JPH0156682B2 - - Google Patents

Info

Publication number
JPH0156682B2
JPH0156682B2 JP57083998A JP8399882A JPH0156682B2 JP H0156682 B2 JPH0156682 B2 JP H0156682B2 JP 57083998 A JP57083998 A JP 57083998A JP 8399882 A JP8399882 A JP 8399882A JP H0156682 B2 JPH0156682 B2 JP H0156682B2
Authority
JP
Japan
Prior art keywords
light
light spot
dimensional shape
detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57083998A
Other languages
Japanese (ja)
Other versions
JPS58201006A (en
Inventor
Kazuo Yamaguchi
Akio Oosaki
Nobuhiko Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8399882A priority Critical patent/JPS58201006A/en
Publication of JPS58201006A publication Critical patent/JPS58201006A/en
Publication of JPH0156682B2 publication Critical patent/JPH0156682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、プリント基板面上のはんだ付面検査
または厚膜モジユールの搭載部品・パターン間の
接続検査等のように、検査対象の明暗情報のみで
は検査をすることができない立体形状を高速で検
出するための立体形状検出装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables inspection using only the brightness information of the object to be inspected, such as inspection of the soldered surface on the surface of a printed circuit board or inspection of connections between components and patterns mounted on a thick film module. The present invention relates to a three-dimensional shape detection device for detecting three-dimensional shapes that cannot be detected at high speed.

まず、従来例を図に従つて説明する。 First, a conventional example will be explained with reference to the drawings.

第1図は、従来の立体形状検出装置の一例のブ
ロツク図、第2図は、その被検出立体形状の一例
の部分斜視図、第3図は、同光切断線のテレビジ
ヨンカメラによる画像信号図、第4図は、同被検
出立体形状の他の例の部分斜視図である。
Fig. 1 is a block diagram of an example of a conventional three-dimensional shape detection device, Fig. 2 is a partial perspective view of an example of the three-dimensional shape to be detected, and Fig. 3 is an image signal obtained by a television camera along the same optical cutting line. 4 are partial perspective views of other examples of the same three-dimensional shape to be detected.

この従来装置は、プリント基板PRT上の搭載
部品Pのはんだ付部分に対し、白色光の光源1か
らスリツト2、集光レンズ3を通して平面状のス
リツト光SLTを照射し、第2図に示すように、
その部品Pのリード線LとランドRとの間のはん
だ付部S付近に対する投影光線を斜め横上方に設
置されたテレビジヨンカメラ5(結像レンズ4経
由)で撮像する。
This conventional device irradiates planar slit light SLT from a white light source 1 through a slit 2 and a condensing lens 3 onto the soldered part of a mounted component P on a printed circuit board PRT, as shown in FIG. To,
A projection light beam to the vicinity of the soldered portion S between the lead wire L and the land R of the component P is imaged by a television camera 5 (via the imaging lens 4) installed diagonally upward laterally.

その投影光線の光切断線OSLは、上記はんだ
付部S付近の上記スリツト光SLTが照射されて
いる部分の断面の輪郭形状を示すので、試料テー
ブル6をx軸方向に移動することにより、リード
線Lの各部における立体形状(はんだ付形状)を
順次に検出して全体の当該立体形状を識別するこ
とができる。
The optical cutting line OSL of the projected light beam indicates the contour shape of the cross section of the part near the soldering part S that is irradiated with the slit light SLT, so by moving the sample table 6 in the x-axis direction, the lead By sequentially detecting the three-dimensional shape (soldering shape) in each part of the line L, the entire three-dimensional shape can be identified.

