JPS6158986B2 - - Google Patents

Info

Publication number
JPS6158986B2
JPS6158986B2 JP6542276A JP6542276A JPS6158986B2 JP S6158986 B2 JPS6158986 B2 JP S6158986B2 JP 6542276 A JP6542276 A JP 6542276A JP 6542276 A JP6542276 A JP 6542276A JP S6158986 B2 JPS6158986 B2 JP S6158986B2
Authority
JP
Japan
Prior art keywords
gate
substrate
oxide film
conductivity type
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6542276A
Other languages
Japanese (ja)
Other versions
JPS52147983A (en
Inventor
Osamu Kudo
Toshio Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6542276A priority Critical patent/JPS52147983A/en
Publication of JPS52147983A publication Critical patent/JPS52147983A/en
Publication of JPS6158986B2 publication Critical patent/JPS6158986B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、絶縁ゲート型電界効果トランジスタ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an insulated gate field effect transistor.

近年、絶縁ゲート型電界効果トランジスタ(以
下MOSトランジスタと略記する)の集積回路装
置において、電気的特性を向上させるためにソー
スとドレイン間の実効チヤンネル長の短い、所謂
短チヤンネルMOSトランジスタが注目されてい
る。短チヤンネルMOSトランジスタは、素子占
有面積が小さく、且つ電流利得が大きいという長
所がある。しかし、絶縁ゲート膜厚を減少させる
必要があり、サージ電圧あるいは動作中のホツト
エレクトロンの注入などにより、容易に絶縁膜が
破壊されるという欠点があつた。
In recent years, in integrated circuit devices using insulated gate field effect transistors (hereinafter abbreviated as MOS transistors), so-called short channel MOS transistors, which have a short effective channel length between the source and drain, have attracted attention in order to improve the electrical characteristics. There is. A short channel MOS transistor has the advantage of having a small device occupation area and a large current gain. However, the insulating gate film thickness must be reduced, and the insulating film is easily destroyed by surge voltage or injection of hot electrons during operation.

この短チヤンネルMOSトランジスタの絶縁破
壊は、特にドレイン・ゲート間で多発することが
観測されている。
It has been observed that dielectric breakdown of short channel MOS transistors occurs frequently, especially between the drain and gate.

本発明の目的は、従来の短チヤンネルMOSト
ランジスタと同等の高い電流利得をもち、且つ従
来の短チヤンネルMOSトランジスタに比して、
ドレイン・ゲート間の絶縁耐圧の大きい短チヤン
ネルMOSトランジスタの製造方法を提供するこ
とにある。
An object of the present invention is to have a high current gain equivalent to that of a conventional short channel MOS transistor, and to have a high current gain as compared to a conventional short channel MOS transistor.
An object of the present invention is to provide a method for manufacturing a short channel MOS transistor having a high dielectric strength between the drain and gate.

本発明による絶縁ゲート型半導体装置は、一導
電型半導体基板の一表面に一対の逆導電型領域を
有し、該領域間の基板表面に絶縁ゲート膜および
ゲート電極を設けた半導体装置において、前記逆
導電型領域の表面が、前記基板表面より低く、且
つ、前記逆導電型領域の少なくとも一方と前記基
板とが形成するPN接合の前記基板表面に到る端
部附近を覆う絶縁膜厚が、前記逆導電型領域上を
覆う絶縁膜厚に比してせり上がりを有する構成を
もつており、このせり上りは前記PN接合の端部
に自己整合していることが本発明の有効な特徴で
ある。
An insulated gate semiconductor device according to the present invention has a pair of opposite conductivity type regions on one surface of a one conductivity type semiconductor substrate, and an insulated gate film and a gate electrode are provided on the substrate surface between the regions. The surface of the opposite conductivity type region is lower than the substrate surface, and the thickness of the insulating film covering the vicinity of the end portion reaching the substrate surface of the PN junction formed by at least one of the opposite conductivity type regions and the substrate, An effective feature of the present invention is that it has a configuration in which it has a rise compared to the thickness of the insulating film covering the opposite conductivity type region, and that this rise is self-aligned with the end of the PN junction. be.

