JPS58165391A - Substrate for printed circuit board - Google Patents

Substrate for printed circuit board

Info

Publication number
JPS58165391A
JPS58165391A JP4707582A JP4707582A JPS58165391A JP S58165391 A JPS58165391 A JP S58165391A JP 4707582 A JP4707582 A JP 4707582A JP 4707582 A JP4707582 A JP 4707582A JP S58165391 A JPS58165391 A JP S58165391A
Authority
JP
Japan
Prior art keywords
resin
film
resin layer
thickness
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4707582A
Other languages
Japanese (ja)
Inventor
清水 規之
大石 直明
孝志 荘司
原田 章治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkan Industries Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nikkan Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nikkan Industries Co Ltd filed Critical Showa Denko KK
Priority to JP4707582A priority Critical patent/JPS58165391A/en
Priority to US06/479,236 priority patent/US4492730A/en
Publication of JPS58165391A publication Critical patent/JPS58165391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は熱放散性、電気絶縁性、耐熱性等に優れた印刷
回路用基板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a printed circuit board having excellent heat dissipation properties, electrical insulation properties, heat resistance, etc.

電子機器の小型化、薄型化の傾向に伴ない、プリント配
線板への部品実装は高密度化の傾向を深めている。
BACKGROUND OF THE INVENTION As electronic devices become smaller and thinner, there is a growing trend toward higher density mounting of components on printed wiring boards.

このため熱放散性、寸法安定性等の特性に関して従来以
上の厳しい要請があり、特に高密度実装に際しては熱放
散性が問題になる外、使用目的によっては基板表面の耐
湿性、平滑性に特に優れているものが要求される。耐湿
性が悪いと基板上に装着された部品間の絶縁層表面に吸
着された水分により、部品間の絶縁抵抗が低下するから
である。
For this reason, there are stricter requirements than ever before regarding properties such as heat dissipation and dimensional stability.In addition to heat dissipation being an issue especially in high-density packaging, depending on the purpose of use, there are particular demands on the moisture resistance and smoothness of the board surface. Excellence is required. This is because if the moisture resistance is poor, moisture adsorbed on the surface of the insulating layer between the parts mounted on the board lowers the insulation resistance between the parts.

従来、金属板をベースにした熱放散性基板としてA/板
等の表面に合成樹脂層を設け、その層中に熱伝導のよい
無機充填剤を分散させたものが知られている。しかしこ
の構造のものは樹脂層が薄い場合−は耐電圧が十分でな
く、反面厚くすると熱放散性、寸法安定性が悪くなる欠
点をもっている。
Conventionally, a heat dissipating substrate based on a metal plate is known, in which a synthetic resin layer is provided on the surface of an A/plate, etc., and an inorganic filler with good thermal conductivity is dispersed in the layer. However, this structure has the disadvantage that when the resin layer is thin, the withstand voltage is insufficient, and when the resin layer is thick, heat dissipation and dimensional stability deteriorate.

また樹脂層の表面部分において無機充填剤と樹脂との界
面が湿分の影響を受は易く、電気抵抗低下の原因となる
。このため充填剤の耐水化処理も行なわれるが、これで
も十分ではない。
Further, in the surface portion of the resin layer, the interface between the inorganic filler and the resin is easily affected by moisture, which causes a decrease in electrical resistance. For this reason, fillers are also treated to make them waterproof, but even this is not sufficient.

またAI!板等の上にガラスクロスを熱硬化性樹脂で接
着したものもあり、その場合ガラスクロスと一諸に無機
充填剤の粉末を併用したものもある。
AI again! There are also cases in which glass cloth is adhered to a plate or the like using a thermosetting resin, and in this case, inorganic filler powder is also used in combination with the glass cloth.

これらは前記のものに比べて寸法安定性はよいが、ガラ
スクロスは長繊維束を織ったものであるのでこれに熱硬
化性樹脂を塗工する段階で繊維束内に空気及び溶剤の巻
き込みがあり、A/板に接着する工程ですべての空気及
び溶剤を取り除くことが出来ず電気絶縁性が完全でない
事が起り、不良品発生頻度が高くなる。そのため接着剤
層を2枚合せる方法や熱硬化性樹脂の付着量を多くして
前記絶縁性の問題の解決を図ろうとする方法もあるが、
熱伝導性の面より考えると望ましい事ではない。
These have better dimensional stability than the above-mentioned ones, but since glass cloth is made by weaving long fiber bundles, air and solvent may get trapped inside the fiber bundles when the thermosetting resin is applied to it. A: All the air and solvent cannot be removed during the bonding process to the board, resulting in incomplete electrical insulation, which increases the frequency of defective products. Therefore, there are methods that try to solve the insulation problem by combining two adhesive layers or by increasing the amount of thermosetting resin attached.
This is not desirable from the standpoint of thermal conductivity.