テレビジヨンカメラ5で撮像した画面は、第3
図に示すように、光線断線OSLの部分の輝度が
高く、テレビジヨンカメラ5の水平走査方向
HSCNが下から上であるので(第3図において、
上下方向の分解能を高くして検出精度を向上する
ため)、その各光切断線OSLの形状は、それごと
に当該各画面全体について最明点までの全位置
(時間)データを求めることによつて初めて得ら
れる。
The screen captured by the television camera 5 is the third
As shown in the figure, the brightness of the part of the optical line broken OSL is high, and the brightness is high in the horizontal scanning direction of the television camera 5.
Since HSCN is from bottom to top (in Figure 3,
In order to improve the detection accuracy by increasing the resolution in the vertical direction), the shape of each optical cutting line OSL is determined by obtaining all position (time) data up to the brightest point for each screen. You can only get it if you apply it.

したがつて、1本の光切断線OSLを検出する
だけでも相当な走査時間を要するので、全体形状
を検出するには非常な長時間を要する。例えば、
走査時間が1走査線当り20msとすると、1つの
物体面を256×256画素、8ビツト階調で3次元像
を得るには、20ms×256≒5秒の時間を必要と
し、実用上の大きな制約となる。
Therefore, it takes a considerable amount of scanning time just to detect one optical section line OSL, so it takes a very long time to detect the entire shape. for example,
Assuming that the scanning time is 20 ms per scanning line, it takes 20 ms x 256 ≒ 5 seconds to obtain a three-dimensional image of one object surface with 256 x 256 pixels and 8-bit gradation, which is a large practical problem. It becomes a constraint.

更に、対象物体が軸対称の場合には、光点走査
を軸対称の方向と一致させ、これと直交する一方
向からの検出を物体の半分まで行えば、その物体
形状を問題なく検出できるが、複雑形状で軸対称
でない物体の場合または軸対称であつても1つの
物体形状の場合には、物体の全面について検出を
行う必要がある。
Furthermore, if the target object is axially symmetrical, the shape of the object can be detected without any problem by aligning the light spot scanning with the axially symmetrical direction and performing detection from one direction perpendicular to this up to half of the object. In the case of an object having a complex shape and not axially symmetrical, or in the case of a single object shape even though it is axially symmetrical, it is necessary to detect the entire surface of the object.

例えば、第4図に示すような凹凸のある物体に
ついては、その凸部CVXによつて影となる検出
方向の反対側の部分の検出ができない。これを解
決するには、この物体を水平面上で180゜回転をし
て同一方向から再検出するか、または反対側にも
同様な検出手段を設けなければならない。しかし
ながら、前者の場合は、検出(検査)時間が更に
増大し、後者の場合は、物理的に検出手段の配置
が困難であつたり、コストの大幅な増加となつた
りして実用上の問題であつた。
For example, in the case of an uneven object as shown in FIG. 4, the portion on the opposite side of the detection direction that is shadowed by the convex portion CVX cannot be detected. To solve this problem, the object must be rotated 180 degrees on a horizontal plane and detected again from the same direction, or a similar detection means must be provided on the opposite side. However, in the former case, the detection (inspection) time further increases, and in the latter case, it is difficult to physically arrange the detection means, and the cost increases significantly, resulting in practical problems. It was hot.

本発明の目的は、上記した従来技術の欠点をな
くし、検出時間、検出性能を向上させ、かつ、経
済的な立体形状検出装置を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, improve detection time and detection performance, and provide an economical three-dimensional shape detection device.

本発明の特徴は、超音波励振振動が加えられた
光偏光器を通したレーザビームを物体表面上に照
射して直線状に光点走査をし、この光点の物体表
面上の軌跡の光線を参照光と位置検出光とに分路
し、その各光強度について光電変換を行つた各電
気信号の比を求め、これを当該光切断線信号とし
て順次に物体表面上の他の位置についても得るこ
とにより、その物体の立体形状を検出しうるよう
に構成した立体形状検出装置にある。
The feature of the present invention is to irradiate the surface of an object with a laser beam that has passed through an optical polarizer to which ultrasonic excitation vibration has been applied, to scan a light spot in a straight line, and to ray the trajectory of this light spot on the surface of the object. is shunted into a reference light and a position detection light, and the ratio of each electrical signal subjected to photoelectric conversion is calculated for each light intensity, and this is used as the light cutting line signal to sequentially apply it to other positions on the object surface. There is provided a three-dimensional shape detection device configured to detect the three-dimensional shape of an object by obtaining the three-dimensional shape of the object.