本発明は、一導電型半導体基板の一表面にゲー
ト酸化膜およびゲート電極を形成し、その後一対
の逆導電型領域を形成する方法において、前記逆
導電型領域が形成されるべき基板表面に前記ゲー
ト電極形成後エツチングすることによつて凹部を
形成し、しかる後、前記基板を熱処理することに
よつて前凹部と前記ゲート酸化膜との接触部が部
分的にせり上がるような熱酸化膜を前記凹部表面
に形成し、その後基板全面にイオン打込を行なつ
て前記凹部の直下に逆導電型の不純物を導入して
熱処理を行ない、それによつて形成されるPN接
合端部が前記熱酸化膜のせり上がり部で終端せし
めることを特徴とするものである。
The present invention provides a method for forming a gate oxide film and a gate electrode on one surface of a semiconductor substrate of one conductivity type, and then forming a pair of opposite conductivity type regions. After forming the gate electrode, a recess is formed by etching, and then the substrate is heat-treated to form a thermal oxide film that partially rises at the contact area between the pre-recess and the gate oxide film. The concave portion is formed on the surface of the concave portion, and then ion implantation is performed on the entire surface of the substrate to introduce an impurity of the opposite conductivity type directly under the concave portion, and heat treatment is performed. It is characterized by terminating at the raised part of the membrane.

本発明により得られる短チヤンネルMOSトラ
ンジスタは、中心部の絶縁ゲート膜が薄いため、
高い電流利得をもち、且つパンチスルー現象を抑
制できる。またソース端およびドレイン端でのチ
ヤンネル部分では、絶縁ゲート膜が厚くなつてい
るため、ソース・ゲート間およびドレイン・ゲー
ト間の絶縁破壊電圧が高く、高信頼性の短チヤン
ネルMOSトランジスタを実現できる。
The short channel MOS transistor obtained by the present invention has a thin central insulating gate film, so
It has a high current gain and can suppress the punch-through phenomenon. Furthermore, since the insulating gate film is thicker in the channel portions at the source and drain ends, the dielectric breakdown voltage between the source and the gate and between the drain and the gate is high, making it possible to realize a highly reliable short channel MOS transistor.

本発明は、ゲート酸化膜およびゲート電極を形
成した後窓明けを行ない、該当窓部の基板を蝕刻
した後、酸化すると窓部の周囲部が、せり上がる
という発見に基いている。
The present invention is based on the discovery that when a window is opened after forming a gate oxide film and a gate electrode, and the substrate in the corresponding window is etched and then oxidized, the surrounding area of the window rises.

次に、本発明を実施例により説明する。 Next, the present invention will be explained by examples.

第1図は、本発明の1実施例の断面図でa図は
製造途中の工程の断面図、b図は完成品の断面図
である。
FIG. 1 is a cross-sectional view of one embodiment of the present invention, in which figure a is a cross-sectional view of a process in the middle of manufacturing, and figure b is a cross-sectional view of a finished product.