電気絶縁性を完全に保つだけなら熱可塑性樹脂のフィル
ムを用いて熱圧接着して絶縁層を作製する事も可能であ
る。 しかし、これは絶縁性は良好であるが耐熱性が悪
く、プリント回路板加工後の部品実装工程(ハンダ品工
程、ボンデング工程など)、高温加工工程に計いて接着
層が劣化破壊1−1111゜ する。この場合、熱可塑性樹脂フィルムに代えて耐熱性
のある熱硬化性樹脂・・5:)ルムを用いれば接着層の
劣化の問題はなくなるが、熱圧接着することができない
ので、フィルムの両面にペース金属板及びプリント回路
用金属箔を接着する為の熱硬化性樹脂層を設ける必要が
ある。そして実際の工業的生産においては生産性を上げ
るためかなり大きなものを作製しなければならず、その
すべての面に無接着層が存在しないように接着するには
樹脂層の厚みはある程度以上必要となる。その結果は熱
伝導性が劣ることになる。
If the electrical insulation is to be completely maintained, it is also possible to fabricate the insulating layer by using a thermoplastic resin film and bonding it under heat and pressure. However, although this has good insulation properties, it has poor heat resistance, and the adhesive layer deteriorates and breaks during the component mounting process (soldering process, bonding process, etc.) after printed circuit board processing (soldering process, bonding process, etc.) and high temperature processing process. do. In this case, if a heat-resistant thermosetting resin film is used instead of the thermoplastic resin film, the problem of deterioration of the adhesive layer will be eliminated, but since thermo-pressure bonding is not possible, both sides of the film It is necessary to provide a thermosetting resin layer for adhering the pace metal plate and the printed circuit metal foil. In actual industrial production, it is necessary to fabricate a fairly large product in order to increase productivity, and the resin layer needs to be thicker than a certain level in order to adhere to it so that there is no non-adhesive layer on all surfaces. Become. The result is poor thermal conductivity.

本発明はこの様な事情に鑑みてなされたもので、その目
的は熱放散性、耐熱性がよ、いばかりでなく、特に耐湿
性が高く電気絶縁性に優れた印刷回路用基板を提供する
ことにある。
The present invention was made in view of the above circumstances, and its purpose is to provide a printed circuit board that not only has good heat dissipation and heat resistance, but also has particularly high moisture resistance and excellent electrical insulation. There is a particular thing.

この目的のため本発明の基板は金属板の少なくとも一方
の面に無機充填剤を含む合成樹脂層、耐熱性樹脂フィル
ム層、合成樹脂層を順次積層した構造としたものである
For this purpose, the substrate of the present invention has a structure in which a synthetic resin layer containing an inorganic filler, a heat-resistant resin film layer, and a synthetic resin layer are sequentially laminated on at least one surface of a metal plate.

し 以下、本発明の一例である図面を参考にしなか一゛11 ら本発明の詳細な説明する。death The following is an example of the present invention with reference to the drawings. The present invention will now be described in detail.

第1図、第2晶″け本発明に係る基板の断面図で) ある。 図において1は金属板、2は合成樹脂層でその
中に無機充填剤21を含んでいる。4は耐熱性樹脂フィ
ルムで、その上に合成樹脂層3が設けられている。5は
金属箔である。
Figure 1 and Figure 2 are cross-sectional views of the substrate according to the present invention. It is a resin film, on which a synthetic resin layer 3 is provided. 5 is a metal foil.

金属板1はkl 、 Cu 、 Fe等及びこれらを含
む合金が使用可能であるが、朝駆にして熱伝導性のよい
AJ?が実用上は最も適する。金属板の厚さは使用目的
によって決定されるが一般には05〜25胴である。
The metal plate 1 can be made of KL, Cu, Fe, etc., or alloys containing these, but AJ? is most suitable in practice. The thickness of the metal plate is determined depending on the purpose of use, but is generally between 05 and 25 mm.

金属板は樹脂層との接着性をよくするため表面粗化して
おくことが好ましいが、金属板の種類によっては表面粗
化しなくてもよい。表面粗化は最大表面粗さく Rm 
a x )で5μ〜40μの範囲が適当である。表面粗
化の方法は機械的方法でも化学的方法でもよい。
The surface of the metal plate is preferably roughened in order to improve adhesion with the resin layer, but depending on the type of metal plate, the surface may not be roughened. Surface roughening is maximum surface roughness Rm
a x ) is suitably in the range of 5 μ to 40 μ. The surface roughening method may be a mechanical method or a chemical method.