以下、本発明の実施例を図に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第5図は、本発明に係る立体形状検出装置の一
実施例のブロツク図、第6図は、その光切断線に
よる立体形状図である。
FIG. 5 is a block diagram of an embodiment of the three-dimensional shape detecting device according to the present invention, and FIG. 6 is a three-dimensional shape diagram using optical cutting lines.

ここで、10は、レーザ走査部に係るレーザ光
源、11は、同絞り用レンズ、12は、同光偏向
器、13は、同掃引発振器、14は、同集光レン
ズ、15は、光電検出部に係る結像レンズ、16
は、同ハーフミラー、17は、同光点位置検出フ
イルタ、18,19は、同集光レンズ、20,2
1は、同光電変換器、22,23は、同増幅器、
24は、画像データ入力部に係る割算器、25
は、同A−D(アナログ−デイジタル)変換器、
26は、処理部、27は、表示部に係る3次元デ
イスプレイ、28は、試料移動部に係るパルス発
生器、29は、同パルスモータ、30は、同試料
テーブル(例えば、XYテーブル)である。
Here, 10 is the laser light source related to the laser scanning unit, 11 is the aperture lens, 12 is the optical deflector, 13 is the sweep oscillator, 14 is the condensing lens, and 15 is the photoelectric detection Imaging lens according to section 16
is the same half mirror, 17 is the same light spot position detection filter, 18 and 19 are the same condensing lens, 20 and 2
1 is the same photoelectric converter, 22 and 23 are the same amplifiers,
24 is a divider related to the image data input section; 25
is the same A-D (analog-digital) converter,
26 is a processing unit, 27 is a three-dimensional display related to the display unit, 28 is a pulse generator related to the sample moving unit, 29 is the same pulse motor, and 30 is the same sample table (for example, an XY table). .

まず、レーザ光源10からのレーザビームは、
絞り用レンズ11によつて適当な大きさのスポツ
ト状のビームに絞り込まれ、光偏向器12に入射
される。
First, the laser beam from the laser light source 10 is
The aperture lens 11 focuses the beam into a spot-like beam of an appropriate size, and the beam is incident on the optical deflector 12.

光偏向器12は、掃引発振器13からの高周波
電気信号を圧電振動子で変換して発生した超音波
(掃引発振器13の掃引信号周波数と同一の周波
数のもの)の励振振動により、その音響光学媒体
の屈折率が周期的に変化して入射されたレーザビ
ームを回折させる。その回折角は上記超音波の周
波数に比例するので、光偏向が可能となる。
The optical deflector 12 uses the excitation vibration of an ultrasonic wave (of the same frequency as the sweep signal frequency of the sweep oscillator 13) generated by converting a high-frequency electric signal from the sweep oscillator 13 with a piezoelectric vibrator to deflect the acousto-optic medium. The refractive index of the laser beam changes periodically and diffracts the incident laser beam. Since the diffraction angle is proportional to the frequency of the ultrasonic wave, light deflection is possible.

すなわち、このように回折されたレーザビーム
が集光レンズ14を通して立体形状の検出対象の
物体Qの表面上に投影されると、その部分につい
て直線状(x軸方向)に光点走査が行われること
になる。
That is, when the laser beam diffracted in this way is projected onto the surface of the three-dimensional object Q to be detected through the condensing lens 14, the light spot is scanned in a straight line (in the x-axis direction) on that part. It turns out.

