuration of the teaching pen, and is an explanatory diagram showing another usage example of the system of this embodiment. In the figure, 1. 2-TV camera (imaging device), 3-image processor (calculating means), 4-workpiece, 4a recess, 5-coordinate teaching pen (measurement target point teaching means), 6-instruction point, 7 −
LED (point light source), 8-switch. 9-Battery, 10-Glass cover, 11-Protection resistor, P-
- A point to be measured.

Claims (1)

【特許請求の範囲】 ステレオ画像を得るための少なくとも2台の撮像装置と
、該撮像装置からのステレオ画像に基づいて三次元位置
を算出する演算手段とがそなえられるとともに、 測定対象点を指示する指示点と該指示点に対して予め既
知の固定的位置関係にある複数の点光源とを有してなる
測定対象点教示手段がそなえられ、前記指示点により前
記測定対象点を指示して前記複数の点光源を点灯させた
状態の前記測定対象点教示手段を、前記撮像装置により
撮像し、前記演算手段が、前記撮像装置により撮像され
た前記複数の点光源のステレオ画像に基づいて、前記の
各点光源の三次元位置を演算し、得られた前記の各点光
源の三次元位置と前記予め既知の固定的位置関係とに基
づいて、前記指示点の三次元位置を演算し、得られた該
指示点の三次元位置を前記測定対象点の三次元位置とし
て出力することを特徴とする三次元位置測定方式。
[Scope of Claims] At least two imaging devices for obtaining stereo images, and arithmetic means for calculating a three-dimensional position based on the stereo images from the imaging devices, and for indicating a point to be measured. Measurement target point teaching means is provided which has a pointing point and a plurality of point light sources having a fixed positional relationship known in advance with respect to the pointing point, and the measuring point teaching means is provided with a pointing point and a plurality of point light sources having a fixed positional relationship known in advance with respect to the pointing point, and the pointing point is used to point out the measuring point using the pointing point. The measurement target point teaching means in a state where a plurality of point light sources are turned on is imaged by the imaging device, and the calculation means calculates the measurement target point teaching means based on the stereo images of the plurality of point light sources imaged by the imaging device. The three-dimensional position of each point light source is calculated, and the three-dimensional position of the indicated point is calculated based on the obtained three-dimensional position of each point light source and the previously known fixed positional relationship. A three-dimensional position measuring method, characterized in that the three-dimensional position of the designated point is output as the three-dimensional position of the point to be measured.
JP2053770A 1990-03-07 1990-03-07 Three-dimensional position measurement method Expired - Lifetime JPH0769144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053770A JPH0769144B2 (en) 1990-03-07 1990-03-07 Three-dimensional position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053770A JPH0769144B2 (en) 1990-03-07 1990-03-07 Three-dimensional position measurement method

Publications (2)

Publication Number Publication Date
JPH03255910A true JPH03255910A (en) 1991-11-14
JPH0769144B2 JPH0769144B2 (en) 1995-07-26

Family

ID=12952052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053770A Expired - Lifetime JPH0769144B2 (en) 1990-03-07 1990-03-07 Three-dimensional position measurement method

Country Status (1)

Country Link
JP (1) JPH0769144B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132562A (en) * 1996-10-31 1998-05-22 Nippon Denki Ido Tsushin Kk Distance measuring equipment
DE102005048812B4 (en) * 2005-10-10 2011-02-10 Universität Stuttgart Control of workpiece-processing machines
JP2018025542A (en) * 2016-08-10 2018-02-15 巨大機械工業股▲分▼有限公司 Dynamic operation detection system
JP2019032330A (en) * 2013-02-04 2019-02-28 デー・エヌ・ファオ.ゲー・エル.エス・エーDnv Gl Se Inspection camera unit inspecting interior, method for inspecting interior and sensor unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132562A (en) * 1996-10-31 1998-05-22 Nippon Denki Ido Tsushin Kk Distance measuring equipment
DE102005048812B4 (en) * 2005-10-10 2011-02-10 Universität Stuttgart Control of workpiece-processing machines
JP2019032330A (en) * 2013-02-04 2019-02-28 デー・エヌ・ファオ.ゲー・エル.エス・エーDnv Gl Se Inspection camera unit inspecting interior, method for inspecting interior and sensor unit
JP2018025542A (en) * 2016-08-10 2018-02-15 巨大機械工業股▲分▼有限公司 Dynamic operation detection system

Also Published As

Publication number Publication date
JPH0769144B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US10089415B2 (en) Three-dimensional coordinate scanner and method of operation
JP6068593B2 (en) System and method for calibrating a vision system to a touch probe
US9500469B2 (en) Laser line probe having improved high dynamic range
US7310431B2 (en) Optical methods for remotely measuring objects
JP2564963B2 (en) Target and three-dimensional position and orientation measurement system using the target
US6256099B1 (en) Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement
US20130057650A1 (en) Optical gage and three-dimensional surface profile measurement method
NO174025B (en) POINT MEASUREMENT OF SPACIAL COORDINATES
US20200318946A1 (en) Three-dimensional measuring system
EP3322959B1 (en) Method for measuring an artefact
JP2007093412A (en) Three-dimensional shape measuring device
Yamauchi et al. Calibration of a structured light system by observing planar object from unknown viewpoints
JPH03255910A (en) Three-dimensional position measurement system
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
US20200318954A1 (en) Three-dimensional measuring system
JPH0282106A (en) Optical measuring method for three-dimensional position
US11644303B2 (en) Three-dimensional coordinate measuring instrument coupled to a camera having a diffractive optical element
JP4449051B2 (en) 3D motion measurement method and 3D motion measurement apparatus for an object
JPH0735515A (en) Device for measuring diameter of object
JPH03160303A (en) Detecting method of multiple hole
JPH05329793A (en) Visual sensor
Edleblute et al. Computing the six degrees of freedom of light emitting diodes in a monocular image
JPH03205503A (en) Image position detecting method for sheet light
JPS63196806A (en) Inclination measuring device
JP2001175405A (en) Device and method for measuring three-dimensional position and posture and recording medium