合成樹脂層2の樹脂としてはエポキシ、フェノール、ポ
リイミド、不飽和ポリエステル、BTレジン等の熱硬化
性樹脂が好ましいが、熱可塑性でも耐熱性のある変性ポ
リエチレン、ポリスルホン酸、ポリスエニレンサルファ
イド等は使用可能である。
As the resin for the synthetic resin layer 2, thermosetting resins such as epoxy, phenol, polyimide, unsaturated polyester, and BT resin are preferable, but thermoplastic and heat-resistant modified polyethylene, polysulfonic acid, polyenylene sulfide, etc. can be used. It is possible.

この樹脂層2には無機充填剤21が含まれている。無機
充填剤としてけ AI!203.5i02 、ZrO2
゜TiC2,BeO等の金属酸化物、BN、Si3N4
゜AJN 等の窒化物、SiC,TiC,ZrC等の炭
化物、不織のガラス短繊維、同鉱物繊維等の無機繊維の
外、ここで使用される無機充填剤の目的は熱伝導性を高
めるためであり、電気絶縁性は次に述べる耐熱性樹脂フ
ィルムで持たせであるので、Fe。
This resin layer 2 contains an inorganic filler 21. Use it as an inorganic filler AI! 203.5i02, ZrO2
゜Metal oxides such as TiC2, BeO, BN, Si3N4
゜In addition to inorganic fibers such as nitrides such as AJN, carbides such as SiC, TiC, and ZrC, nonwoven short glass fibers, and mineral fibers, the purpose of the inorganic fillers used here is to increase thermal conductivity. Since electrical insulation is provided by the heat-resistant resin film described below, Fe is used.

AJ、Ni、Cu、Ag等の金属あるいけ合金の粉末、
炭素粉末、さらには不織の金属短繊維、同炭素繊維等も
使用可能であり、本発明でいう図21の無機充填剤には
これらも含む。
Powder of metals or alloys such as AJ, Ni, Cu, Ag, etc.
Carbon powder, nonwoven short metal fibers, carbon fibers, etc. can also be used, and the inorganic filler shown in FIG. 21 in the present invention includes these.

また無機充填剤の樹脂との密着性を向上させ、かつプリ
ント基板としての耐湿性を向上させる目的で表面処理を
行なって樹脂に混入させることができ、同様の効果を樹
脂の中に表面処理剤を入れても得ることができる。
In addition, in order to improve the adhesion of inorganic fillers to resins and improve the moisture resistance of printed circuit boards, surface treatment can be performed and mixed into resins. You can also get it by putting .

無機充填剤は粒状粉末の場合は30μ以下がよい。粉末
は通常粒度分布を有するので、この場合の30μ以下と
は通常全体の枠子の中で90%以上が30μ以下からな
っている。30μを越えると樹脂層が厚くなり、熱放散
性の効果が少なくなる他、貼り合せ作業がやりにくくな
る。しかし、アルミ粉末等ではフレーク状になる場合が
あり、フレーク状のものは樹脂中で層状に重なるので、
30μを越えるような大きなものも使用可能である。
When the inorganic filler is a granular powder, it is preferably 30 μm or less. Since the powder usually has a particle size distribution, 30μ or less in this case usually means that 90% or more of the entire frame consists of 30μ or less. If the thickness exceeds 30μ, the resin layer becomes thick, the heat dissipation effect is reduced, and the bonding work becomes difficult. However, aluminum powder may form flakes, and flakes overlap in layers in the resin, so
Large ones exceeding 30μ can also be used.

樹脂と無機充填剤の混合割合は熱放散性の効果と貼り合
せの作業性によって決まるが、容積比で樹脂100部に
対し、無機充填剤10〜300部の範囲が適当である。
The mixing ratio of the resin and the inorganic filler is determined by the effect of heat dissipation and the workability of bonding, but the appropriate volume ratio is in the range of 10 to 300 parts of the inorganic filler to 100 parts of the resin.

無機充填剤がこの範囲未満接着強度が得られなくなる。If the inorganic filler is less than this range, adhesive strength cannot be obtained.

無機充填剤を含む合成樹脂層2の厚さは貼り合せの接着
強度、熱放散性、作業性等を考慮し、10〜60μの範
囲が適当である二1 合成樹脂層2の上には耐熱佳の樹脂フィルムが、、・□
;1、 接着されている。基板は部品実□“装に際し、通常ハン
ダ付工程を伴なうので、このフィルムはその温疫に耐え
ることが必要である。また印刷回路は使用中その目的に
よってはかなり高温になる。これらのため樹脂フィルム
はポリイミド、ポリ/シラノくン酸などの耐熱性フィル
ムが望ましい。しかしハンダ付も低温ハンダが開発され
ており、また印刷回路も使用目的によってあまり高温に
ならないこともあるので、そのような場合はポリエステ
ルフィルムなど熱可塑性フィルムなども使用できる。
The thickness of the synthetic resin layer 2 containing an inorganic filler is suitably in the range of 10 to 60 μm, taking into consideration bonding strength, heat dissipation, workability, etc. A good resin film...
;1. Glued. The film needs to be able to withstand the heat, as printed circuit boards usually involve a soldering process when mounting components.Printed circuits also become quite hot during use, depending on their purpose. Therefore, it is desirable to use a heat-resistant resin film made of polyimide, poly/cyanocitric acid, etc.However, low-temperature soldering has been developed for soldering, and printed circuits may not reach very high temperatures depending on the purpose of use, so such In such cases, thermoplastic films such as polyester films can also be used.