この光点走査の軌跡の検出は、上記光点走査方
向(x軸方向)と直交する方向に設けられた結像
レンズ15の光路をハーフミラー16で2分し、
その一方には光点位置によつて透過率が変化する
光点位置検出フイルタ17を挿入し、他方には何
も挿入せず直接に、それぞれ、集光レンズ18,
19を通して光電変換器20,21(例えば、ホ
トマルチプライヤによるもの)の出力を増幅器2
2,23で所望のレベルに増幅した光点強度を比
較することによつて行う。
Detection of the locus of this light spot scanning involves dividing the optical path of the imaging lens 15, which is provided in a direction perpendicular to the light spot scanning direction (x-axis direction), into two with a half mirror 16.
A light spot position detection filter 17 whose transmittance changes depending on the light spot position is inserted into one of them, and a condensing lens 18,
The output of the photoelectric converters 20, 21 (e.g., from a photomultiplier) is transmitted to the amplifier 2 through 19.
This is done by comparing the light spot intensities amplified to a desired level in steps 2 and 23.

まず、光点位置検出フイルタ17が挿入された
光路からの光点強度は、例えば、物体Qの表面上
に投影された各光点位置の高さに比例して位置検
出フイルタ17の透過率が変化するようにしてお
くことにより、物体Qの表面上の高さ方向の位置
情報を含む位置検出光信号に対応する検出電気信
号Zとして検出される。このようなフイルタは、
例えば、上下方向に厚さの異なる光学ガラスから
なるもの、または平面ガラスに所定の透過率の塗
料等を上下方向で厚さを変えてコーテイングした
もの等で実現することができる。
First, the light spot intensity from the optical path in which the light spot position detection filter 17 is inserted is determined by the transmittance of the position detection filter 17 in proportion to the height of each light spot position projected onto the surface of the object Q. By making it change, it is detected as a detection electric signal Z corresponding to a position detection optical signal containing position information in the height direction on the surface of the object Q. Such a filter is
For example, it can be realized by optical glass having different thicknesses in the vertical direction, or by coating a flat glass with paint or the like having a predetermined transmittance by varying the thickness in the vertical direction.

なお、何も挿入されない光路側の増幅器23か
らの出力電気信号Xは、光点走査方向の各位置に
おける光点強度に対応する無処理のものである。
Note that the output electrical signal X from the amplifier 23 on the optical path side into which nothing is inserted is an unprocessed signal corresponding to the light spot intensity at each position in the light spot scanning direction.

これらの各信号Z,Xは対象物の表面状態また
は光源の光量変化等に応じて変化するので、その
信号比Z/Xをとつて上記状態、変化に対する補
償、正規化をすることにより、検出性能を向上す
るようにしている。
Since each of these signals Z and X changes depending on the surface condition of the object or changes in the light intensity of the light source, detection We are trying to improve performance.

すなわち、上記信号Z,Xの比Z/X(光切断線
信号)を割算器24で光点走査の1周期ごとに求
め、これをA−D変換器25でデイジタル値に変
換して処理部26に入力する。
That is, the ratio Z/X (optical section line signal) of the signals Z and 26.

処理部26は、1つの光切断線信号の入力ごと
にパルス発生器28を制御してパルスモータ29
を駆動し、当該光切断線と垂直方向(y軸方向)
に試験テーブル30を移動する。
The processing unit 26 controls the pulse generator 28 and operates the pulse motor 29 every time one optical cutting line signal is input.
in the direction perpendicular to the light cutting line (y-axis direction)
Move the test table 30 to .

上述の各動作を順次に行い、3次元デイスプレ
イ27は、処理部26からの各光切断線信号によ
る情報(データ)により、当該立体形状を第6図
に示すように立体的に表示することができる。
The above-mentioned operations are performed in sequence, and the three-dimensional display 27 is able to display the three-dimensional shape three-dimensionally as shown in FIG. can.

上記実施例は、光点走査方向と直交する方向か
ら検出するようにしているが、必ずしも直交に限
らず他の方向からの検出を妨げるものではなく、
また、1方向に限らず2方向以上からも検出する
ことができる。
In the above embodiment, detection is performed from a direction perpendicular to the light spot scanning direction, but it is not necessarily perpendicular and does not necessarily prevent detection from other directions.
Furthermore, detection is possible not only from one direction but also from two or more directions.

