JPS58194367A - Insulated gate field effect semiconductor device - Google Patents

Insulated gate field effect semiconductor device

Info

Publication number
JPS58194367A
JPS58194367A JP5413883A JP5413883A JPS58194367A JP S58194367 A JPS58194367 A JP S58194367A JP 5413883 A JP5413883 A JP 5413883A JP 5413883 A JP5413883 A JP 5413883A JP S58194367 A JPS58194367 A JP S58194367A
Authority
JP
Japan
Prior art keywords
type regions
conductive type
region
reversely
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5413883A
Other languages
Japanese (ja)
Other versions
JPS6153868B2 (en
Inventor
Toshio Wada
和田 俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5413883A priority Critical patent/JPS58194367A/en
Publication of JPS58194367A publication Critical patent/JPS58194367A/en
Publication of JPS6153868B2 publication Critical patent/JPS6153868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain the MIS transistor having a small short channel effect, and moreover having the superiorly electric characteristic by a method wherein junction capacitance is reduced by constituting junctions with low concentration N type regions and P type regions having effectual depth shallower than the junction depth of high concentration N type regions. CONSTITUTION:The semiconductor device is constructed having the first reversely conductive type regions 107, 108 of high concentration provided on one main surface of a single conductive type semiconductor substrate 101, the insulated gate 104 provided on the main surface separated from the reversely conductive type regions thereof, the second reversely conductive type regions 107', 108' introduced on the main surface between the insulated gate 104 thereof and the first reversely conductive regions 107, 108, and having concentration lower than the first reversely conductive type regions, and the single conductive type region 203 provided under the second reversely conductive type regions 107', 108' shallower than depth of the first reversely conductive type regions from the main surface and having concentration higher than the substrate. According to this construction, junction capacitances between the single conductive region 203 and the reversely conductive type regions are reduced.

Description

【発明の詳細な説明】 この発明は絶縁ゲート型電界効果牛導体装置に係り、と
くに短チャンネル化に好適な絶縁ゲート型電界効果トラ
ンジスタに係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect conductor device, and more particularly to an insulated gate field effect transistor suitable for short channel formation.

絶縁ゲート型電界効果トランジスタ(以下MISトラン
ジスタという)を用い死生導体デバイスの動作特性を向
上するため、MID)ランジスタのチャンネル長を短縮
することが試みられている。
In order to improve the operating characteristics of dead conductor devices using insulated gate field effect transistors (hereinafter referred to as MIS transistors), attempts have been made to shorten the channel length of MID transistors.

しかし乍らMISトランジスタのチャンネル長の2μm
以下への短縮は、ゲート閾値7エドレイン電圧に依存す
るようになり、パンチスルーによるドレイン耐圧の低下
をも引き起すため動作が不安定となる。これを防ぐ試み
はトランジスタのドレインおよびソース領域の有効濃度
を低下し、ソース領域内部での帰還作用でドレイン電圧
に依存するゲート閾値の低下を防止することであるが、
有効濃度の低いソース領域をゲート電極直下のチャンネ
ル領域から長く伸ばすことは、ソース抵抗を増大し利得
を過少にすることになる。
However, the channel length of the MIS transistor is 2 μm.
Shortening to below becomes dependent on the gate threshold value 7 and the drain voltage, and also causes a decrease in the drain withstand voltage due to punch-through, resulting in unstable operation. Attempts to prevent this are to lower the effective concentration of the drain and source regions of the transistor, and to prevent the gate threshold from decreasing depending on the drain voltage due to the feedback effect inside the source region.
Extending the source region with a low effective concentration from the channel region directly under the gate electrode increases the source resistance and reduces the gain.

この発明の目的は、短チャンネル効果が少なく且つ電気
的特性の優れたMI8)ランジスタを提供することにあ
る。
An object of the present invention is to provide an MI8) transistor with less short channel effect and excellent electrical characteristics.