フィルムの厚さはボイドの発生がなく耐電圧を保持でき
る範囲で薄い方がよいが、製造上の問題もあり、一般に
は10〜30μの範囲が好適である。
The thickness of the film is preferably as thin as possible without generating voids and maintaining a withstand voltage; however, since there are manufacturing problems, a range of 10 to 30 μm is generally suitable.

フィルムの上には、樹脂層3が設けられている。A resin layer 3 is provided on the film.

この層はその上に接着される金属箔あるいは金属メッキ
との接着強度を、低下させないためある程度の厚みは必
要であるが、無機充填剤のような熱伝導性のよいものが
含ま:1れてぃないので、厚過ぎる・□・、:j: と熱伝導性を阻害すall’1.これらの点より樹脂層
This layer needs to be thick to a certain extent in order not to reduce the adhesive strength with the metal foil or metal plating that is bonded on top of it, but it contains materials with good thermal conductivity such as inorganic fillers. Because it is too thick, it inhibits thermal conductivity. resin layer from these points.

の厚さは7〜40μのi囲が適当である。そして樹脂層
には充填剤が含まれていないので耐湿性は極めて良好で
ある。
The appropriate thickness is 7 to 40 μm. Moreover, since the resin layer does not contain a filler, its moisture resistance is extremely good.

樹脂層3の樹脂の種類としては、基板を第2図に示すよ
うに予め金属箔5を接着した構成とする場合は、耐熱性
であればよく、他は特に制限されない。例えばエポキシ
、フェノール、ポリイミド、不飽和ポリエステル、BT
レジン等の樹脂が使用できる。 基板を第1図に示すよ
うな構成とし、樹脂層3の上にメッキ等により回路を構
成する場合はメッキ金属と樹脂との密着性がよいことが
必要である。このだめ樹脂層表面に粗面化処理が通常施
される。樹脂の種類はとの粗面化処理のし易いものを選
ぶことが好ましい。
The type of resin for the resin layer 3 is not particularly limited as long as it is heat resistant when the substrate is configured with a metal foil 5 bonded in advance as shown in FIG. For example, epoxy, phenol, polyimide, unsaturated polyester, BT
Resin such as resin can be used. When the circuit board is constructed as shown in FIG. 1 and a circuit is constructed by plating or the like on the resin layer 3, it is necessary that the plating metal and the resin have good adhesion. A roughening treatment is usually performed on the surface of this resin layer. It is preferable to select a type of resin that can be easily subjected to surface roughening treatment.

第2図に示すものは樹脂層3に金属箔5が接着されてお
り、そのままプリント配線加工に供することができる。
The one shown in FIG. 2 has a metal foil 5 bonded to a resin layer 3, and can be used as is for printed wiring processing.

金属箔は通常使用されている銅、アルミ、ニッケル、錫
等で厚さは0.005〜0.3胴のものである。
The metal foil is made of commonly used copper, aluminum, nickel, tin, etc. and has a thickness of 0.005 to 0.3 mm.

このような構成からなる基板は例えばフィルムの片面に
無機充填剤を含す樹脂液を塗布し、その而と金属板とを
貼り合せ、さらにフィルム面に樹脂液を塗布し、金属箔
を貼り合せ、熱圧着し、樹脂を硬化させることにより製
作することができる。
A substrate with such a structure is made by, for example, applying a resin liquid containing an inorganic filler to one side of a film, bonding it to a metal plate, then applying a resin liquid to the film surface, and bonding a metal foil. It can be manufactured by thermocompression bonding and curing the resin.

第1図に示すものはフィルムの片面に金属板を上記同様
に接着し、゛他面に樹脂液を塗布し、これらを硬化させ
て一体化する。最後に樹脂層表面を化学液等により処理
し、表面粗化して製品とする。
In the case shown in FIG. 1, a metal plate is adhered to one side of the film in the same manner as described above, a resin liquid is applied to the other side, and these are cured and integrated. Finally, the surface of the resin layer is treated with a chemical solution or the like to roughen the surface and produce a product.

図示のものは金属板の片面に絶縁層を設けた場合である
が、全く同様に両面に設けることも可能である。
Although the illustrated example shows an insulating layer provided on one side of the metal plate, it is also possible to provide the insulating layer on both sides in the same way.