この実施例は、1ΩcmのP型シリコン単結晶基
板101の上面に既知のシリコン窒化膜を用いた
選択酸化法を施して不活性領域の基板表面に1.5
ミクロン程度のシリコン酸化物のフイールド絶縁
膜102を設ける。活性領域の基板表面のシリコ
ン窒化膜を除去したのちに約400Åのシリコン酸
化物のゲート絶縁膜103を熱酸化成長し、この
上面に活性領域を横切る厚さ0.5ミクロンの多結
晶シリコンのゲート電極104を選択形成する。
このゲート電極104は、導電率を増大するため
に多結晶シリコン中にリンを1020cm-3程度含ませ
ておく。このゲート電極104は、選択蝕刻加工
工程で予め上面に約0.5ミクロンのシリコン酸化
膜105で被覆されており、ゲート電極104の
加工後に0.5ミクロンのシリコン酸化膜105と
400Åのゲート絶縁膜103の膜厚差を利用し
て、緩衝液中に約1分間浸漬してエツチングを行
うことにより、第1図aに示すようにゲート電極
104の両側のソース・ドレインを形成すべきシ
リコン基板101の表面106,107を露呈す
る。この露呈した表面106,107は、プラズ
マエツチング法又は化学蝕刻法により、500〜
5000Åの範囲で、選択蝕刻される(第1図a)。
In this embodiment, a known selective oxidation method using a silicon nitride film is applied to the upper surface of a P-type silicon single crystal substrate 101 of 1 Ωcm, and a 1.5
A field insulating film 102 of silicon oxide of about micron size is provided. After removing the silicon nitride film on the surface of the substrate in the active region, a gate insulating film 103 of silicon oxide with a thickness of about 400 Å is grown by thermal oxidation, and a gate electrode 104 of polycrystalline silicon with a thickness of 0.5 μm crosses the active region on the upper surface. form a selection.
This gate electrode 104 contains approximately 10 20 cm -3 of phosphorus in polycrystalline silicon to increase conductivity. The upper surface of this gate electrode 104 is coated with a silicon oxide film 105 of about 0.5 microns in advance in a selective etching process, and after processing the gate electrode 104, a silicon oxide film 105 of about 0.5 microns is coated.
Utilizing the thickness difference of the gate insulating film 103 of 400 Å, etching is performed by immersing it in a buffer solution for about 1 minute, thereby forming the source and drain on both sides of the gate electrode 104 as shown in FIG. 1a. The surfaces 106 and 107 of the silicon substrate 101 to be exposed are exposed. The exposed surfaces 106 and 107 are etched by plasma etching or chemical etching to remove
Selective etching is performed in a range of 5000 Å (Fig. 1a).

次に、スチーム雰囲気中で、熱酸化し、蝕刻さ
れた基体表面に500〜3000Åのシリコン酸化膜1
08を熱酸化成長し、このシリコン酸化膜108
を通してリンイオン(31P+)をイオン注入法で導
入し、このソース・ドレインとして働くN型領域
109,110を形成し、800〜1000℃N2中で焼
鈍する。これらの工程で、N型領域109,11
0の接合深さは、0.2ミクロン程度となり、N型
領域109,110の間隔となる実効チヤンネル
長は1ミクロン程度となる。以後は、通常の
MOS技術を駆使して、N型領域109,110
およびゲート電極104の上面のシリコン酸化膜
105,108に開孔を設け、それぞれの開孔を
通して、アルミニウムのドレイン電極配線11
1、ソース電極配線112、ゲート電極配線11
3を形成する(第1図b)。
Next, thermal oxidation is performed in a steam atmosphere, and a silicon oxide film 1 with a thickness of 500 to 3000 Å is applied to the etched surface of the substrate.
08 is grown by thermal oxidation, and this silicon oxide film 108
Phosphorus ions ( 31 P + ) are introduced by ion implantation through the substrate to form N-type regions 109 and 110 that serve as sources and drains, and annealed in N 2 at 800 to 1000° C. In these steps, the N-type regions 109, 11
The junction depth of 0 is about 0.2 microns, and the effective channel length, which is the interval between the N-type regions 109 and 110, is about 1 micron. From then on, normal
By making full use of MOS technology, N-type regions 109 and 110
Openings are provided in the silicon oxide films 105 and 108 on the upper surface of the gate electrode 104, and the aluminum drain electrode wiring 11 is passed through each opening.
1. Source electrode wiring 112, gate electrode wiring 11
3 (Fig. 1b).

この実施例は、N型領域109,110と基板
との間のPN接合の基板表面に終る端部の上面の
シリコン酸化膜108が、ゲート電極104の直
下で厚く盛り上りを起しており、ここでのゲート
破壊耐圧を増大し且つホツトエレクトロンの注入
による電気的特性の劣化を防止することができ
る。
In this embodiment, the silicon oxide film 108 on the upper surface of the end of the PN junction between the N-type regions 109 and 110 and the substrate that ends on the substrate surface has a thick bulge directly under the gate electrode 104. The gate breakdown voltage here can be increased and deterioration of electrical characteristics due to hot electron injection can be prevented.