この発明の特徴は、−導電型半導体基板の一生表面に設
けられた高濃度の第1の逆導電型領域と、この逆導電型
領域から離れた一生表面に設けられた絶縁ゲート構造と
、この絶縁ゲート構造と第1の逆導電型領域間の主表面
に導入され第1の逆導電型領域より低一度の第2の逆導
電型領域と、第2の逆導電型領域下に第1の逆導電型領
域の一生表面からの深さより浅く設けられた基板より高
濃度の一導電型領域とを有する半導体装置にある。
The features of this invention are: - a highly concentrated first opposite conductivity type region provided on the surface of the conductivity type semiconductor substrate; an insulated gate structure provided on the surface remote from this opposite conductivity type region; A second opposite conductivity type region introduced into the main surface between the insulated gate structure and the first opposite conductivity type region and having a lower temperature than the first opposite conductivity type region, and a first opposite conductivity type region below the second opposite conductivity type region. A semiconductor device has a region of one conductivity type with a higher concentration than the substrate, which is shallower than the depth from the surface of the region of the opposite conductivity type.

この発明によれば、−導電型領域と逆導電型領域との間
の接合容量が小さくなるので動作速度が早くなり、短チ
ャンネルのMISトランジスタに適用して電気的特性の
再現性が著しく増大する。
According to this invention, the junction capacitance between the conductivity type region and the opposite conductivity type region is reduced, so the operation speed is increased, and the reproducibility of electrical characteristics is significantly increased when applied to short channel MIS transistors. .

次にこの発明の特徴をより良く理解するために、この発
明の実施例につき図を用いて説明する。
Next, in order to better understand the characteristics of the present invention, embodiments of the present invention will be described using figures.

第1図囚〜第1図(日はこの発明の好ましい実施例の主
たる製造工程での断面図である。
Figures 1 to 1 are cross-sectional views of the main manufacturing process of a preferred embodiment of the present invention.

第1図囚:比抵抗20Ω−1のP型シリコン単結晶基体
101の一表面に特公昭50−1379号公報に示され
るようにシリコン窒化膜を用いて選択酸化を施し、不活
性領域に表面濃度101・〜IQ1)CI!L−”の高
濃度P型領域102と1.0〜1.3μmの厚い二酸化
硅素膜103を設ける。活性領域には500大の二酸化
硅素のゲート絶縁膜104を熱酸化成長し、この中央附
近に巾2.5μmの多結晶シリコンのゲート電極105
と多結晶シリコンの選択−刻マスクとして用いた二酸化
硅素膜106を設ける。
Figure 1-1: Selective oxidation is performed on one surface of a P-type silicon single crystal substrate 101 with a specific resistance of 20 Ω-1 using a silicon nitride film as shown in Japanese Patent Publication No. 50-1379, and the surface is covered with an inactive region. Concentration 101・~IQ1) CI! A high-concentration P-type region 102 of "L-" and a thick silicon dioxide film 103 of 1.0 to 1.3 μm are provided. A gate insulating film 104 of silicon dioxide of 500 μm is grown by thermal oxidation in the active region, and A polycrystalline silicon gate electrode 105 with a width of 2.5 μm
A silicon dioxide film 106 used as a selective etching mask for polycrystalline silicon is provided.

第1図(B):ゲート電極105および二酸化硅素膜1
06をマスクとしてfF4を活性領域に導入し、濃度1
0m(1〜1011crIL−1で接合深す1.5 μ
m (D ?% m [f)N型領域107.108を
形成する。
FIG. 1(B): Gate electrode 105 and silicon dioxide film 1
fF4 was introduced into the active region using 06 as a mask, and the concentration was 1.
0m (1 to 1011crIL-1 bonding depth 1.5μ
m (D?% m [f) Form N-type regions 107 and 108.