本発明による印刷回路用基板は電気絶縁性のよいフィル
ムを用いているので耐電圧が高く、またフィルムと金属
板との間には熱伝導性のよい充填剤が入っているので、
熱放散性が改良されており、さらにフィルムの上面の樹
脂層には充填剤が含まれないので、耐湿性が高く、特に
使用上耐湿性が要求されるところには本発明の基板は好
適である。
The printed circuit board according to the present invention uses a film with good electrical insulation properties, so it has a high withstand voltage, and since there is a filler with good thermal conductivity between the film and the metal plate,
The substrate of the present invention has improved heat dissipation properties, and since the resin layer on the top surface of the film does not contain a filler, it has high moisture resistance, and the substrate of the present invention is particularly suitable for applications where moisture resistance is required. be.

尚、本発明によってフィルムを接着層に用いる事は電卓
などの薄型化に伴ないプリント回路板自体をシボリ加工
することによって外形を作製する事が容易に出来、ガラ
スクロスを接着層に用いた場合に比べ・−ナ一部を鋭角
に作製出来1嘔その部分の電気的なリークも起らない。
In addition, the use of a film as an adhesive layer according to the present invention makes it possible to easily create an external shape by embossing the printed circuit board itself as calculators and the like become thinner, and when glass cloth is used as an adhesive layer. Compared to the above, a part of the structure can be made at an acute angle, and electrical leakage does not occur at that part.

又この事はプリント回路板の形態も平板使用のみでなく
曲面使用や折り曲げて使用する事も可能である。
This also means that the printed circuit board can be used not only as a flat board but also as a curved board or bent.

次に本発明の態様を明確にするため実施例と比較例を示
し説明する。
Next, in order to clarify aspects of the present invention, Examples and Comparative Examples will be shown and explained.

ここに示す実施例はあくまでも1例であってこれにより
本発明の範囲を限定するものではない。
The embodiment shown here is just one example, and does not limit the scope of the present invention.

実施例 1 下記のエポキシ樹脂ワニス(配合例 l)をポリイミド
フィルム厚さ25μ の片面に25μの厚さに転写によ
り塗工し160℃に加熱乾燥して貼合せ機により厚さ3
5μ の銅箔を貼り合わせる。 又配合例1のエポキシ
樹脂ワニス中に平均粒度4μ全体が15μ以下のα−ア
ルミナ(A/203)を100重量%加えてよく攪拌し
前述のポリイミドフィルムの逆面に厚さ4’ 0μにな
るよう転写に1:・ より塗工し160℃で加熱乾燥してセミキュアー■11
1 状態の接着層を作製する。飄 一方2■厚のアルミ板の一方表面を塩酸で処理し活性化
させその面に前述のシートを加熱貼り合せ機により貼り
合わせアルミベース銅張板を作製した。
Example 1 The following epoxy resin varnish (formulation example 1) was coated on one side of a 25μ thick polyimide film to a thickness of 25μ, heated and dried at 160°C, and laminated to a thickness of 3μ by a laminating machine.
Attach 5μ copper foil. Further, 100% by weight of α-alumina (A/203) having an average particle size of 4μ or less than 15μ is added to the epoxy resin varnish of Formulation Example 1 and stirred well, so that a thickness of 4'0μ is formed on the opposite side of the polyimide film. For transfer 1:・ Coat and dry by heating at 160℃ to semi-cure■11
1. An adhesive layer in a state of 1 is prepared. One surface of a 2-inch thick aluminum plate was activated by treatment with hydrochloric acid, and the above-mentioned sheet was bonded to that surface using a heating bonding machine to produce an aluminum-based copper-clad plate.

樹脂ワニス配合(配合例1) (1)エポキシ樹脂(AER−661L、無化成■製)
  100部(2)ジシアンジアミド        
    4部(3)ジメチルホルムアミド      
   20部(4)  ベンジルジメチルアミン   
     03部(5)メチルエチルケトン     
    100部実施例 2゜ 下記の不飽和ポリエステル樹脂ワニス(配合例2)をポ
リイミドフィルム厚さ25μの片面に2゛0μの厚さに
転写により塗工し、160℃に加熱乾燥して貼り合せ機
により厚さ70μの銅箔を貼り合わせる。 冬、配合例
2の不飽和ポリエステル樹脂ワニス中5平均粒度8μ全
体が25μ以下1111 0′□>+付且、2.ブト(BN)t−30重11平均
粒度6μ全体が20μ以下のシリカ(Si O□)を1
00重量%加えてよく攪拌し前述のポリイミドフィルム
の逆面に厚さ40μになる様転写により塗工し160℃
で加熱乾燥してセミキュアー状態の接着層を作製する。
Resin varnish formulation (formulation example 1) (1) Epoxy resin (AER-661L, made by chemical-free ■)
100 parts (2) dicyandiamide
Part 4 (3) Dimethylformamide
20 parts (4) benzyldimethylamine
03 parts (5) Methyl ethyl ketone
100 copies Example 2゜The following unsaturated polyester resin varnish (formulation example 2) was coated on one side of a 25μ thick polyimide film to a thickness of 2゛0μ, heated and dried at 160℃, and laminated using a laminating machine. Copper foil with a thickness of 70μ is pasted together. In winter, the overall average particle size of 8 μ in the unsaturated polyester resin varnish of Formulation Example 2 is 25 μ or less 1111 0′□>+ and 2. Buto (BN) t-30 weight 11 silica (SiO□) whose average particle size is 6μ or less is 1
00% by weight was added, stirred well, and coated on the reverse side of the aforementioned polyimide film by transfer to a thickness of 40μ at 160°C.
Heat and dry to create a semi-cured adhesive layer.