第2図は、本発明の他の実施例の断面図であ
る。
FIG. 2 is a cross-sectional view of another embodiment of the invention.

この実施例は、前実施例と同様にフイールド酸
化膜102、ゲート酸化膜103を、シリコン基
板101の表面にに形成したのち、気相成長法に
より0.3〜0.8ミクロン程度の多結晶シリコン、
1000〜2000Å程度のシリコン窒化膜を順次成長
し、写真蝕刻法により、シリコン窒化膜および多
結晶シリコン膜を選択蝕刻する。この状態は、多
結晶シリコンのゲート電極201の上面に同一パ
ターンのシリコン窒化膜202が配置され、シリ
コン酸化物のゲート酸化膜103を緩衝液で除去
することにより、ソース・ドレインを形成すべき
シリコン基板101の表面106,107を露呈
させる。後続の工程は、前実施例と同様にシリコ
ン基板を蝕刻し、熱酸化し、イオン注入法でソー
ス・ドレインを形成し、必要な窓明けを行つた
後、アルミニウムの配線電極を形成し、ゲート・
ソース間、ゲート・ドレイン間のシリコン酸化膜
が厚くなつた短チヤンネルMOSトランジスタを
実現できる。この実施例は、基板表面を露出する
ゲート酸化膜103の除去工程でゲート電極20
1の上面がシリコン窒化膜202で覆われるた
め、加工工程の作業性を改善することができる。
In this embodiment, a field oxide film 102 and a gate oxide film 103 are formed on the surface of a silicon substrate 101 as in the previous embodiment, and then polycrystalline silicon with a thickness of about 0.3 to 0.8 microns is formed by vapor phase growth.
A silicon nitride film of about 1000 to 2000 Å is sequentially grown, and the silicon nitride film and polycrystalline silicon film are selectively etched by photolithography. In this state, a silicon nitride film 202 with the same pattern is placed on the upper surface of a gate electrode 201 made of polycrystalline silicon, and by removing the gate oxide film 103 made of silicon oxide with a buffer solution, Surfaces 106 and 107 of substrate 101 are exposed. In the subsequent steps, as in the previous embodiment, the silicon substrate is etched, thermally oxidized, sources and drains are formed by ion implantation, the necessary windows are opened, aluminum wiring electrodes are formed, and gates are formed.・
It is possible to realize short channel MOS transistors with thicker silicon oxide films between the source and between the gate and drain. In this embodiment, the gate electrode 20 is removed during the process of removing the gate oxide film 103 that exposes the substrate surface.
1 is covered with the silicon nitride film 202, the workability of the processing process can be improved.