第1図(q:ゲート電極105は再び二酸化硅素膜10
6をマスクとして化学蝕刻液で側面蝕刻する。多結晶シ
リコンの側面−刻には氷酢酸と硝酸と弗酸とを40:4
:1の体積比で混液とした蝕刻液が好適で約2分間で0
.5μmの側面蝕刻を得る。
FIG. 1 (q: The gate electrode 105 is again made of silicon dioxide film 10.
6 is used as a mask and the sides are etched with a chemical etching solution. For the side surface of polycrystalline silicon, mix 40:4 of glacial acetic acid, nitric acid, and hydrofluoric acid.
An etching solution mixed in a volume ratio of 1:1 is suitable, and the etching solution becomes 0 in about 2 minutes.
.. A side engraving of 5 μm is obtained.

第1図鋤:側面蝕刻によりゲート電極105’の巾を1
.5μmににせばめたのち、グー)[m105’   
    ”の上面の二酸化硅素膜106を除去しフォト
レジスト膜201を被層する。フォトレジストm 20
1はゲート電極105′とソース領域として動作するN
型領域107の上面に端が到る゛開孔2′o2を有し、
この開孔を通してゲート電極105′をマスクとしてボ
ロンをイオン注入して高改度のP型領域203を形成す
る。イオン注入条件は50KeVで注入駿101L、1
0”cIL−aが好tlる。
Figure 1 Plow: The width of the gate electrode 105' is reduced by 1 by side etching.
.. After narrowing to 5 μm,
The silicon dioxide film 106 on the top surface of the "
1 acts as the gate electrode 105' and the source region.
It has an opening 2'o2 whose end reaches the upper surface of the mold region 107,
Boron ions are implanted through this opening using the gate electrode 105' as a mask to form a highly modified P-type region 203. The ion implantation conditions were 50KeV and 101L, 1
0”cIL-a is preferred.

第1図(均:イオン注入後にフォトレジスト膜201を
除去し1000°0の水素雰囲中で熱処理してP型領域
203の有効深さを1μm程度まで拡大する。
FIG. 1 (Uniform: After ion implantation, the photoresist film 201 is removed and heat treated in a hydrogen atmosphere at 1000°0 to enlarge the effective depth of the P-type region 203 to about 1 μm.

しかるのち、ゲート電極105′をマスクとしてN型領
域107,108とゲート電極105′との間の基体表
面に燐を導入し#度約IQ1m−” 、接合深さ0.1
μmの低濃度N型領域107’、108’を形成し、熱
酸化によりN型領域107,108,107’ 、10
8’ およびゲート電極105′の上面に二酸化硅素膜
109を成長する。ここでゲート電極105′は高濃度
のN型領域107,108および低濃度のN型領域10
7’。
Thereafter, using the gate electrode 105' as a mask, phosphorus is introduced into the substrate surface between the N-type regions 107, 108 and the gate electrode 105' to a depth of approximately IQ1 m-'' and a junction depth of 0.1.
Low concentration N-type regions 107', 108' with a thickness of μm are formed, and N-type regions 107, 108, 107', 10
A silicon dioxide film 109 is grown on the upper surfaces of 8' and gate electrode 105'. Here, the gate electrode 105' includes highly doped N-type regions 107, 108 and lightly doped N-type regions 10.
7'.

108′にそれぞれ自己整合し、ゲート電極ios’の
巾1.5μmの直下に約1.3μmの実効チャンネル長
のMIS)ランジスタのゲート電極として動作する。次
に活性領域の両端の高濃度のN型領域107゜108お
よびゲート電極105′の−F面を檀う二酸化硅素膜1
09にそれぞれ開孔を選択蝕刻し、この開孔全通して厚
い二酸化硅素膜103の上面に伸びるアルミニウムの配
41Hk極110,111,112を形成する。
108', and operate as a gate electrode of a MIS transistor having an effective channel length of about 1.3 μm directly under the gate electrode ios' having a width of 1.5 μm. Next, a silicon dioxide film 1 is formed covering the highly doped N-type regions 107 and 108 at both ends of the active region and the -F plane of the gate electrode 105'.
09 are selectively etched, and aluminum electrodes 110, 111, and 112 are formed extending through the entire openings to the upper surface of the thick silicon dioxide film 103.