第7図は、本発明に係る立体形状検出装置の他
の実施例の主要部のブロツク図であつて、凸部
CVXに対して相互に影となる反対の2方向から
の検出を可能としたものである。
FIG. 7 is a block diagram of the main part of another embodiment of the three-dimensional shape detection device according to the present invention, and shows a convex portion.
This makes it possible to detect CVX from two opposite directions that shadow each other.

この実施例は、立体形状の検出対象の物体Qの
凸部CVXに対して相互に影となる反対の2方向
に各光電検出部22A,23A(第5図の実施で
結像レンズ15、ハーフミラー16、位置検出フ
イルタ17並びに集光レンズ18,19、光電変
換器20,21および増幅器22,23に対応す
るもの)を設け、レーザ走査部10A(第5図の
実施例でレーザ光源10、絞り用レンズ11、光
偏向器12、掃引発振器13、集光レンズ14に
対応するもの)による光切断線を検出し、その各
信号Z,Xを割算器24に対して物体の頂点の前
後に分けてスイツチ24a,24bで切替え入力
するようにしたもので、全体の立体形状の検出が
可能となるものである。
In this embodiment, each photoelectric detection unit 22A, 23A (in the implementation of FIG. 5, an imaging lens 15, a half A mirror 16, a position detection filter 17, condensing lenses 18, 19, photoelectric converters 20, 21, and amplifiers 22, 23) are provided, and a laser scanning section 10A (in the embodiment shown in FIG. 5, a laser light source 10, (corresponding to the aperture lens 11, optical deflector 12, sweep oscillator 13, and condensing lens 14), and the respective signals Z and The three-dimensional shape of the whole image can be detected by inputting the three-dimensional shape separately using switches 24a and 24b.

上記各実施例において、その光偏向器は例えば
掃引周波数15kHz程度で光点走査をすることがで
きるので、光切断線の検出時間は約70μs/本であ
り、前述の従来例の20ms/本に対して約300倍も
の高速化が可能となり、その検出性能は大幅に向
上する。
In each of the above embodiments, the optical deflector can scan the light spot at a sweep frequency of about 15 kHz, so the detection time of the optical cutting line is approximately 70 μs/line, compared to 20 ms/line in the conventional example described above. The speed can be increased by approximately 300 times compared to the conventional method, and the detection performance will be significantly improved.

なお、複数個の光電検出部を設けた場合には、
上述のように複雑な凹凸形状をもつ立体形状の検
出が可能となり、ロボツトの視覚認識や、白黒の
濃淡画像では検査できない立体形状検査の自動化
などに対しても適用することができる。
In addition, when multiple photoelectric detection sections are provided,
As mentioned above, it is possible to detect three-dimensional shapes with complex unevenness, and it can also be applied to visual recognition of robots and automation of three-dimensional shape inspections that cannot be inspected using black and white grayscale images.