上にこの発明の実施例を説明したが、この発明
は必要に応じて容易に材料、導電型等を変更する
ことができる。たとえば多結晶シリコンはモリブ
デン、タングステン、もしくは高融点導電物質と
の置替えが容易であり、又、選択酸化法は通常の
MOSプロセス技術に変更することも容易であ
る。
Although the embodiments of the present invention have been described above, the material, conductivity type, etc. of the present invention can be easily changed as necessary. For example, polycrystalline silicon can be easily replaced with molybdenum, tungsten, or high-melting point conductive materials, and selective oxidation is
It is also easy to change to MOS process technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の断面図で、a図
は製造途中の工程の断面図、b図は完成品の断面
図、第2図は、本発明の他の実施例の断面図であ
る。 101……シリコン基板、102……フイール
ド酸化膜、103……ゲート酸化膜、104……
多結晶シリコン電極、105……シリコン酸化
膜、108……シリコン酸化膜、109……ソー
ス、110……ドレイン、111,112,11
3……ソース、ドレイン、ゲートアルミニウム配
線電極、201……多結晶シリコン電極、202
……シリコン窒化膜。
Fig. 1 is a cross-sectional view of one embodiment of the present invention, Fig. a is a cross-sectional view of the manufacturing process, Fig. b is a cross-sectional view of the finished product, and Fig. 2 is a cross-sectional view of another embodiment of the present invention. It is a diagram. 101...Silicon substrate, 102...Field oxide film, 103...Gate oxide film, 104...
Polycrystalline silicon electrode, 105... silicon oxide film, 108... silicon oxide film, 109... source, 110... drain, 111, 112, 11
3... Source, drain, gate aluminum wiring electrode, 201... Polycrystalline silicon electrode, 202
...Silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板の一表面にゲート酸化膜
およびゲート電極を形成し、その後一対の逆導電
型領域を形成する方法において、前記逆導電型領
域が形成されるべき基板表面に前記ゲート電極形
成後エツチングすることによつて凹部を形成し、
しかる後、前記基板を熱処理することによつて前
凹部と前記ゲート酸化膜との接触部が部分的にせ
り上がるような熱酸化膜を前記凹部表面に形成
し、その後基板全面にイオン打込を行なつて前記
凹部の直下に逆導電型の不純物を導入して熱処理
を行ない、それによつて形成されるPN接合端部
が前記熱酸化膜のせり上がり部で終端せしめるこ
とを特徴とする絶縁ゲート型半導体装置の製造方
法。
1. In a method of forming a gate oxide film and a gate electrode on one surface of a semiconductor substrate of one conductivity type, and then forming a pair of opposite conductivity type regions, forming the gate electrode on the surface of the substrate where the opposite conductivity type regions are to be formed. A recess is formed by post-etching,
Thereafter, by heat-treating the substrate, a thermal oxide film is formed on the surface of the recess so that the contact area between the pre-recess and the gate oxide film partially rises, and then ions are implanted into the entire surface of the substrate. an insulated gate, wherein an impurity of opposite conductivity type is introduced directly under the recessed portion and heat treatment is performed, and the PN junction end portion formed thereby is terminated at the raised portion of the thermal oxide film. A method for manufacturing a type semiconductor device.
JP6542276A 1976-06-03 1976-06-03 Insulation gate type semiconductor device Granted JPS52147983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6542276A JPS52147983A (en) 1976-06-03 1976-06-03 Insulation gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6542276A JPS52147983A (en) 1976-06-03 1976-06-03 Insulation gate type semiconductor device

Publications (2)

Publication Number Publication Date
JPS52147983A JPS52147983A (en) 1977-12-08
JPS6158986B2 true JPS6158986B2 (en) 1986-12-13

Family

ID=13286601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6542276A Granted JPS52147983A (en) 1976-06-03 1976-06-03 Insulation gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPS52147983A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142188A (en) * 1977-05-17 1978-12-11 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JPS56130973A (en) * 1980-03-17 1981-10-14 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS52147983A (en) 1977-12-08

Similar Documents

Publication Publication Date Title
KR100296805B1 (en) Semiconductor device manufacturing method
US5231038A (en) Method of producing field effect transistor
US5254490A (en) Self-aligned method of fabricating an LDD MOSFET device
KR19980033385A (en) Method for manufacturing semiconductor device using lateral gettering
JPH04269873A (en) Transistor provided with inverted silicide t-shaped gate structure
JP2000101069A (en) Semiconductor element and manufacture thereof
JPH0697192A (en) Manufacture of semiconductor device
JP2615016B2 (en) Method of forming MOS field effect transistor
US3983572A (en) Semiconductor devices
JP2629995B2 (en) Thin film transistor
JP2729422B2 (en) Semiconductor device
JPS6158986B2 (en)
JPH11121757A (en) Semiconductor device and manufacture thereof
JPS62229880A (en) Semiconductor device and manufacture thereof
JPH1064898A (en) Manufacturing method of semiconductor device
KR0172509B1 (en) Method of fabricating lateral bipolar transistor
JPH0666327B2 (en) MOS semiconductor device and method of manufacturing the same
JPS6112390B2 (en)
JP3207883B2 (en) Manufacturing method of bipolar semiconductor device
JPS6126264A (en) Manufacture of semiconductor device
JPS6153868B2 (en)
JPS63305566A (en) Semiconductor device and manufacture thereof
KR100505630B1 (en) Method for manufacturing MOSFET having elevated source/drain
JP3656867B2 (en) Manufacturing method of fine MOS transistor
KR0172820B1 (en) Method of manufacturing semiconductor device