一方1.5■厚のアルミ板の一方表面をサンドブラスト
処理を行ない深さ15μの凹凸面を作製しその面に前述
のシートを載置して約160℃ 約40kg/cm2で
熱圧接着させ、アルミベースの銅張板を作製した。
On the other hand, one surface of a 1.5-inch thick aluminum plate was sandblasted to create an uneven surface with a depth of 15 μm, and the above-mentioned sheet was placed on that surface and bonded under heat and pressure at about 160°C and about 40 kg/cm2. An aluminum-based copper clad plate was fabricated.

樹脂ワニス配合(配合例 2) (1)不飽和ポリエステル樹脂(ポリマール、   1
oogX−392,武田薬品■製) (2)ターシャルブチルパーベンゾエイト    1部
実施例 38 下記の無溶剤エポキシワニス(配合例 3)を温度調整
しポリパラバン酸フィルム厚さ25μの又同配合例3の
無溶剤エポキシワニス中に平均粒度8μ全体が25μ以
下のα−アルミナ(A12%)を100重量%加えてよ
く攪拌しポリパラバン酸フィルムの逆面に厚さ40μの
接着層を塗工し一方表面を塩酸で活性化させ、さらにア
ルマイト層を9μ付けたAf版板上引き出し加熱ロール
で熱圧着させアルミベースーり板を作製した。
Resin varnish formulation (formulation example 2) (1) Unsaturated polyester resin (Polymer, 1
oog Add 100% by weight of α-alumina (A12%) with an average particle size of 8μ or less and 25μ or less into a solvent-free epoxy varnish, stir well, and apply an adhesive layer with a thickness of 40μ on the opposite side of the polyparabanic acid film. was activated with hydrochloric acid, and then an alumite layer of 9 μm was attached onto an Af plate plate, which was drawn out and hot-pressed using a heated roll, to produce an aluminum-based plate.

樹脂ワニス配合(配合例 3) (1)  エポキシ樹脂(エビクロン850.    
100部大日本インキ■製) (2)硬化剤(HN−2200泪立化肉株製)   7
9部(3)硬化促進剤(2E4[、四国化虜慟製)0.
5部実施例 4 配合例1のエポキシ樹脂ワニスに、アクリルニトリルゴ
ム(商品名ハイカー1072)を30部加えて、無電解
メッキ密着用ワニスを作製する。
Resin varnish formulation (formulation example 3) (1) Epoxy resin (Evicron 850.
100 parts (manufactured by Dainippon Ink ■) (2) Hardening agent (HN-2200 manufactured by Yutatsuka Niku Co., Ltd.) 7
9 parts (3) Hardening accelerator (2E4 [manufactured by Shikoku Kakei Co., Ltd.] 0.
5 Parts Example 4 30 parts of acrylonitrile rubber (trade name Hiker 1072) is added to the epoxy resin varnish of Formulation Example 1 to prepare a varnish for electroless plating.

これにさらにMEK(メチルエチルケトン)を加° え
て所定の粘度としてポリイミドフィルム厚さ25μの片
面に15μの厚さになる様塗工し130℃に加熱乾燥し
離型フィルムとしてポリプロピレンフィルムを一時的に
貼り合わせる。
MEK (methyl ethyl ketone) was further added to this to give a predetermined viscosity, and the film was coated to a thickness of 15μ on one side of a 25μ thick polyimide film, dried by heating at 130°C, and a polypropylene film was temporarily attached as a release film. match.

又、配合例1のエポキシ樹脂ワニス中に平均10μ の
A/粉を80重量%加えてよく攪拌し前記のポリイミド
フィルムの逆面に厚さ50μ になる様塗工し、160
℃で加熱しセミキュア状態の接着層を作製する。
Further, 80% by weight of A/powder having an average thickness of 10μ was added to the epoxy resin varnish of Formulation Example 1, stirred well, and coated on the opposite side of the polyimide film to a thickness of 50μ.
Heating at ℃ produces a semi-cured adhesive layer.