上述の実施例は従来のシリコンゲート型MISトランジ
スタと#1#’!l′1町−の写真−刻工程で得られ、
工程を若干変更するのみで電気的特性を改善することが
できる。即ち低濃度のN型領域107’、108’はゲ
ート電極105′の側面蝕刻で得られるため小間隔で得
られソース抵抗の増大もなくパンチスルー電圧の低下の
防止とゲート閾値電圧の安定性が得られる。
The above embodiment uses a conventional silicon gate MIS transistor and #1#'! Photograph of l'1 town - obtained by engraving process,
Electrical characteristics can be improved by only slightly changing the process. That is, since the low concentration N-type regions 107' and 108' are obtained by etching the side surfaces of the gate electrode 105', they can be obtained at small intervals, and there is no increase in source resistance, prevention of decrease in punch-through voltage, and stability of gate threshold voltage. can get.

さらに、本実施例の構造は低偵闇のN型領域と有効深さ
、すなわち基板と実質的に同じ不純物試度となる深さが
高濃度のN型領域の接合深さより浅いP型領域とで得ら
れるため、接合容量が小となり動作速度を早め、且つ電
気的特性の再現性が著しるしく増大する。これらの効果
はドレイン側をも同様な構造とした場合には更に顕著で
ある。
Furthermore, the structure of this embodiment has a low-reflection N-type region and a P-type region whose effective depth, that is, the depth at which the impurity level is substantially the same as that of the substrate, is shallower than the junction depth of the high-concentration N-type region. As a result, the junction capacitance is reduced, the operating speed is increased, and the reproducibility of electrical characteristics is significantly increased. These effects are even more remarkable when the drain side is also provided with a similar structure.

以上にこの発明について説明したが、ゲート電極に用 
る多結晶シリコンには高一点のモリブデン、タングステ
ン等の金I!4電極をも用い得る。又、材料、導電型等
は必要に応じて容易に変更できる。
Although this invention has been explained above, it can be used for gate electrodes.
Polycrystalline silicon contains high-grade gold such as molybdenum and tungsten! Four electrodes may also be used. Further, the material, conductivity type, etc. can be easily changed as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第11囚乃至t41図(目は各々この発明の一実施例を
製造工程I1gに示す断面図である。 なお図において、101・・・・・・P型シリコン率結
晶基体、102・・・・・・不活性領域へのP型領域、
103・・・・・・厚い二酸化硅素膜、104・・・・
・・ゲート杷縁膜。 105.105’・・・・・・ゲート電極、106・・
・・・・二酸化硅素膜、107,108・・・・・・高
濃度のN型領域、107’。 108′・・・・・・低濃度のN型領域、109・・・
・・・二酸化硅素膜、201・・・・・・フォトレジス
トg、zoz・・・・・・開孔、203・・・・・・高
濃度のP型領域、110,111゜112・・・・・・
配線電極、である。 第/ 図 (A〕 (β) (C)
Figures 11 to t41 (Each is a sectional view showing an embodiment of the present invention in the manufacturing process I1g. In the figures, 101...P-type silicon content crystal substrate, 102... ... P-type region to inactive region,
103... Thick silicon dioxide film, 104...
...Gate loquat membrane. 105.105'...Gate electrode, 106...
...Silicon dioxide film, 107,108...High concentration N-type region, 107'. 108'...Low concentration N-type region, 109...
...Silicon dioxide film, 201...Photoresist g, zoz...Opening, 203...High concentration P-type region, 110,111°112... ...
It is a wiring electrode. Fig. (A) (β) (C)