以上、詳細に説明したように、本発明によれ
ば、検出時間を大幅に向上し、また検出性能も向
上した経済的な立体形状検出装置を実施すること
ができ、その効果は顕著である。
As described above in detail, according to the present invention, it is possible to implement an economical three-dimensional shape detection device that significantly improves detection time and detection performance, and the effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の立体形状検出装置の一例のブ
ロツク図、第2図は、その被検出立体形状の一例
の部分斜視図、第3図は、同光切断線のテレビジ
ヨンカメラによる画像信号図、第4図は、同被検
出立体形状の他の例の部分斜視図、第5図は、本
発明に係る立体形状検出装置の一実施例のブロツ
ク図、第6図は、その光切断線による立体形状
図、第7図は、同他の実施例の主要部のブロツク
図である。 10……レーザ光源、11……絞り用レンズ、
12……光偏向器、13……掃引発振器、14…
…集光レンズ、15……結像レンズ、16……ハ
ーフミラー、17……光点位置検出フイルタ、1
8,19……集光レンズ、20,21……光電変
換器、22,23……増幅器、24……割算器、
25……A−D変換器、26……処理装置、27
……3次元デイスプレイ、28……パルス発生
器、29……パルスモータ、30……試料テーブ
ル、10A……レーザ走査部、22A,23A…
…光電変換部、24a,24b……スイツチ。
Fig. 1 is a block diagram of an example of a conventional three-dimensional shape detection device, Fig. 2 is a partial perspective view of an example of the three-dimensional shape to be detected, and Fig. 3 is an image signal obtained by a television camera along the same optical cutting line. 4 is a partial perspective view of another example of the same three-dimensional shape to be detected, FIG. 5 is a block diagram of one embodiment of the three-dimensional shape detection device according to the present invention, and FIG. FIG. 7, which is a three-dimensional diagram using lines, is a block diagram of the main parts of another embodiment. 10... Laser light source, 11... Aperture lens,
12... Optical deflector, 13... Sweep oscillator, 14...
... Condenser lens, 15 ... Image forming lens, 16 ... Half mirror, 17 ... Light spot position detection filter, 1
8, 19... Condenser lens, 20, 21... Photoelectric converter, 22, 23... Amplifier, 24... Divider,
25...A-D converter, 26...processing device, 27
... Three-dimensional display, 28 ... Pulse generator, 29 ... Pulse motor, 30 ... Sample table, 10A ... Laser scanning section, 22A, 23A ...
...Photoelectric conversion section, 24a, 24b...switch.

Claims (1)

【特許請求の範囲】 1 光偏向器を通したレーザビームを立体形状の
検出をすべき物体の表面上に照射して当該部分に
ついて光点走査をするレーザ走査手段と、該物体
表面上からの反射光を2系統に分路する手段と該
分路した反射光の一方を受け、該物体の上記光点
走査と直交する方向の光点位置に応じて光透過強
度を変化する光点位置−光強度変換素子を通して
光点位置検出光を得る手段と、上記分路した他の
反射光を参照光とし、該参照光と上記位置検出光
をそれぞれに対応する電気信号に変換する光電検
出手段と、上記位置検出光・参照光に対応する電
気信号比を求める手段と、該信号比を光切断線信
号としてアナログ・デイジタル変換する手段と、
各光切断線信号ごとに上記光点走査方向および光
点位置方向と直交する方向に上記物体を順次に移
動せしめる試料移動手段と、該移動に伴う各光切
断線信号に基づいて当該物体の立体形状情報を得
る手段を有することを特徴とする立体形状検出装
置。 2 上記光点走査方向に対して直交する2方向ま
たは交差する複数方向それぞれについて光電検出
手段を設けたことを特徴とする第1項記載の立体
形状検出装置。 3 上記アナログ・デイジタル変換したデイジタ
ル信号に基いて物体の立体形状の認識処理をする
ことを特徴とする立体形状検出装置。
[Scope of Claims] 1. Laser scanning means for irradiating a laser beam passed through an optical deflector onto the surface of an object whose three-dimensional shape is to be detected to scan a light spot on the part; Means for shunting the reflected light into two systems; and a light spot position that receives one of the shunted reflected lights and changes the light transmission intensity in accordance with the light spot position in a direction perpendicular to the light spot scanning of the object. means for obtaining light spot position detection light through a light intensity conversion element; and photoelectric detection means for using the other shunted reflected light as a reference light and converting the reference light and the position detection light into corresponding electrical signals. , means for determining an electrical signal ratio corresponding to the position detection light and reference light, and means for converting the signal ratio into an analog-to-digital signal as an optical cutting line signal;
sample moving means for sequentially moving the object in a direction orthogonal to the light spot scanning direction and the light spot position direction for each light section line signal; A three-dimensional shape detection device characterized by having means for obtaining shape information. 2. The three-dimensional shape detection device according to item 1, characterized in that photoelectric detection means are provided in each of two directions perpendicular to the light spot scanning direction or in a plurality of directions intersecting with the light spot scanning direction. 3. A three-dimensional shape detection device characterized by performing recognition processing of a three-dimensional shape of an object based on the analog-to-digital converted digital signal.
JP8399882A 1982-05-20 1982-05-20 Detector of three-dimensional shape Granted JPS58201006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8399882A JPS58201006A (en) 1982-05-20 1982-05-20 Detector of three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8399882A JPS58201006A (en) 1982-05-20 1982-05-20 Detector of three-dimensional shape