一方2f+tlll厚のアルミ板の一方表面を塩酸で処
理して活性化させ、その上に前述のシートを重ね熱プレ
スを行ないアルミ板に絶縁層を作製前記の離型フィルム
を引きはがし、アデイテブプロセスのアルミベース基板
を作製した。
On the other hand, one surface of an aluminum plate with a thickness of 2f + tlll was treated with hydrochloric acid to activate it, the above-mentioned sheet was placed on top of it, and hot pressing was performed to create an insulating layer on the aluminum plate. An aluminum base substrate for the process was fabricated.

比較例 1 配合例1のエポキシ樹脂ワニスをメチルエチルケトンで
適正粘度に調整しガラスクロス(日東紡製 WE−10
0BZ−2)に含浸させ約160℃にて加熱乾燥させて
、4厚さ110μのセミキュリタ゛ 子状態の史−トを作製する。一方2■厚のアルミ板の一
方表面を塩酸で処理し活性化させその上に前述のシート
を重ね厚さ35−の銅箔を重ね 約1: 160°C約40 kg / cm2で熱圧、接着させ
アルミベース銅張板を作製した。
Comparative Example 1 The epoxy resin varnish of Formulation Example 1 was adjusted to an appropriate viscosity with methyl ethyl ketone, and glass cloth (WE-10 manufactured by Nittobo Co., Ltd.) was prepared.
0BZ-2) and heated and dried at about 160 DEG C. to produce a semi-curic acid historical sheet having a thickness of 110 .mu.m. On the other hand, one surface of a 2cm thick aluminum plate was treated with hydrochloric acid to activate it, the above-mentioned sheet was placed on top of it, and a 35mm thick copper foil was placed on top of it. An aluminum base copper clad plate was produced by adhering it.

比較例 2 配合例1のエポキシ樹脂ワニスをポリイミドフィルム厚
さ25μの両面に厚さ40μになる様塗工し、160℃
にて加熱乾燥してセミキュア状態の接着層をもつシート
を作製した。
Comparative Example 2 The epoxy resin varnish of Formulation Example 1 was coated on both sides of a 25μ thick polyimide film to a thickness of 40μ, and heated at 160°C.
A sheet with an adhesive layer in a semi-cured state was produced by heating and drying the adhesive layer.

一方、1.5謹厚のアルミ板の一方表面を塩酸で処理し
活性化させその上に前述のシートを重ね厚さ70/jの
銅箔を重ね約160℃約40 kg / cm2で熱圧
接着させ、アルミベース銅張板を作製した。
On the other hand, one surface of a 1.5-thick aluminum plate was treated with hydrochloric acid to activate it, and then the above-mentioned sheet was layered on top of it, followed by a copper foil with a thickness of 70/j and heated at about 160℃ and heated at about 40 kg/cm2. This was adhered to produce an aluminum-based copper clad board.

比較例 3 ポリエチレンフィルム50μを塩酸で活性化させた1、
 511111厚のアルミ板の上に載置しさらにその上
に厚さ35μの銅箔を重ね加熱圧着ロールにより溶融接
着させアルミベース銅張板を作製した。
Comparative Example 3 Polyethylene film 50μ activated with hydrochloric acid 1,
This was placed on an aluminum plate having a thickness of 511111 mm, and a copper foil having a thickness of 35 μm was layered thereon and melted and bonded using a hot pressure roll to produce an aluminum base copper clad plate.

比較例 4 配合例1のエポキシ樹脂ワニスに平均粒度4μのα−ア
ルミナ(AJtOs )を100重量%加えてよく攪拌
し厚さ35伸銅箔面に80μの厚さになる様に塗工し接
着層を作製し、塩酸で活性化させた1、5■厚のアルミ
板に載置して加熱ロールで熱圧着させアルミベース銅張
板を作製した。
Comparative Example 4 100% by weight of α-alumina (AJtOs) with an average particle size of 4 μm was added to the epoxy resin varnish of Formulation Example 1, stirred well, and applied to the surface of a 35-thick rolled copper foil to a thickness of 80 μm and bonded. A layer was prepared, placed on a 1.5-inch thick aluminum plate activated with hydrochloric acid, and bonded under heat with a heated roll to produce an aluminum-based copper-clad plate.

試験結果 上記実施例および比較例について各特性を試験した結果
を表に示す。
Test Results The results of testing each characteristic of the above Examples and Comparative Examples are shown in the table.