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の一主表面に設けられ九第1の逆
導電型領域と、該第1の逆導電型領域から離れた前記−
主表面に設けられた絶縁ゲート構造と、該絶縁ゲート構
造と前記第1の逆導電型領域間の前記−主表面に導入さ
れた前記第1の逆導電型領域よね低不純物濃度の第2の
逆導電型領域と、該第2の逆導電型領域下に前記第1の
逆導電型領域の前記−主表面からの深さより浅く設けら
れ前記半導体基板より高不純物濃度の一導電型領域とを
有することを特徴とする絶縁ゲート型電界効果半導体装
置。
a ninth opposite conductivity type region provided on one main surface of a semiconductor substrate of one conductivity type;
an insulated gate structure provided on the main surface; a second region with a low impurity concentration; a region of opposite conductivity type; and a region of one conductivity type provided below the second region of opposite conductivity at a depth shallower than the depth from the main surface of the first reverse conductivity type region and having an impurity concentration higher than that of the semiconductor substrate. An insulated gate field effect semiconductor device comprising:
JP5413883A 1983-03-30 1983-03-30 Insulated gate field effect semiconductor device Granted JPS58194367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5413883A JPS58194367A (en) 1983-03-30 1983-03-30 Insulated gate field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5413883A JPS58194367A (en) 1983-03-30 1983-03-30 Insulated gate field effect semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3549976A Division JPS52117586A (en) 1976-03-30 1976-03-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58194367A true JPS58194367A (en) 1983-11-12
JPS6153868B2 JPS6153868B2 (en) 1986-11-19

Family

ID=12962209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5413883A Granted JPS58194367A (en) 1983-03-30 1983-03-30 Insulated gate field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS58194367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451807A (en) * 1993-04-23 1995-09-19 Mitsubishi Denki Kabushiki Kaisha Metal oxide semiconductor field effect transistor
EP0717448A1 (en) * 1994-12-16 1996-06-19 Sun Microsystems, Inc. Asymmetric low power MOS devices
US5780912A (en) * 1994-08-18 1998-07-14 Sun Microsystems, Inc. Asymmetric low power MOS devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164677U (en) * 1988-05-09 1989-11-16

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451807A (en) * 1993-04-23 1995-09-19 Mitsubishi Denki Kabushiki Kaisha Metal oxide semiconductor field effect transistor
US5578509A (en) * 1993-04-23 1996-11-26 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
US5780912A (en) * 1994-08-18 1998-07-14 Sun Microsystems, Inc. Asymmetric low power MOS devices
EP0717448A1 (en) * 1994-12-16 1996-06-19 Sun Microsystems, Inc. Asymmetric low power MOS devices

Also Published As

Publication number Publication date
JPS6153868B2 (en) 1986-11-19

Similar Documents

Publication Publication Date Title
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
JPH10270709A (en) Ldmos transistor device and manufacture thereof
JPH0629532A (en) Mosfet and its manufacture
JPH0744272B2 (en) Transistor manufacturing method
US5182222A (en) Process for manufacturing a DMOS transistor
US20050260818A1 (en) Semiconductor device and method for fabricating the same
JPH1126758A (en) Trench type mos semiconductor device and manufacture thereof
JPH09129868A (en) Semiconductor device and its manufacture
KR100966033B1 (en) Method of making a vertical gate semiconductor device
JPS58194367A (en) Insulated gate field effect semiconductor device
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
JP3444931B2 (en) Semiconductor device and manufacturing method thereof
JPS6237818B2 (en)
JPH0555246A (en) Formation of insulated-gate semiconductor device
JP2005026391A (en) Mos semiconductor device
JP2511010B2 (en) Method for manufacturing vertical MOS transistor
KR910009742B1 (en) High voltage semiconductor device and its manufacturing method
JPS62133763A (en) Mos transistor
JPS62159468A (en) Semiconductor device
KR100192971B1 (en) Power junction field effect transistor and manufacturing method thereof
KR790001277B1 (en) Vertical-junction type field effect transistor
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
JPS6158986B2 (en)
JPH118389A (en) Semiconductor device
JPS6252470B2 (en)