Publications (2)

Publication Number Publication Date
JPS58201006A JPS58201006A (en) 1983-11-22
JPH0156682B2 true JPH0156682B2 (en) 1989-12-01

Family

ID=13818196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8399882A Granted JPS58201006A (en) 1982-05-20 1982-05-20 Detector of three-dimensional shape

Country Status (1)

Country Link
JP (1) JPS58201006A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612252B2 (en) * 1984-03-21 1994-02-16 友彦 芥田 Automatic three-dimensional shape measurement method
JPS60209105A (en) * 1984-04-02 1985-10-21 Sanpa Kogyo Kk Displacement measuring instrument
US4650333A (en) * 1984-04-12 1987-03-17 International Business Machines Corporation System for measuring and detecting printed circuit wiring defects
JPS60220805A (en) * 1984-04-17 1985-11-05 Kawasaki Heavy Ind Ltd Device for forming solid shape
JPS6197505A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Shape detector
JPH02156107A (en) * 1988-12-08 1990-06-15 Kunio Yamashita Visual inspection device for soldered part of printed circuit board
JP2805909B2 (en) * 1989-11-10 1998-09-30 松下電器産業株式会社 Electronic component lead measuring device and measuring method
JP2007033048A (en) * 2005-07-22 2007-02-08 Ricoh Co Ltd Solder bonding determination method, soldering inspection method, soldering inspection device, soldering inspection program, and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873161A (en) * 1971-12-20 1973-10-02
JPS5230799A (en) * 1975-09-04 1977-03-08 Sumitomo Chem Co Ltd Method for production of porous carbon
JPS5636004A (en) * 1979-09-03 1981-04-09 Hitachi Ltd Detecting method of configuration and apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873161A (en) * 1971-12-20 1973-10-02
JPS5230799A (en) * 1975-09-04 1977-03-08 Sumitomo Chem Co Ltd Method for production of porous carbon
JPS5636004A (en) * 1979-09-03 1981-04-09 Hitachi Ltd Detecting method of configuration and apparatus thereof

Also Published As

Publication number Publication date
JPS58201006A (en) 1983-11-22

Similar Documents

Publication Publication Date Title
US9488472B2 (en) Apparatus and method for measuring a three dimensional shape
KR100669845B1 (en) Scanning method and system for inspecting anomalies on surface
US6459493B1 (en) Apparatus for measuring surface form
US5774224A (en) Linear-scanning, oblique-viewing optical apparatus
US5101442A (en) Three-dimensional imaging technique using sharp gradient of illumination
JPH07113966B2 (en) Two-dimensional image processing method and apparatus
JPS6188107A (en) Wafer inspection device
JPS63503008A (en) Method of imaging by laser interference and laser interferometer for implementing this method
JP2833908B2 (en) Positioning device in exposure equipment
JP3105702B2 (en) Optical defect inspection equipment
JPS5860593A (en) Method and device for detecting shape
JPH0156682B2 (en)
JPH06109647A (en) Device for inspecting defect
US4079421A (en) Image scanning system
JP2987540B2 (en) 3D scanner
JPH04221705A (en) Visual inspection device
JPH0560529A (en) Height measuring device
JPS58171611A (en) Method and device for detecting shape
JPS6355641B2 (en)
JPH04289409A (en) Substrate inspecting method
JPH02268207A (en) Shape recognizing apparatus
Kakinoki et al. Wide-Area, High Dynamic Range 3-D Imager
JPS61205808A (en) Shape detection apparatus
JPS6127178A (en) Detection of beveling edge
JP3491102B2 (en) Overlay measuring device