□□□■ 試験方法はJIS  C−6481に基づき試験した。□□□■ The test method was based on JIS C-6481.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の印刷回路用基板の断面図であ
る。 1・・・金属板、 2.吐・・樹脂層、 21・・・無
機充填剤、  4・・・耐熱性樹脂フィルム、5・・・
金属箔。 特許出願人 昭和電工株式会社 ニツカン工業株式会社 代理人 弁理士菊地精−
1 and 2 are cross-sectional views of the printed circuit board of the present invention. 1...metal plate, 2. Discharge...Resin layer, 21...Inorganic filler, 4...Heat-resistant resin film, 5...
metal foil. Patent applicant Showa Denko Co., Ltd. Nitskan Kogyo Co., Ltd. Agent Patent attorney Sei Kikuchi

Claims (2)

【特許請求の範囲】[Claims] (1)金属板の少なくとも一方の面に無機充填剤を含む
合成樹脂層を介して耐熱性樹脂フィルムを貼着し、該フ
ィルム面上に合成樹脂層を設けてなる印刷回路用基板
(1) A printed circuit board comprising a heat-resistant resin film attached to at least one surface of a metal plate via a synthetic resin layer containing an inorganic filler, and a synthetic resin layer provided on the film surface.
(2)金属板の少なくとも一方の面に無機充填剤を含む
合成樹脂層を介して耐熱性樹脂フィルムを貼着し、該フ
ィルム面に合成樹脂層を介して金属箔を貼着してなる印
刷回路用基板。
(2) Printing made by pasting a heat-resistant resin film on at least one surface of a metal plate through a synthetic resin layer containing an inorganic filler, and pasting a metal foil onto the film surface through a synthetic resin layer. Circuit board.
JP4707582A 1982-03-26 1982-03-26 Substrate for printed circuit board Pending JPS58165391A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4707582A JPS58165391A (en) 1982-03-26 1982-03-26 Substrate for printed circuit board
US06/479,236 US4492730A (en) 1982-03-26 1983-03-28 Substrate of printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4707582A JPS58165391A (en) 1982-03-26 1982-03-26 Substrate for printed circuit board

Publications (1)

Publication Number Publication Date
JPS58165391A true JPS58165391A (en) 1983-09-30

Family

ID=12765044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4707582A Pending JPS58165391A (en) 1982-03-26 1982-03-26 Substrate for printed circuit board

Country Status (1)

Country Link
JP (1) JPS58165391A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181687A (en) * 1983-03-31 1984-10-16 松下電器産業株式会社 Integrated circuit board
JPS6059293A (en) * 1983-09-07 1985-04-05 エスエム工業株式会社 Screen winder
JPS62264942A (en) * 1986-05-14 1987-11-17 松下電工株式会社 Metallic-base laminated board
JP2017035802A (en) * 2015-08-07 2017-02-16 昭和電工株式会社 Manufacturing method of insulation heat release sheet, insulation heat release sheet and heat spreader

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036963A (en) * 1973-08-09 1975-04-07
JPS5076562A (en) * 1973-11-10 1975-06-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036963A (en) * 1973-08-09 1975-04-07
JPS5076562A (en) * 1973-11-10 1975-06-23

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181687A (en) * 1983-03-31 1984-10-16 松下電器産業株式会社 Integrated circuit board
JPS6059293A (en) * 1983-09-07 1985-04-05 エスエム工業株式会社 Screen winder
JPS62264942A (en) * 1986-05-14 1987-11-17 松下電工株式会社 Metallic-base laminated board
JP2017035802A (en) * 2015-08-07 2017-02-16 昭和電工株式会社 Manufacturing method of insulation heat release sheet, insulation heat release sheet and heat spreader

Similar Documents

Publication Publication Date Title
US4492730A (en) Substrate of printed circuit
US4985294A (en) Printed wiring board
JPS58165391A (en) Substrate for printed circuit board
JP2000290613A (en) Thermosetting adhesive sheet
WO2011122232A1 (en) Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
JP3067512B2 (en) Production method of metal foil-clad laminate and metal foil used for the production
JP2010028036A (en) Production method of multilayer printed wiring board
JPH03239390A (en) Metal cored board and manufacture thereof
JPH0823165A (en) Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JPH07154068A (en) Adhesive sheet and production thereof, metal based wiring board employing adhesive sheet and production thereof
JPS58165392A (en) Substrate for printed circuit board
JP3077491B2 (en) Manufacturing method of metal-foil-clad laminate and metal foil used therefor
JPH0883979A (en) Manufacture of metal-based board
JPH07232405A (en) Production of metal foil clad laminated sheet
JPH1148423A (en) Manufacture of adhesive film
JPH0553628B2 (en)
JPH1081858A (en) Heat-resistant cover lay film
JP2708821B2 (en) Electric laminate
JP3685507B2 (en) Manufacturing method of multilayer printed wiring board
JP2001152108A (en) Insulating adhesive film multi-layer printed-wiring board using the same and its manufacturing method
JPH07336054A (en) Interlayer insulating resin material for multilayer board printed circuit board and manufacture of the same board
JPS59141283A (en) Metal foil insulating adhesive sheet
JP2911778B2 (en) Manufacturing method of multilayer printed wiring board
JP3046201B2 (en) Method for manufacturing multilayer printed wiring board
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish